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Abstract

Storage capacity is a constraint for current mobile devices. Mobile Cloud
Computing (MCC) is developed to augment device capabilities, facilitating
to mobile users store/access of a large dataset on the cloud through wireless
networks. However, given the limitations of network bandwidth, latencies,
and devices battery life, new solutions are needed to extend the usage of
mobile devices. This paper presents a novel design and implementation of
a hierarchical cloud storage system for mobile devices based on multiple
I/O caching layers. The solution relies on Memcached as a cache system,
preserving its powerful capacities such as performance, scalability, and quick
and portable deployment. The solution targets to reduce the I/O latency
of current mobile cloud solutions. The proposed solution consists of a user-
level library and extended Memcached back-ends. The solution aims to be
hierarchical by deploying Memcached-based I/O cache servers across all the
I/O infrastructure datapath.

Keywords:

Storage, I/O caching, Multi-level, Mobile Computing, Cloud

1. Introduction

A drastic increase in the number of applications and amount of digital
contents such as pictures, songs, movies, and home films one the hand and
the limited storage capacity of mobile devices on the other hand, decelerate
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usability of mobile devices. While PCs are able to locally store a huge amount
of data, smartphones space is limited to few gigabytes, which are mostly
occupied by system files, user applications, and personal data [1].

Some recent examples of mobile cloud storage are Apple’s iCloud, Google
Drive, and Dropbox [2]. These solutions allow users of mobile devices to
synchronize their application data such as photos, iTunes music, calendars,
email, and messages. Although there is steady growth in mobile storage ca-
pacity, the ever increasing appetite of users for high-resolution videos and
images promises the increasing popularity of cloud storage [3]. Given the
current popularity of cloud computing and the current growing usage of mo-
bile devices since the release of iPhone and Android, two approaches were
instantly taken. First, adapting existing cloud services to mobile usage. Sec-
ond approach is to use nearby mobile devices to collaborate in a common
task.

Mobile Cloud Computing (MCC), as defined by Liu et al. [3] “is a model
for elastic augmentation of mobile device capabilities via ubiquitous access
to cloud storage and computing resources”. An extended definition was pro-
posed by Sanaei et al. [4] “mobile cloud computing is a rich mobile computing
technology that leverages unified elastic resources of varied clouds and net-
work technologies toward unrestricted functionality, storage, and mobility to
serve a multitude of mobile devices anywhere, anytime through the channel
of Ethernet or Internet regardless of heterogeneous environments and plat-
forms based on the pay-as-you-use principle”. The objective of mobile cloud
computing proposed solutions so far is to extend the capabilities of mobile de-
vices, specially on their weakest areas: computing power, battery life, mobile
network bandwidth and latency, and storage capacity.

Another problem addressed in cloud computing environments is data
management. Currently, one of the techniques to optimize I/O systems in
cloud environments is to decouple the virtual instances from the storage re-
sources [5]. Moving information between different domains has never been
a simple task. First, it is costly to deploy virtual machines that need to
process a huge amount of data. Second, data access between geographically
dispersed infrastructures is significantly increasing the latency perceived by
users. Existing cloud computing tools tackle only specific problems, such
as parallelized processing on massive data volumes [6] or large data storage
[7]. However, these tools provide little support for mobile clouds, where data
access is mainly limited by the network bandwidth and latency.

Recently, Abolfazli et al. [8] argued that there are open challenges waiting
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to be resolved in the MCC research area. Among of them, we highlight seam-
less ubiquity, context awareness, and resource scheduling due to the following
reasons. First, current mobile infrastructures have to ensure connectivity in
all possible scenarios. Second, given the huge amount of data generated by
smartphones, data must be allocated as close as possible in order to reduce
transfer latencies. Third, an adequate usage of the resources is completely
necessary for reducing system peaks and overheads.

This work aims to present the architecture of a hierarchical storage solu-
tion for large scale mobile cloud systems. The storage solution fills the latency
gap between mobile devices and the final cloud-based storage systems. We
present a cloudlet-based cache storage infrastructure, namely CoSMiC. Our
solution could be used to deploy storage in-a-box systems, on all the levels
of the datapath hierarchy. Mobile applications benefit from this solution
by improving data locality, reducing application execution times, and saving
money and battery life in mobile devices due to the use of Wireless Local
Area Network (WLAN) connections instead of Wireless Wide Area Networks
(WWAN).

The contributions of this work are the following. First, we present a
cloudlet-based hierarchical storage system that reduces data access latency
of current large scale mobile cloud infrastructures. Second, the proposed
solution could be easily deployed on heterogeneous and low power computa-
tional systems, including clusters and clouds. Third, using both configurable
hash and address algorithms included in Memcached [9] client library, the
CosMiC front-end is completely decoupled from the I/O servers, resulting in
an increase of scalability. Fourth, CoSMiC allows system monitoring, taking
into account the usage of Memcached statistics with extended metrics.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work and background. Section 3 presents the design details of CoSMiC.
In Section 4 we present some possible scenarios and deployment examples. In
Section 5, we show our evaluation results. Finally, we conclude and discuss
about future uses of CoSMiC in Section 6.

2. Related work

Mobile devices have very limited resources, being their main weak points
computing power, storage space, and battery life. To augment computing
power and improve battery life, highly compute demanding applications are
offloaded to the cloud. In order to achieve this objective, several solutions
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have been presented, some of them, based on the use of Hadoop [10, 11] over
virtual machines and focused in determining cost-benefits of the offloading,
considering also the data transfer required before and after computation.
CloneCloud [12] and MAUI [13] are examples of compute offloading in dis-
tant fixed clouds, while Hyrax [14] and Phoenix [15] propose a solution for
offloading between nearby mobile devices.

In the following subsection we present and compare previous works related
to CoSMiC. We will focus on traditional immobile cloud solutions for storage
and hybrid-based approach for MCC. Finally we discuss about similar works
that rely on distributed caches as a storage infrastructure.

2.1. Immobile cloud resources for storage

The most common approach for mobile cloud storage is the adaptation
of already known and highly used cloud storage services like Apple iCloud,
Google Drive, Microsoft SkyDrive, or Dropbox[16], and cloud storage back-
ends such as Amazon S3 [17] and Windows Azure Storage [18].

