903 research outputs found

    Computer Vision System-On-Chip Designs for Intelligent Vehicles

    Get PDF
    Intelligent vehicle technologies are growing rapidly that can enhance road safety, improve transport efficiency, and aid driver operations through sensors and intelligence. Advanced driver assistance system (ADAS) is a common platform of intelligent vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on intelligent vehicles. Among these sensors, optical cameras are most widely used due to their low costs and easy installation. However, most computer vision algorithms are complicated and computationally slow, making them difficult to be deployed on power constraint systems. This dissertation investigates several mainstream ADAS applications, and proposes corresponding efficient digital circuits implementations for these applications. This dissertation presents three ways of software / hardware algorithm division for three ADAS applications: lane detection, traffic sign classification, and traffic light detection. Using FPGA to offload critical parts of the algorithm, the entire computer vision system is able to run in real time while maintaining a low power consumption and a high detection rate. Catching up with the advent of deep learning in the field of computer vision, we also present two deep learning based hardware implementations on application specific integrated circuits (ASIC) to achieve even lower power consumption and higher accuracy. The real time lane detection system is implemented on Xilinx Zynq platform, which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform integrates the software programmability of an ARM processor with the hardware programmability of an FPGA. For the lane detection task, the FPGA handles the majority of the task: region-of-interest extraction, edge detection, image binarization, and hough transform. After then, the ARM processor takes in hough transform results and highlights lanes using the hough peaks algorithm. The entire system is able to process 1080P video stream at a constant speed of 69.4 frames per second, realizing real time capability. An efficient system-on-chip (SOC) design which classifies up to 48 traffic signs in real time is presented in this dissertation. The traditional histogram of oriented gradients (HoG) and support vector machine (SVM) are proven to be very effective on traffic sign classification with an average accuracy rate of 93.77%. For traffic sign classification, the biggest challenge comes from the low execution efficiency of the HoG on embedded processors. By dividing the HoG algorithm into three fully pipelined stages, as well as leveraging extra on-chip memory to store intermediate results, we successfully achieved a throughput of 115.7 frames per second at 1080P resolution. The proposed generic HoG hardware implementation could also be used as an individual IP core by other computer vision systems. A real time traffic signal detection system is implemented to present an efficient hardware implementation of the traditional grass-fire blob detection. The traditional grass-fire blob detection method iterates the input image multiple times to calculate connected blobs. In digital circuits, five extra on-chip block memories are utilized to save intermediate results. By using additional memories, all connected blob information could be obtained through one-pass image traverse. The proposed hardware friendly blob detection can run at 72.4 frames per second with 1080P video input. Applying HoG + SVM as feature extractor and classifier, 92.11% recall rate and 99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27% precision rate on green lights. Nowadays, convolutional neural network (CNN) is revolutionizing computer vision due to learnable layer by layer feature extraction. However, when coming into inference, CNNs are usually slow to train and slow to execute. In this dissertation, we studied the implementation of principal component analysis based network (PCANet), which strikes a balance between algorithm robustness and computational complexity. Compared to a regular CNN, the PCANet only needs one iteration training, and typically at most has a few tens convolutions on a single layer. Compared to hand-crafted features extraction methods, the PCANet algorithm well reflects the variance in the training dataset and can better adapt to difficult conditions. The PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking detection and traffic light detection, respectively. Implementing in Synopsys 32nm process technology, the proposed chip can classify 724,743 32-by-32 image candidates in one second, with only 0.5 watt power consumption. In this dissertation, binary neural network (BNN) is adopted as a potential detector for intelligent vehicles. The BNN constrains all activations and weights to be +1 or -1. Compared to a CNN with the same network configuration, the BNN achieves 50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection and pedestrian detection as examples, the BNN achieves an average accuracy rate of over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process technology is presented in our work. The elastic architecture of the BNN accelerator makes it able to process any number of convolutional layers with high throughput. The BNN accelerator only consumes 0.6 watt and doesn\u27t rely on external memory for storage

