21,329 research outputs found

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    Can Power from Space Compete?

    Get PDF
    Satellite solar power (SSP) has been suggested as an alternative to terrestrial energy resources for electricity generation. In this study, we consider the market for electricity from the present to 2020, roughly the year when many experts expect SSP to be technically achievable. We identify several key challenges for SSP in competing with conventional electricity generation in developed and developing countries, discuss the role of market and economic analysis as technical development of SSP continues during the coming years, and suggest future research directions to improve understanding of the potential economic viability of SSP.

    Mitigating energy poverty: Potential contributions of combining PV and building thermal mass storage in low-income households

    Get PDF
    The issue of energy poverty has devastating implications for the society, and it has been aggravated in the past years due to the economic crisis and the increase of energy prices. Among the most affected are those with low incomes and living in inefficient buildings. Unfortunately, the bitter reality is that sometimes this part of the population are facing the next question: Heating, or eating? The declining prices of distributed energy technologies such as photovoltaics provides an opportunity for positive social change. Although their use does not address energy poverty directly, substantial contributions may be made. Measurements of indoor temperatures in a social housing district of southern Spain in 2017 have revealed the unbearable temperatures that the occupants have to endure, both in summer and winter. Using this district as a case study, the present work aims to evaluate the benefits of exploiting its rooftop PV potential to cover part of the electricity consumption of the district (reducing the energy bills), and use the surplus electricity to supply power for the heat pumps in the district. Optimal alternatives regarding maximum PV production, maximum self-sufficiency ratio and minimum investment costs have been found, considering as well different options when sharing the available electricity surplus to improve the thermal comfort of the occupants. As far as the authors know, no previous study has followed an approach aimed at energy poverty alleviation such as the one presented in this work. The results show that using the surplus electricity to heat or cool the whole dwellings would improve the thermal comfort of the occupants in average up to 11% in winter and 26% in summer. If all the PV generation was used or more buildings in the area were employed to install PV modules, improvements up to 33% in winter and 67% in summer could be obtained, reducing at the same time the thermal comfort differences among the dwellings of the district

    Solar-thermal and hybrid photovoltaic-thermal systems for renewable heating

    Get PDF
    Grantham Briefing Papers analyse climate change and environmental research linked to work at Imperial College London, setting it in the context of national and international policy and the future research agenda. This paper and other Grantham publications are available from: www.imperial.ac.uk/grantham/publicationsThis paper looks at the barriers and opportunities for the mass deployment of solar-thermal technologies and offers a vision for the future of solar-thermal systems. HEADLINES: -Heat constitutes about half of total global energy demand. Solar heat offers key advantages over other renewable sources for meeting this demand through distributed, integrated systems. -Solar heat is a mature sustainable energy technology capable of mass deployment. There is significant scope for increasing the installed solar heat capacity in Europe. -Only a few European countries are close to reaching the EU target of 1 m2 of solar-thermal installations per person. -One key challenge for the further development of the solar-thermal market arises from issues related to the intermittency of the solar resource, and the requirement for storage and/or backup systems. The former increases investment costs and limits adaptability. -An analysis of EU countries with good market development, suggests that obligation schemes are the best policy option for maximising installations. These do not present a direct cost to the public budget, and determine the growth of the local industry in the long term. -Solar-thermal collectors can be combined with photovoltaic (PV) modules to produce hybrid PV-thermal (PV-T) collectors. These can deliver both heat and electricity simultaneously from the same installed area and at a higher overall efficiency compared to individual solar-thermal and PV panels installed separately. --Hybrid PV-T technology provides a particularly promising solution when roof space is limited or when heat and electricity are required at the same time.Preprin

    Optimizing plug-in electric vehicle charging in interaction with a small office building

    Get PDF
    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capaci-ty of 864 kWh. With the benefit-sharing mechanism proposed here and idea-lized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. --Battery storage,building management systems,dispersed storage and generation,electric vehicles,load management,microgrid,optimization methods,power system economics,road vehicle electric propulsion
    • 

    corecore