Currently, one of the most used cross-platform solution is Dropbox, which
offers platform-independent storage, applications for almost every mobile
and desktop platforms, secured data with AES-256 encryption, and highly-
reliable Amazon S3 as storage system back-end. Also, to minimize the impact
of synchronization, it uses binary-delta encoding functions to only upload the
changes on each file. Apple iCloud, Google Drive, and Microsoft SkyDrive
are leading alternatives and have the advantage of being embedded into their
respective operating systems, but as their main negative point, they are cross-
platform restricted and lack some of the features offered by Dropbox.

Cloud storage systems are directly related with distributed file systems,
which usually offer the file management infrastructure (back-end). In fact,
cloud storage can be seen as the evolution of distributed file systems for
domestic users in front of typically business/research oriented distributed
file systems. Similar to our proposed solution, the Ceph [19] distributed
file system is currently growing in popularity. In order to avoid metadata
access bottlenecks, Ceph takes advantage of a distributed metadata cluster
architecture based on Dynamic Subtree Partitioning [20]. The file system is
partitioned by delegating authority for subtrees of the hierarchy to different
metadata servers. This solution allows to distribute the workload across the
metadata hierarchy, which is fully independent. Our approach deals with
metadata bottlenecks by distributing data and metadata across every avail-
able Memcached nodes. Another similarity between Ceph and our proposed
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solution is the mechanism for obtaining and addressing data objects. It is
not necessary to store the addresses of the blocks or objects used by each
file on the metadata as done in traditional file systems. Ceph eliminates al-
location lists entirely. Instead, file data are striped onto predictably named
objects, while a special-purpose data distribution function assigns objects to
storage nodes or storage devices. This allows any party to calculate (rather
than look up) the name and location of objects comprising a file’s contents.
This solution eliminates the need of maintaining and distributing a list of ob-
jects, simplifying the design of the system, and reducing the metadata cluster
workload. Ceph and GFS[21] save all the necessary information about the
file to metadata servers and access directly from the I/O nodes without any
further metadata access. Ceph and GFS follow a similar replication scheme,
in which data object replicas are distributed through the cluster, at least one
copy in the same rack and another outside of the rack containing the original
data.

2.2. Hybrid mobile cloud solutions

The ’cloudlet’ concept, classified as “inmobile or fixed local cloud” by
Abolfazli et al. [1] was introduced by Satyanarayanan et al., [22] as “a
trusted, resource-rich computer or cluster of computers that is well-connected
to the Internet and available for use by nearby mobile devices”. The ob-
jective of this kind of solutions is to present a hybrid alternative between
resource-restricted ad-hoc mobile clouds and geographically distant public
cloud services. As shown in Figure 1, cloudlets are usually situated close to
the mobile devices and connected with them via WLAN (e.g. Wi-Fi) and
access to feature-rich public cloud services.

Cloudlets are the new trend over ad-hoc mobile cloud computing because
they offer some advantages impossible to achieve by mobile devices. First,
cloudlets computing capabilities are higher than mobile devices. Second,
cloudlets do not need to be mobile and can be plugged, giving them the
advantage of infinite power source and better high performance wired internet
connections. Main advantages of cloudlets over mainstream public cloud
services are due to the proximity of the cloudlets: mobile users can take
advantage of a lower latency in their requests, and an extended battery life
result of the use of Wi-Fi instead of WWAN (3G/HSDPA/LTE) [13, 23].
Given all these advantages, Sakr et al. [24] determined that cloudlets are
one of the main research directions to achieve a better quality of service in

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

WAN

Cloudlet

Cloud

Wi-Fi

Figure 1: Representation of a cloudlet infrastructure. Cloudlet nodes are resource-rich
and have high bandwidth/low connection access to the Internet. They are accessible
from mobile clients through high speed and low-energy WLAN networks such as Wi-Fi
and are designed to reduce latency related problems in mobile cloud environments due to
WAN/WWAN connections.

MCC architectures. We classify the hybrid mobile cloud solutions in four
categories: infrastructure, computation, storage, and energy efficiency.

Infrastructure. Next-Generation Hotspot (NGH) infrastructure [25] is
a solution proposed by Cisco to improve the functionality given by adding
Hotspots. The objective of this solution is to alleviate the load over the wire-
less cells, deploying new hotspots in highly populated areas. CoSMiC shares
with NGH the objective of alleviating WWAN radio stations offering users
WLAN connection. However, NGH offers hotspots without any kind of stor-
age purposes or specifically cloud-oriented functionalities. CosMic can take
advantage of NGH by improving Wi-Fi usage and confidence in mobile end-
users. These users should be more confident to use our system when deployed
within CoSMiC covered areas. SAMI (Service-based Arbitrated Multi-tier
Infrastructure for mobile cloud computing) [26] addresses the latency prob-
lem by using a service-oriented architecture (SOA) and involving the Mobile
Network Operators (MNO) to deploy authorized dealers of services in highly
populated areas. CosMiC shares with SAMI the objective of reducing both
latency and WWAN networks congestion. We also share the approach of
deploying in social locations such as shopping malls, airports, or commercial
buildings. The main differences are its service orientation, and its depen-
dence from MNOs: first, CosMiC focuses on Storage as a Service (SaaS),
while SAMI alleviates and manages services on behalf of the cloud providers,
directly in the MNOs; second, CoSMiC is MNO-independent and is deployed
on top of network providers, while allows to offer customizable services. As
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described in Section 3, instead of using a SOA infrastructure, CosMiC relies
on Memcached client libraries, available for several programming languages.
Abolfazli et al. [27] present a market-oriented MCC architecture (MOMCC)
that faces the problem with a different approach. Based on a SOA, the ob-
jective of this solution is to exploit nearby mobile devices to alleviate the
WAN latency, usually perceived by mobile users of cloud computing. While
the objectives pursued by this approach are shared with CoSMiC (reduce
both WAN latency and congestion on radio base stations), the MOMCC is
completely different. The use of nearby mobile devices improves availability
of low-latency services, but it also incurs in some problems: battery life on
mobile host devices, unpredictable availability of close devices offering this
specific service, MNO’s mandatory involvement, and costly deployment of
the solution.

Computation. Several solutions for computation offloading in nearby
compute nodes has been presented in recent years (e.g. Cloudlets[22], MAUI[13],
and mobile volunteer computing [28]). Soyata et al. [29] present Cloud-
Vision, a face recognition solution that relies on a cloudlet architecture. In
Cloud-Vision, the costly execution process is distributed to multiple cloudlet
with higher computation capabilities. However, authors do not comment how
data are transferred between mobile devices and cloudlets and its correspond-
ing cost. CoSMiC could help these applications to reduce data transfers in
the cloudlet infrastructure. Sanaei et al. [30] introduced the hybrid perva-
sive for MCC (HPMCC). HPMCC relies on a multi-tier MCC infrastructure
based on the proximity of the involved devices. HPMCC paradigm targets
to make a better usage of mobile devices and services by more transparent
and context-aware MCC-based solutions. Authors propose that security and
privacy methods can be offloaded from mobile devices to other entities like
MNO.

