51,632 research outputs found

    Storage Devices

    Full text link
    A subnetwork of storage devices that are connected with one another over a high speed network connection is Storage Area Network(SAN). It allows all designated users on the network to access multiple storage devices not only the storage devices installed within their computers. Once a SAN is constructed and all the storage devices are shared within the SAN, it is than connected to the servers that are accessed by network users. Large backup disk arrays can be stored on an off-site location and shared on a SAN where users can access them remotely. SANs are used for storage redundancy purposes in case of unexpected disaster and loss of data. A SAN typically supports data storage, retrieval and replication on business networks using high-end servers, multiple disk arrays and interconnect technology

    Novel graphene-based electrodes for energy storage devices

    Get PDF
    Graphene sheets have exceptional electrical, mechanical and optical properties. Graphene-based nanocomposites can be utilized as an electrode for the fabrication of energy storage devices for practical applications. Graphene nanosheets were produced by an enhanced technique including graphite oxidation, ultrasonic treatment, expansion, and chemical reduction

    A Logical Model and Data Placement Strategies for MEMS Storage Devices

    Full text link
    MEMS storage devices are new non-volatile secondary storages that have outstanding advantages over magnetic disks. MEMS storage devices, however, are much different from magnetic disks in the structure and access characteristics. They have thousands of heads called probe tips and provide the following two major access facilities: (1) flexibility: freely selecting a set of probe tips for accessing data, (2) parallelism: simultaneously reading and writing data with the set of probe tips selected. Due to these characteristics, it is nontrivial to find data placements that fully utilize the capability of MEMS storage devices. In this paper, we propose a simple logical model called the Region-Sector (RS) model that abstracts major characteristics affecting data retrieval performance, such as flexibility and parallelism, from the physical MEMS storage model. We also suggest heuristic data placement strategies based on the RS model and derive new data placements for relational data and two-dimensional spatial data by using those strategies. Experimental results show that the proposed data placements improve the data retrieval performance by up to 4.0 times for relational data and by up to 4.8 times for two-dimensional spatial data of approximately 320 Mbytes compared with those of existing data placements. Further, these improvements are expected to be more marked as the database size grows.Comment: 37 page

    Transfer function characteristics of super resolving systems

    Get PDF
    Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed

    Workload-Based Configuration of MEMS-Based Storage Devices for Mobile Systems

    Get PDF
    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. However, flash memory may outperform MEMS-based storage in terms of performance, and energy-efficiency. The problem is that MEMS-based storage devices have a large number (i.e., thousands) of heads, and to deliver peak performance, all heads must be deployed simultaneously to access each single sector. Since these devices are mechanical and thus some housekeeping information is needed for each head, this results in a huge capacity loss and increases the energy consumption of MEMS-based storage with respect to flash. We solve this problem by proposing new techniques to lay out data in MEMS-based storage devices. Data layouts represent optimizations in a design space spanned by three parameters: the number of active heads, sector parallelism, and sector size. We explore this design space and show that by exploiting knowledge of the expected workload, MEMS-based devices can employ all heads, thus delivering peak performance, while decreasing the energy consumption and compromising only a little on the capacity. Our exploration shows that MEMS-based storage is competitive with flash in most cases, and outperforms flash in a few cases
    corecore