30,337 research outputs found

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let H∗H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code C⊥C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H∗),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    Stopping Sets of Algebraic Geometry Codes

    Get PDF
    Abstract — Stopping sets and stopping set distribution of a linear code play an important role in the performance analysis of iterative decoding for this linear code. Let C be an [n, k] linear code over Fq with parity-check matrix H, wheretherowsof H may be dependent. Let [n] ={1, 2,...,n} denote the set of column indices of H. Astopping set S of C with parity-check matrix H is a subset of [n] such that the restriction of H to S does not contain a row of weight 1. The stopping set distribution {Ti (H)} n i=0 enumerates the number of stopping sets with size i of C with parity-check matrix H. Denote H ∗ , the paritycheck matrix, consisting of all the nonzero codewords in the dual code C ⊥. In this paper, we study stopping sets and stopping set distributions of some residue algebraic geometry (AG) codes with parity-check matrix H ∗. First, we give two descriptions of stopping sets of residue AG codes. For the simplest AG codes, i.e., the generalized Reed–Solomon codes, it is easy to determine all the stopping sets. Then, we consider the AG codes from elliptic curves. We use the group structure of rational points of elliptic curves to present a complete characterization of stopping sets. Then, the stopping sets, the stopping set distribution, and the stopping distance of the AG code from an elliptic curve are reduced to the search, counting, and decision versions of the subset sum problem in the group of rational points of the elliptic curve, respectively. Finally, for some special cases, we determine the stopping set distributions of the AG codes from elliptic curves. Index Terms — Algebraic geometry codes, elliptic curves, stopping distance, stopping sets, stopping set distribution, subset sum problem. I

    Low-Density Parity-Check Codes From Transversal Designs With Improved Stopping Set Distributions

    Full text link
    This paper examines the construction of low-density parity-check (LDPC) codes from transversal designs based on sets of mutually orthogonal Latin squares (MOLS). By transferring the concept of configurations in combinatorial designs to the level of Latin squares, we thoroughly investigate the occurrence and avoidance of stopping sets for the arising codes. Stopping sets are known to determine the decoding performance over the binary erasure channel and should be avoided for small sizes. Based on large sets of simple-structured MOLS, we derive powerful constraints for the choice of suitable subsets, leading to improved stopping set distributions for the corresponding codes. We focus on LDPC codes with column weight 4, but the results are also applicable for the construction of codes with higher column weights. Finally, we show that a subclass of the presented codes has quasi-cyclic structure which allows low-complexity encoding.Comment: 11 pages; to appear in "IEEE Transactions on Communications

    Average Stopping Set Weight Distribution of Redundant Random Matrix Ensembles

    Full text link
    In this paper, redundant random matrix ensembles (abbreviated as redundant random ensembles) are defined and their stopping set (SS) weight distributions are analyzed. A redundant random ensemble consists of a set of binary matrices with linearly dependent rows. These linearly dependent rows (redundant rows) significantly reduce the number of stopping sets of small size. An upper and lower bound on the average SS weight distribution of the redundant random ensembles are shown. From these bounds, the trade-off between the number of redundant rows (corresponding to decoding complexity of BP on BEC) and the critical exponent of the asymptotic growth rate of SS weight distribution (corresponding to decoding performance) can be derived. It is shown that, in some cases, a dense matrix with linearly dependent rows yields asymptotically (i.e., in the regime of small erasure probability) better performance than regular LDPC matrices with comparable parameters.Comment: 14 pages, 7 figures, Conference version to appear at the 2007 IEEE International Symposium on Information Theory, Nice, France, June 200

    Good Concatenated Code Ensembles for the Binary Erasure Channel

    Full text link
    In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.Comment: To appear in IEEE Journal on Selected Areas in Communications, special issue on Capacity Approaching Code

    Spectral Shape of Doubly-Generalized LDPC Codes: Efficient and Exact Evaluation

    Full text link
    This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.Comment: 17 pages, 6 figures. To appear in IEEE Transactions on Information Theor
    • …
    corecore