Storage. Storage Cloudlets approach has been explored in a less deeply
way than computing offloading approaches. Xu et al. [31] pointed out that
the transmission of large data items should occur within a tight user-machine
interaction loop. MoCa (Mobile Collaboration Architecture) [32] is not spe-
cialized in cloud storage, but it shares with our solution its focus on mobile
clients paired with the closest possible proxy that offers the service wanted
by the client, instead of using directly the servers providing this service.
MoCa was released in 2004, and while its algorithm to discover the closest
proxy, based on RADAR [33], is really powerful, the complete solution is not
focused on MCC, lacking most of the advantages offered by this new tech-
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nology. Phoenix [15] provides a transient distributed data storage system
for mobile devices that leverages opportunistic use of cloud of nearby mobile
computing devices in ad-hoc manner. In Phoenix, mobile devices cooperate
as a P2P network, distributing data replicas in order to ensure data avail-
ability. However, while Phoenix is currently working in one-hop networks,
CoSMiC relies on a completely different approach: First, CoSMiC aims to
reduce battery consumption by reducing data transfers, mobile devices do
not collaborate in the storage architecture; Second, performance is obtained
by caching data in the cloudlet-based storage nodes; Third, CoSMiC uses a
single datapath, which avoids expensive coherence protocols.

Energy. Finally, the energy efficiency of data transfers is highly penal-
ized by the latency and low bandwidth, as shown by Miettinen and Nurminen
[34], and Balasubramanian et al. [35]. eTime [23] proposes an energy-efficient
strategy for data transfers between mobile devices and the cloud based on
Lyapunov optimization. The objective is to take advantage of periods with
good connectivity to prefetch data while delaying transmissions in cases of
bad connectivity, when possible. The proposed solution relies on the im-
provements in battery life under good conditions. Their results demonstrate
that prefetching is a powerful way to improve battery life and should be
considered for hybrid mobile cloud storage solutions.

Our solution stands out in the state-of-the-art of MCC in four novel
features. First, it has been specifically designed for two of the main problems
in the current MCC storage scenarios: latency and battery life. Second, these
problems are targeted by a multi-level hierarchy for caching objects. Third,
the solution aims to adapt to any existent network topology being possible
to deploy any number of caching level with any number of CoSMiC storage
nodes in each level. Fourth, CoSMiC has been conceived around the novel
concept of cloudlet to achieve a trade-off solution between pure mobile storage
and pure remote cloud storage.

2.3. Distributed cache memory solutions

Nowadays there are multiple alternatives for distributed cache memory
solutions. Most of them rely on key-value store system such as Couchbase
[36], Redis [37], Cassandra [38], and Memcached [9]. These solutions provide
a distributed NoSQL database, providing scalability and performance.

Memcached is an open source distributed memory object caching system
typically used in web environments to reduce the latency of web requests.

8
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64MB Spare

web server

64MB Spare

web server

Without Memcached

      When Used Separately
Total Usable Cache Size: 64 MB

With Memcached

Combined cache: 128 MB

64MB spare

web server

       When Logically Combined
Total Usable Cache Size: 128 MB

64MB spare

web server

Figure 2: Spare memory fragments can be used as an unique cache space in Memcached.
With Memcached, all of the servers share the same virtual pool of memory. A given
item is always stored and always retrieved from the same location without needing any
communication between clients or between servers.

Memcached is an in-memory key-value storage system based on the forma-
tion of a unique caching space among the involved servers (as shown in Fig-
ure 2). In this way, a common cache view is maintained through the use of
a Distributed Hash Table (DHT). Memcached can take advantage of unused
memory in the system and easily aggregate it to the cache pool.

One of the main benefits of using Memcached as a caching system is the
decoupling of the potential clients, and the decoupling among the servers that
are part of the DHT. Each client maintains a list of the available servers, and
redirects its requests to them based on the hash of the requested items. By
default, the server is chosen applying MD5 over the block key and calculating
the modulo with the number of servers, as shown below:

Destination Server = MD5(key) % No. Servers (1)

The hash and selection functions are easily modifiable at client-side, per-
mitting a high level of customization of the load balancing. It is even possible
to select a consistent hashing like in Ketama [39].

By default, Memcached allows to store key-value pairs with up to 1 MiB
raw data (up to 128 MiB in experimental mode) indexed with up to 250 bytes
keys. Memcached was designed with the objective of caching data related to
web applications, it can store any kind of data inside the value associated to
each key.

On the server side, each server divides its available memory in different

9
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slabs. Each slab stores key-value pairs within a size range in order to reduce
memory fragmentation. In case that no free space is available in a slab, a
Least Recently Used (LRU) policy is applied to evict items from the cache.
Additionally, a slab can be resized if near ones are empty. As the architecture
does not involve any centralized coordinator, Memcached is a highly scalable
architecture, typically used in high-throughput scenarios, where the objective
is to reduce the latency of user requests. Memcached is currently used in
high-demanding web sites such as YouTube, Twitter, and Wikipedia [40].

Relative to high performance I/O and non-persistent storage, we present
some approaches that have to be taken into account during the design of a
cloud storage solution. Nahanni Memcached [41] is a solution totally appli-
cable to our proposed cloud storage system in a multi-tenant environment.
Nahanni Memacached uses mechanisms of shared memory between virtual
machines running on the same host to avoid communications over sockets,
achieving much better performance. It is important to remark that there
are previous works using Memcached in a distributed file system. Wang et
al. [42] benefit from Memcached by promoting read throughput in a massive
file system, in which small files are predominant. In contrast, our proposed
solution supports any file size given that a multiple-block storage system is
implemented on top of Memcached.

3. CoSMiC: Storage cloudlet in-a-box

A comparison of a classical MCC model and CoSMiC infrastructure is
shown in Figure 3. Classical solutions access to cloud services via wire-
less connection, using an antenna (WLAN or WWAN). A datapath through
the ISP’s network infrastructure to the cloud storage service is then estab-
lished. Our solution proposes deploying multiple number of cache levels
before the ISPs network infrastructure, reducing the latency produced by
requests through WANs, following cloudlet’s spirit.

