16,323 research outputs found

    A demand-driven approach for a multi-agent system in Supply Chain Management

    Get PDF
    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit. © 2010 Springer-Verlag Berlin Heidelberg

    A Technical Analysis Indicator Based On Fuzzy Logic

    Get PDF
    AbstractIn this paper an indicator for technical analysis based on fuzzy logic is proposed, which unlike traditional technical indicators, is not a totally objective mathematical model, but incorporates subjective investor features such as the risk tendency. The fuzzy logic approach allows representing in a more “human” way the decision making reasoning that a non-expert investor would have in a real market. Such an indicator takes as input, general market information like profitability and volatility of the stock prices, while the outputs are the buy and sell signals. In addition to present the detailed formulation of the indicator, in this paper a validation for the same is presented, which makes use of a multi-agent based simulation platform within which the behavior and profits obtained by agents that used traditional technical indicators such as MA, RSI and MACD, are compared against those obtained by agents that use the fuzzy indicator for the decision making process

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Building agent-based hybrid intelligent systems : a case study

    Full text link
    Many complex problems (e.g., financial investment planning, foreign exchange trading, data mining from large/multiple databases) require hybrid intelligent systems that integrate many intelligent techniques (e.g., fuzzy logic, neural networks, and genetic algorithms). However, hybrid intelligent systems are difficult to develop because they have a large number of parts or components that have many interactions. On the other hand, agents offer a new and often more appropriate route to the development of complex systems, especially in open and dynamic environments. Thus, this paper discusses the development of an agent-based hybrid intelligent system for financial investment planning, in which a great number of heterogeneous computing techniques/packages are easily integrated into a unifying agent framework. This shows that agent technology can indeed facilitate the development of hybrid intelligent systems.<br /

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Empirical models, rules, and optimization

    Get PDF
    This paper considers supply decisions by firms in a dynamic setting with adjustment costs and compares the behavior of an optimal control model to that of a rule-based system which relaxes the assumption that agents are explicit optimizers. In our approach, the economic agent uses believably simple rules in coping with complex situations. We estimate rules using an artificially generated sample obtained by running repeated simulations of a dynamic optimal control model of a firm's hiring/firing decisions. We show that (i) agents using heuristics can behave as if they were seeking rationally to maximize their dynamic returns; (ii) the approach requires fewer behavioral assumptions relative to dynamic optimization and the assumptions made are based on economically intuitive theoretical results linking rule adoption to uncertainty; (iii) the approach delineates the domain of applicability of maximization hypotheses and describes the behavior of agents in situations of economic disequilibrium. The approach adopted uses concepts from fuzzy control theory. An agent, instead of optimizing, follows Fuzzy Associative Memory (FAM) rules which, given input and output data, can be estimated and used to approximate any non-linear dynamic process. Empirical results indicate that the fuzzy rule-based system performs extremely well in approximating optimal dynamic behavior in situations with limited noise.Decision-making. ,econometric models ,TMD ,
    • …
    corecore