CoSMiC reduces the connection latency and improves battery life through
the use of Wi-Fi instead of 3G, but it is applied to storage adding hierarchies
to the caching system, permitting the deployment in a hierarchical way. The
number of cache levels and the number of servers on each level is adaptable
depending on the characteristics of the infrastructure where the deployment
will be done.

CosMiC relies on Memcached as a distributed cache system, using the
distributed cache as a virtual I/O device where file blocks are mapped into

10
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Figure 3: CoSMiC architecture. On top current network path of user requests to cloud
storage services. At the bottom, hierarchical storage cloudlet solution deployed between
mobile device clients and storage cloud services.

key-value items. We have included two new features on top of the initial
design of Memcached. First, evicted items are saved in a persistent storage.
Our generic design permits to use any persistent storage available through the
use of plugins (e.g., local file system, Lustre, NoSQL databases, cloud storage
back-ends like Amazon S3, etc.). Second, our solution can build hierarchical
cache systems by connecting different levels of Memcached back-ends, using
a new dedicated plugin. Its generic design permits to easily adapt to existing
hardware and software configurations. Portability is guaranteed due to the
large number of the developped libraries for Memcached 1.

In the following subsections we detail both hardware and software archi-
tecture details of CoSMiC.

3.1. Software architecture

The proposed software architecture is composed of two main components:
an user-level file library and the CoSMiC back-ends. The user library maps

1List of available Memcached client libraries for multiple programming languages at
https://code.google.com/p/memcached/wiki/Clients.
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I/O file operations of client applications into item requests. CoSMiC back-
ends receive the requests managing the access to the persistent storage or
next level of the hierarchy. The next subsections describe in detail the file
mapping mechanisms, the structure of the user library, and the internals of
the CoSMiC back-ends.

3.1.1. User-level file library

Mobile applications employ the CoSMiC library in order to access files
across the CoSMiC hierarchy. The layered design (see Figure 4) provides an
interface designed for any kind of mobile application. The general-purpose
interface (libCosmic) manages the mapping of POSIX-like file I/O operations
into Memcached key-value pair requests (more details in Subsection 3.1.2).
Requests are then sent through an unmodified Memcached client library to a
previously defined CoSMiC back-end pool, based on Memcached back-ends.

CoSMiC is also able to deal with key-value items directly given that,
as shown in Figure 3, it takes advantage of the Memcached library. This
approach increases CoSMiC portability by supporting current applications
that take advantage of NoSQL-based data accesses.

3.1.2. File Mapping

CoSMiC maps file blocks into key-value pairs. Figure 5 shows the trans-
formation of a file into a collection of key-value pairs. First, we create a
metadata key-value pair whose key corresponds with the file name and the
value stores the associated metadata. The metadata contains a unique iden-
tifier of the file and its size among other common metadata. The file identifier
is generated during the creation of the file, by applying a SHA-512 hash over
the file name [43]. This assures that every identifier has the same length, and
provides a good distribution of keys over the global key space. Each data
block is stored using a key-value pair whose key corresponds to the hash of
the file identifier and block offset, and the value contains the raw data.

In order to calculate the destination back-end node, the user-level file
library concatenates the unique ID with the block offset, resulting in a string
with format > ID > offset. As next step, an MD5 is applied to this string.
As last step, the server is selected by the Memcached client library. This
calculation does not suppose a great overhead, given that primitives such as
MD5 and SHA are commonly used in the mobile community. In our case,
two calculations are needed, file hash (one-time SHA to calculate file ID) and

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

CoSMiC Node N-1

Generic Persistence Plugin

Persistence Manager

Memcached Back-end

CoSMiC Node 0

Memcached Front-end

Memcached Distributed Hash Map

Generic Persistence Plugin

Persistence Manager

Memcached Back-end

Cloud Storage Back-end Local FS

WLAN / WWAN Network

NoSQL DB Memcached Front-end

Cloud Storage Back-end Local FS

NoSQL DB

Application

Memcached library 
(Front-end)

Mobile Device

CoSMiC Library

Storage Cloudlet

Application

Mobile Device

Application

Mobile Device

Memcached library 
(Front-end)

CoSMiC Library

Memcached library 
(Front-end)

CoSMiC Library

Figure 4: CoSMiC architecture is divided in two main components: a user-level library for
applications and CoSMiC back-ends. The user-level library is layered and offers POSIX-
like interface. CoSMiC back-ends improve Memcached servers’ functionality by adding a
persistence manager with different plugins, easily implementable and switchable.

server hash (MD5). Both hashes are performed over small keys (around 250
bytes) simplifying the calculation.

It is important to highlight that unlike in typical file systems, where it
is necessary to store pointers to the data blocks, in our solution the keys
required to access them can be calculated on demand per file. CoSMiC mini-
mizes the metadata requests for the location of a particular data block, and it
is capable of treating equally data and metadata blocks as key-value items,
fully distributing them among all the CoSMiC nodes. The fully distribu-
tion of metadata blocks instead of the use of a centralized metadata server,
reduces possible bottlenecks produced by heavy metadata accesses.
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File name
ID = SHA (Domain + Filename)
Size

...

Time Stamps

>ID>0
Metadata Block Data Blocks

>ID>1

>ID>2

>ID>3

>ID>4

>ID>5

>ID>n-2

>ID>n-1
Owner

Logic file description

Figure 5: CoSMiC file description. In the CoSMiC client library, a file is composed by
one item that contains the metadata and several data blocks. Data block are accessible
by the ID metadata field, stored in the metadata block.

3.1.3. Storage back-end

CoSMiC back-ends leverage the design of Memcached while introducing
new capabilities. In Memcached, items evicted by the LRU eviction policy
become unrecoverable. As shown in Figure 4, we have extended the existing
features of CoSMiC by introducing a Persistence Manager layer that is in
charge of storing these items before becoming unrecoverable, by moving them
to any of the available Generic Persistence Plugins (GPP).

The GPP layer transfers evicted items to another level of the hierarchy or
to any kind of storage sub-system, such as cloud-based storage solutions like
Amazon S3 [17] andWindows Azure Storage [18], or even to a local file system
or NoSQL database for private systems. In case of using a persistent file
system, data blocks are stored as a regular file. For totally local deployments,
metadata can be stored in Berkeley DB, a NoSQL-based database similar in
functionality to Memcached. CoSMiC offers the possibility to use another
layer of CoSMiC back-ends, resulting in a hierarchical structure and allowing
the deployment of storage cloudlets with multiple cache levels. Due to the
layered design of the architecture, it could be even possible to implement a
GPP for popular cloud storage services, like Dropbox, and caching this kind
of accesses in our proposed system.

Additionally, in order to increase Memcached back-end performance, we
have included three new optimizations. First, a dirty byte has been added to
the Memcached item struct. Only items marked as dirty need to be stored
before eviction. Second, a Preemptive Eviction Module (PEM) has been
implemented. The items that will be evicted soon (last elements of the LRU)
are stored into the next layer of the hierarchy but preserved in the current
layer for locality reasons, marked as clean. This action simplifies the eviction
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client CoSMiC library libMemcached CoSMiC back-end N0

open("filename") get("filename")
GET filename

NOT FOUNDerror

set("filename", metadata(ID))

generate metadata and ID

SET filename, length, metadata

STOREDsuccessfile descriptor (fd)

close(fd)

CoSMiC back-end N1

Figure 6: Message passing protocol for file creation in CoSMiC.

when needed, items that stay in clean condition will be deleted without any
further action because they are already stored in lower layers, and their state
should be dirty if they have been modified after the preemptive eviction.
Third, we have implemented a buffering system for the evicted items. Items
are copied to the buffer and flushed in an asynchronous way in low load
conditions. This buffering system can be configured varying the number of
active buffers. Items are only stored in one buffer based on a hash function,
resulting in a quicker search and a better throughput performance by a better
use of the socket transferring multiple blocks in parallel, one for each buffer.

3.1.4. Message passing protocol

Figure 6 shows a file creation in CoSMiC. When a file is created, first
the CoSMiC library/front-end request an item with the file name. If this
item does not exist, the file metadata object is created as a new item in the
CoSMiC back-end node. Then, the CoSMiC library assigns a file descriptor
to this file. It is important to note that CoSMiC allows to isolate metadata
by configuring the CoSMiC library by using another CoSMiC level for only
storing persistent metadata.

An example of write and read accesses protocol is shown in Figure 7.
In case of write accesses, clients open the file obtaining a file descriptor. A
write operation is mapped into two consecutive calls of Memcached. One
write request of 6000 bytes is translated to two request of 4000 bytes each,
assuming a block size of this length. We highlight that a large block size can
incur in a transfer overhead. Then, the libMemcached library distributes
requests across the CoSMiC back-end. Finally, the CoSMiC library updates
the file metadata (file length and modified date). Other file operations such
as lseek of close do not involve message exchange.
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client CoSMiC library libMemcached CoSMiC back-end N0

open("filename") get("filename") GET filename

metadata, lengthmetadata(ID)
file descriptor (fd)

write(fd, buffer, 6000)
set("ID>0",data0,4096)

set("ID>1",data1,4096*)

set("filename",meta_update)

SET ID>0, 4096, data0

SET filename, length, update

STORED

successsuccess (6000)

lseek(fd, 0, SEEK_SET)

read(fd, buffer, 6000) get("ID>0")

get("ID>1")
GET ID>0

data0, 4096

success
success (buffer, 6000)

CoSMiC back-end N1

SET ID>1, 4096, data1

GET ID>1

data1, 4096

Figure 7: Message passing protocol for file edtion (write and read) in CoSMiC. The CoS-
MiC library translates POSIX call to Memcached primitives.

3.2. Hierarchical datapath

Nowadays, storage systems are one of the main bottlenecks in cloud sys-
tems. Furthermore, it is greatly accepted that large scale storage systems
will be necessarily hierarchical [44]. This is done by organizing the memory
spaces in a complex hierarchy, moving data to local caches as fast as pos-
sible and throwing it to slower devices in an asynchronous way [45]. This
hierarchical structure should be constructed with decoupling in mind, which
consists of splitting and isolating application devices, forwarding nodes, and
storage nodes as much as possible.

As can be seen in Figure 8, the system offers the possibility to be struc-
tured hierarchically. The objective of this approach is to offer as much flex-
ibility as possible. If it is possible to deploy the system with every node at
the same cache level, it can be done. If the topology of the network is not
optimum for this kind of deployment (e.g., different bandwidths/latencies in
different segments of the network), the deployment can be done exploiting
the characteristics of the network. Any number of nodes can be deployed
in each one of the hierarchy levels and any number of hierarchy levels can
be used in the architecture. As the number of levels deployed increase, the
latency to access to the back-end layer is higher. However, the objective is to
reduce the impact of WAN access latency using the cloudlet caching nodes,
while asynchronously flushing items to lower levels of the cache, being im-
perceptible by the clients.
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Application level

Cloudlet I/O Cache Level 1 (L1)

Cloudlet I/O Cache Level 2 (L2)

Storage nodes level

ID: >abc123>1 ID: >abc123>1

Figure 8: CoSMiC hierarchy. The flexibility and easy deployment of our proposed solution
permits any number of cache levels, each one involving any number of nodes seen as a
unique caching space. Due to the different Generic Persistence plugins available, there are
a lot of possibilities for the storage back-end in the last level of the hierarchy.

Figure 8 represents a hierarchical deployment of CoSMiC. The hierar-
chical deployment of CoSMiC is both single-copy and single-path, only one
copy of the item is maintained per level and items are mapped to a specific
I/O node, respectively. In this way it is not necessary count with expensive
coherence and consistence protocol, improving the performance. In Figure
8, two devices access the same item, therefore, requests are mapped to the
same I/O node. Then, this node caches and forward this item to he next
level of the hierarchy up to reach the final storage system.

Another capability offered by the hierarchical deployment is to set-up top
levels of the hierarchy, with as many little servers as possible, spread over the
desired area, without needing extreme power, cooling, or space requirements.
Every one of this storage in-a-box nodes can be connected to near storage
servers as next cache level. This new level reduces limitations with improved
features: unlimited power sources, high-bandwidth network and enhanced
computing capabilities. In addition to improved capabilities, this level can
be deployed in a properly configured room close to the first level nodes. Even
different domains can be deployed in different areas of the same building.

3.3. File domains

The file system could be deployed into multiple domains thus to separate
files and resources based on their intended usage. This separation provides
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Figure 9: Different file domains can be deployed in different areas based on content-needing
of a specific context. Domains can be shared between different areas.

simplicity to the user, who only has to worry about a specific subset of files.
Arranging files by domain also lets the system to apply blanket access priv-
ileges to files in that domain, preventing unauthorized users from changing
files intentionally or inadvertently. In CoSMiC, a file domain is defined as
pool of Memcached back-ends. Figure 9 represents a CoSMiC infrastructure
composed by three different domains. Different domains can be deployed on
the same area. Also it is possible to offer the same domain in different distant
areas.

3.4. Deployment

CoSMiC supports multiple scenarios. The concept storage cloudlet in-a-
box refers to its flexibility and easy deployment. CoSMiC can be installed
into multiple hardware architectures, even in really simple computers such as
PlugComputers, Intel NUCs, or ARM-based mini PCs (such as Raspberry
Pi and ODROID). The storage cloudlet is composed by a cluster of low
consumption devices, as explained previously. This approach has various
benefits: (1) it increases the Memcached cache capacity by adding additional
nodes; (2) load-balancing in case of peaks; (3) CoSMiC back-end nodes can
share an Internet address (NAT) or use a public range.

As previously stated, CoSMiC back-end nodes run without information
about any other node in the same caching level. CoSMiC back-end nodes are
configurable via command line. Block size can be configured from 1 KByte
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to 64 MBytes. The GPP can be configured to work in local persistence mode
(persistence data path) or hierarchic mode. This mode should be configured
with the IPs of the CoSMiC back-end nodes deployed in the next caching
level. CoSMiC back-end nodes are fully retro-compatible with Memcached,
including all the possible command line arguments such as port mapping,
monitoring, slabs configuration, etc.

Clients configuration is straightforward. Client only need the IPs of every
CoSMiC back-end node inside the first level of their specific domain. In order
to facilitate the IPs configuration, a discovery service can be deployed for an
specific domain. Block size is also configurable in the CoSMiC clients library
through the use of environment variables.

4. Application scenarios

In this section we will offer different scenarios that can take advantage
of CoSMiC, centering the explanation in the infrastructure of the different
possible deployments.

4.1. Public places

The first scenario that we address it is a large building or a crowded
place. Examples of this scenario are airports, universities, stadiums, concert
halls, cinema halls, theaters, and shopping malls. Even outdoor spaces with
a minimum network and electric infrastructure, like music festivals, campus
or crowded events, can be considered part of this scenario. As an example,
we will focus our explanation of this scenario in shopping malls because of
its characteristics specially favorable for our proposed solution.

Figure 10 shows an example of deployment in this scenario. Different
zones of the scenario are separated by dashed lines, and represent different
physical zones of the scenario. In a shopping mall could be seen as a stores
zone and a restaurants zone, and in a university could be seen as different
departments. Mobile clients are able to know which servers are in each zone
and which domains are available in each zone by a discovery service based
on the currently connected Wi-Fi access point. As the figure shows, different
caching levels can be deployed. In this case, two levels have been considered
enough for a shopping mall, but is possible to deploy any number of levels.
Any number of nodes can be deployed in any of the levels of the hierarchy
and in any of the zones of the scenario, however, the number of nodes should
be dependent on the system load.
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In the first layer the nodes can be servers, personal computers, or low
power computers, as defined previously in our storage cloudlet in-a-box con-
cept. It is recommendable to have a wired LAN connection between caching
layers but, as can be seen on the top of the figure, is not mandatory, as
nodes can connect to the next caching level through a WLAN connection.
The second level of the system can be deployed in large computers in a room
specially qualified for that matter, it can even be possible to use a data cen-
ter if it is available. This second level should be well-connected to Internet
through a high-bandwidth connection in order to retrieve and store objects
in a cloud storage back-end, like Amazon S3 or Microsoft Azure.

It is extremely important that mobile devices connect with the storage
cloudlets through a WLAN connection (such as Wi-Fi or even Bluetooth
can be considered in very special scenarios). The use of Wi-Fi has two
main advantages for the users over WWAN connections: the latency and
bandwidth are improved and the battery life boosted. If the requested data
is cached, the response should be faster than WWAN connection, while not
cached data response should be similar to WWAN. The increase of latency
through the different caching levels should be compensated by the better
wired WAN connection of the building.

The shopping mall example is specially interesting in this scenario, be-
cause, as said by Abolfazli et al. [27], “the number of computers in public
places such as shopping malls, cinema halls, airports and coffee shops is
rapidly increasing. These machines are hardly performing tense computa-
tional tasks and are mostly playing music, showing advertisement, or per-
forming lightweight applications”. Our system can take advantage of these
underutilized systems deploying instances of CoSMiC on them. In addition,
due to the lightweight computing requirements of our proposed solution, CoS-
MiC nodes can be used to offer other services, like custom cloud services for
customers or computing offload for nearby mobile devices.

An essential stakeholder of this scenario is frequently forgotten. Apart
from the service provider (e.g. shopping mall, airport, etc.) and the mo-
bile clients, it is essential to analyze the importance of the Internet connec-
tion provider, also known as Mobile Network Operator (MNO). It is easy to
explain how our proposed approach helps mobile device users and storage
cloudlet owners.

On the one hand, mobile device users improve their bandwidth and la-
tency over WWAN data access and save battery life and money due to the
use of WLAN instead of contracted data plan. On the other hand, the owner
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Figure 10: CoSMiC infrastructure deployed on a public place. Cluster of mobile devices
connect to one or more storage cloudlet-base nodes (level 1), which forwards and cache
I/O blocks to the the next hierarchy level (level 2). Finally, data blocks, are stored in a
cloud-based storage infrastructure.

of the storage cloudlet has a lot of benefits with a small cost of deployment
and ownership, with the ability of reuse existing infrastructure: attracting
new clients, offering better or customized cloud services, and, facilitating the
Internet usage habits of their clients. It could even be possible to propose
special offers to frequent customers, offering other benefits for using the sys-
tem, in a similar way to Four Square offers2. It can be even possible to offer
some services based on the context of the user, in a similar way as proposed
by Apple with their iBeacons3 but using nearest Wi-Fi access point instead
of Bluetooth.

But, as said before, MNOs are usually forgotten in this kind of scenarios,
while being a major participant. Figure 11 shows a simplified vision of a

2http://www.foursquare.com
3http://support.apple.com/kb/HT6048
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IXP

Figure 11: Simplified vision of a Mobile Network Operator infrastructure (MNO). The
MNOs offer connectivity from mobile devices to geographically distributed cloud storage
services or back-ends. We have used the UMTS approach where mobile devices connect to
a Node B operated by a Radio Network Controller (RNC). The request is routed through
a land infrastructure and, if necessary, data is exchanged with other Internet providers on
the Internet Exchange Nodes (IXP).

typical MNO infrastructure for mobile data networks. Requests from mobile
devices are sent to the nearest Node B. A Node B is a radio base station
for UMTS connections. Nodes B have a very basic functionality and are
controlled by Radio Network Controllers (RNC). A small number of near
Nodes B share the same RNC. This RNC routes user requests through a
wired network, in a similar way as done in WAN connections, so apart from
the possible caching mechanisms present in the RNC, from that point on, its
behavior is similar to WAN connections like xDSL, FTTH or cable. The last
interesting item in the schema are the Internet Exchange Points (IXP), the
last point of the infrastructure of MNOs. In these IXPs, different Network
Operators (mobile or not) exchange data between their networks. This traffic
exchange is the most expensive traffic for MNOs because it happens outside
of their own networks.

In order to reduce costs at the Internet Exchange Points, MNOs try to
cache as much data as possible inside their own networks. Most popular con-
tents are popular in large areas, even in entire countries, like social networks,
news pages, public administration websites, etc. But a lot of contents are
popular only in small areas: local news pages, viral YouTube videos only in a
specific city, etc. This kind of content is easily cached near its consumption,
for example, in RNCs. But another kind of content popularity is possible:
context-specific contents. Popular contents consumed in a shopping mall or
a university could be slightly different from the most consumed contents in
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the area covered by the RNC (100 meter to 8 km areas).
Storage cloudlets can cache this context-specific content and offer two

main advantages to NMOs. First, less requests are done to Nodes B near
highly populated areas with storage cloudlets deployed. If contents are
cached, requests are immediately resolved by storage cloudlets alleviating
the stress in near cells. This approach targets one of the problems presented
by Sanaei et al. [26, 46]: “a large number of such helping nodes are needed
to alleviate ever increasing wireless traffic”, referring wall-conected Wi-Fi
hotspots similar to our proposed solution. Second, requests are served by
the storage cloudlets, minimizing context-specific contents requests on the
Internet Exchange Points, saving money to MNOs. The concept of increas-
ing the density of antennas in a specific crowded area instead of increasing
their range is currently being explored by pCell 4, in a similar way to our
caching solution in small crowded areas instead of large areas covered by
antennas deployed by MNOs.

To the best of our knowledge, this is a new business model not approached
until now and presents a win-win situation for every participant of the sce-
nario. As said before, not only mobile device users and storage cloudlet
owners benefit from our proposed solution, MNOs can benefit too. It is even
possible that MNOs propose to share storage cloudlets’ costs due to their
own economic interests, storage cloudlets should be cheaper than wireless
connection cells.

One of the current problems of mobile devices platforms is the heterogene-
ity, forcing developers to implement different versions of their applications
for each of the existent mobile devices platforms such iPhone, Android, Win-
dows Phone or Blackberry. The solution to this problem proposed by Sanaei
et al. [4] is developing web applications fully independent of any platform
and has been the path followed by latest released platforms such as Firefox
OS or Tizen. Our proposed solution is specially useful applied to web appli-
cation loads, because a lot of elements can be cached for different user of the
same web application: templates, images, updates, etc.

4.2. Limited connectivity

The second suggested scenario shows in a deeply way the possibilities of
our proposed solution. Flexibility and easy deployment are key factors when

4http://www.artemis.com/pcell
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the connectivity is limited by unusual conditions. Nowadays it might look
like an unrealistic scenario but, as pointed by Satyanarayanan et al. in the
“disaster relief” scenario [47], even in the future could appear scenarios where
extreme conditions lead to a limited connectivity scenario. The disaster relief
scenario brings up the possibility of a disaster disabling land and wireless
WAN networks, leaving areas without any kind of connectivity.

Our proposed limited connectivity scenario is, to the best of our knowl-
edge, new on the MCC research field. As seen in the last three years, mobile
devices and cloud services have become a really powerful tool for social move-
ments. Examples are the Arab Spring [48], Occupy Wall Street or protest
movements in Spain, Greece, and Italy. The importance of these movements
were awarded by the Time magazine as “person of the year” in 2011. In
the most extreme cases Internet access was blocked by the government, for
example in Egypt on January 2011 [49]. Another example of Internet blocks
is the censorship in China, where connection blocks outside of the country
have been frequently reported [50]. Even on tube lines of big developed cities
in the present, some line segments do not have 3G connectivity. Our solution
can be used to offer multimedia related contents to the mobile devices as it
is currently done in TVs all around the stations and trains.

As shown in Figure 12, our solution aims to solve the aforementioned
problems based on the flexibility and easy deployment. Using low-cost nodes,
our solution is capable of deploying a cloud storage infrastructure for mo-
bile devices, while sharing any kind of contents. There are multiple possible
configurations mixing WLAN or WWAN. Connection between clients and
cloudlets can be configured over WLAN or WWAN depending on the avail-
able networks. The connection between hierarchy levels can be configured
over WLAN, LAN, WWAN or WAN connections depending on the currently
active connections, being wired connections the best option. At the same
level, it is not necessary to do any connection between servers. As presented
on Subsection 3.4, our solution can be deployed in a huge variety of plat-
forms, including low-power solutions. In case of a power outage, these nodes
can be powered by diesel generators.

In the case of an emergency disabling of the Internet infrastructure in a
huge area, storage cloudlets with any number of nodes can be deployed in
hospitals, medical camps, or any other place where victims are congregated.
These storage cloudlets could be used to share information about patients,
condition, and missing people. In a similar way, in areas where connectivity
is limited due to government restrictions, storage cloudlets can be used in
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Figure 12: Limited connectivity scenario. WWAN connectivity in zone zero is down.
Clients can connect through Wi-Fi (or 3G when available) to a local storage cloudlet
infrastructure. The storage cloudlets can be extended to new zones when infrastructure
starts being available, bypassing damaged paths.

congregation areas. Even citizens could share their own resources in their
houses to add storage capacity to the cloud. As said before, in extreme
conditions, there is no need of a special infrastructure, only enough nodes of
our storage cloudlet in-a-box solution and a power source (can be a diesel
generator or any other kind of portable and/or autonomous power source).

Porting Memcached to mobile platforms could lead to deploy the storage
cloudlets over mobile devices, needing only a subscription system to con-
figure the initial infrastructure and start offering the service. We have not
implemented this approach because it is only desired in extreme cases due to
the low performance, limited battery, and limited storage capacity of these
devices. This approach could bring support to the storage layer of an ad-hoc
mobile cloud instead of the proposed cloudlet-oriented solution.

5. Evaluation

To test the feasibility and performance of CoSMiC, we have setup a
testbed in one of the scenarios mentioned above as a possible target: a univer-
sity. The test consisted in a group of up to 40 students retrieving documents
of different sizes from Amazon cloud. The students used smartphones to get
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Table 1: Evaluation parameters.

Parameter Value

Block size (request) 250 Bytes
Block size (response) 256 KBytes
3G network bandwidth 3.5 Mbps
WiFi network bandwidth 150 Mbps
LAN network bandwidth 1 Gbps
Memcached back-ends cache memory 2.0 GBytes
Amazon network bandwidth 20 Mbps
Amazon EBS Disk Performance 90 MBytes/sec
Thread per Memcached back-end 1

the documents using two alternative infrastructures: CoSMiC and 3G-based
connection across MNOs.

Our university group is a real testbed that is significant for CoSMiC, as
the students access data from the cloud, but following different interests,
showing that the effect of the cache varies depending on the behavior of the
users, affecting also latency and scalability of the system as shown below.

The experiments have been carried out in ARM-based nodes equipped
with four Freescale i.MX6 cores (Cortex-A9) and 2 GBytes of RAM. The stor-
age cloudlet is composed by four nodes, running CoSMiC storage cloudlets
(based on Memcached version 1.4.13) with up to 2 GBytes of cache over a
Linux kernel 3.0.35. In all the experiments, the files are divided in blocks
of 256 KBytes. Clients run a synthetic benchmark in Android-based mobile
devices. The final storage solution corresponded with an Amazon EC2 in-
stance and data was stored in an EBS data volume. Table 1 summarizes the
parameters used for the testbed. We compare CoSMiC with a baseline case
which consists of a direct 3G-based connection to our Amazon instance. In
all the graphs, we show the average result of five executions.

5.1. Cache effect

We have evaluated the effect of round-trip delay (RTT) of one read request
for different hit ratios. Figure 13 plots the RTT of a read request for the
baseline case composed by a 3G connection and CoSMiC. As the cache hit
ratio increases, the RTT perceived by users reduces significantly given that
read request are responded by the cloudlet network.
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Figure 13: Round-trip delay time comparison for multiple CoSMiC hit ratios.
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Figure 14: Aggregated system throughput for 5 up to 40 concurrent clients, which access
a file of 512 KBytes.

5.2. System throughput

In this subsection, we evaluated CoSMiC in terms of the aggregated sys-
tem throughput for an increasing number of clients. Figure 14 plots the
aggregated throughput varing the number of clients. In this experiement,
each client requests a file of 512 KBytes. We observe that for 35 and 40 con-
current clients, CoSMiC uses the maximum system thoughput, limited by
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Figure 15: Round-trip delay time evaluation for two CoSMiC zones/levels. Cache L1
corresponds with the first CoSMiC level and L2 the second.

the Wi-Fi network bandwidth. We also observe that the 3G-based baseline
case reduces its performance for 30 or more concurrent transfers. This case
is specially unfair for crowed areas.

5.3. Multiple level cache

In this subsection, we evaluate the effects of multiple levels of CoSMiC
in terms of RTT. A new CoSMiC back-end node has been included between
the previous cloudlet and the WAN network. This node counts with an Intel
Xeon E5640 with 64 GBytes of RAM and a gigabit network interface.

Figure 15 plots the RTT for two levels of CoSMIC and different hit ratios.
As we observe, CoSMiC performs slower for low hit ratios, given the fact that
more hops are involved in the data transfer. However, as hit ratios increase
in both levels, CoSMiC outperforms the baseline solution in all the cases.
An extra CoSMiC level alleviates the latency effects of multiple levels.

6. Conclusion

In this work we have presented, CoSMiC, a hierarchical cloudlet-based
storage infrastructure for mobile clouds. CoSMiC offers flexibility and easy
deployment, key features for MCC, specially for the proposed scenarios: pub-
lic places and limited connectivity. Its generic design allows to deploy it in
both heterogeneous hardware and network infrastructures, even for extreme
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condition scenarios. As pointed by Sanaei et al. [26], one of the main prob-
lems of the MCC architectures is the heterogeneity due to the diversity of
hardware architectures used by mobile devices in contrast to classical com-
puters. The portability of our solution permits deploying it in any kind of
node, due to the portability of Memcached, which even allows to use CoSMiC
as a bridge between mobile devices and cloud services. Moreover, CoSMiC
supports a complete single-path/single-copy file hierarchy, enhancing the pos-
sibilities of deployment in any kind of infrastructure. This hierarchy supports
any number of levels and any number of cloudlet nodes in each level, provid-
ing decoupling between clients and servers and making our solution highly
scalable and amenable for dynamic deployment of storage cloudlets in-a-box.

We have also presented a new business model involving MNOs, not used
until now for mobile cloud storage services deployed in public places, and
presented a win-win situation for every participant of the scenario. This
model has also been proven valid when MCC is affected by extremely lim-
ited connectivity due to restricted connection situations instead of network
failures, showing that our proposed solution is capable of addressing a lot of
MCC problems related to storage, while benefiting to many participants in
typical scenarios.

Evaluation made shows that CoSMiC can reduce the application’s RTT
significantly. CoSMiC permits to increase the system throughput when the
number of clients increases.

Due to the possibilities offered by our solution, we have a good number
of ideas for ongoing and future works. A possible enhancement would be to
use the underutilized computational resources can be used to perform ad-
ditional operations in order to optimize both storage and I/O activity, like
implementing data encryption to improve security. This functionality could
be implemented easily as an additional service in two different ways. First,
by protecting data at the device level, at the cost of battery life, and sec-
ond, ciphering data at the first cloudlet level making computation offloading
(following the model proposed by Sanaei et al. [30]). Another enhancement
could be data deduplication, that could be implemented prior to the persis-
tent storage layer, reducing network traffic between layers and traffic to the
cloud storage back-end. This approach could be complemented with replica-
tion of the most popular objects, as in CloudScale [51] and Scarlett [52], to
avoid bursty loads by distributing queries to various nodes. Smart replication
solutions could be provided by using CoSMiC data access statistics and the
approach of pool nodes and shadow nodes proposed by Zhang et al. [53] for
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weblets. Finally, we plan to extend CoSMiC to support other NoSQL-base
distributed caches like Cassandra.
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