    Computer Vision System-On-Chip Designs for Intelligent Vehicles

    Get PDF
    Intelligent vehicle technologies are growing rapidly that can enhance road safety, improve transport efficiency, and aid driver operations through sensors and intelligence. Advanced driver assistance system (ADAS) is a common platform of intelligent vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on intelligent vehicles. Among these sensors, optical cameras are most widely used due to their low costs and easy installation. However, most computer vision algorithms are complicated and computationally slow, making them difficult to be deployed on power constraint systems. This dissertation investigates several mainstream ADAS applications, and proposes corresponding efficient digital circuits implementations for these applications. This dissertation presents three ways of software / hardware algorithm division for three ADAS applications: lane detection, traffic sign classification, and traffic light detection. Using FPGA to offload critical parts of the algorithm, the entire computer vision system is able to run in real time while maintaining a low power consumption and a high detection rate. Catching up with the advent of deep learning in the field of computer vision, we also present two deep learning based hardware implementations on application specific integrated circuits (ASIC) to achieve even lower power consumption and higher accuracy. The real time lane detection system is implemented on Xilinx Zynq platform, which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform integrates the software programmability of an ARM processor with the hardware programmability of an FPGA. For the lane detection task, the FPGA handles the majority of the task: region-of-interest extraction, edge detection, image binarization, and hough transform. After then, the ARM processor takes in hough transform results and highlights lanes using the hough peaks algorithm. The entire system is able to process 1080P video stream at a constant speed of 69.4 frames per second, realizing real time capability. An efficient system-on-chip (SOC) design which classifies up to 48 traffic signs in real time is presented in this dissertation. The traditional histogram of oriented gradients (HoG) and support vector machine (SVM) are proven to be very effective on traffic sign classification with an average accuracy rate of 93.77%. For traffic sign classification, the biggest challenge comes from the low execution efficiency of the HoG on embedded processors. By dividing the HoG algorithm into three fully pipelined stages, as well as leveraging extra on-chip memory to store intermediate results, we successfully achieved a throughput of 115.7 frames per second at 1080P resolution. The proposed generic HoG hardware implementation could also be used as an individual IP core by other computer vision systems. A real time traffic signal detection system is implemented to present an efficient hardware implementation of the traditional grass-fire blob detection. The traditional grass-fire blob detection method iterates the input image multiple times to calculate connected blobs. In digital circuits, five extra on-chip block memories are utilized to save intermediate results. By using additional memories, all connected blob information could be obtained through one-pass image traverse. The proposed hardware friendly blob detection can run at 72.4 frames per second with 1080P video input. Applying HoG + SVM as feature extractor and classifier, 92.11% recall rate and 99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27% precision rate on green lights. Nowadays, convolutional neural network (CNN) is revolutionizing computer vision due to learnable layer by layer feature extraction. However, when coming into inference, CNNs are usually slow to train and slow to execute. In this dissertation, we studied the implementation of principal component analysis based network (PCANet), which strikes a balance between algorithm robustness and computational complexity. Compared to a regular CNN, the PCANet only needs one iteration training, and typically at most has a few tens convolutions on a single layer. Compared to hand-crafted features extraction methods, the PCANet algorithm well reflects the variance in the training dataset and can better adapt to difficult conditions. The PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking detection and traffic light detection, respectively. Implementing in Synopsys 32nm process technology, the proposed chip can classify 724,743 32-by-32 image candidates in one second, with only 0.5 watt power consumption. In this dissertation, binary neural network (BNN) is adopted as a potential detector for intelligent vehicles. The BNN constrains all activations and weights to be +1 or -1. Compared to a CNN with the same network configuration, the BNN achieves 50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection and pedestrian detection as examples, the BNN achieves an average accuracy rate of over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process technology is presented in our work. The elastic architecture of the BNN accelerator makes it able to process any number of convolutional layers with high throughput. The BNN accelerator only consumes 0.6 watt and doesn\u27t rely on external memory for storage

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Algorithm Optimization and Hardware Acceleration for Machine Learning Applications on Low-energy Systems

    Get PDF
    Machine learning (ML) has been extensively employed for strategy optimization, decision making, data classification, etc. While ML shows great triumph in its application field, the increasing complexity of the learning models introduces neoteric challenges to the ML system designs. On the one hand, the applications of ML on resource-restricted terminals, like mobile computing and IoT devices, are prevented by the high computational complexity and memory requirement. On the other hand, the massive parameter quantity for the modern ML models appends extra demands on the system\u27s I/O speed and memory size. This dissertation investigates feasible solutions for those challenges with software-hardware co-design

    Deep Spoken Keyword Spotting:An Overview

    Get PDF
    Spoken keyword spotting (KWS) deals with the identification of keywords in audio streams and has become a fast-growing technology thanks to the paradigm shift introduced by deep learning a few years ago. This has allowed the rapid embedding of deep KWS in a myriad of small electronic devices with different purposes like the activation of voice assistants. Prospects suggest a sustained growth in terms of social use of this technology. Thus, it is not surprising that deep KWS has become a hot research topic among speech scientists, who constantly look for KWS performance improvement and computational complexity reduction. This context motivates this paper, in which we conduct a literature review into deep spoken KWS to assist practitioners and researchers who are interested in this technology. Specifically, this overview has a comprehensive nature by covering a thorough analysis of deep KWS systems (which includes speech features, acoustic modeling and posterior handling), robustness methods, applications, datasets, evaluation metrics, performance of deep KWS systems and audio-visual KWS. The analysis performed in this paper allows us to identify a number of directions for future research, including directions adopted from automatic speech recognition research and directions that are unique to the problem of spoken KWS

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications

    Get PDF
    With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies ranging from emerging memristive devices, to established Field Programmable Gate Arrays (FPGAs), and mature Complementary Metal Oxide Semiconductor (CMOS) technology can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. After providing the required background, we unify the sparsely distributed research on neural network and neuromorphic hardware implementations as applied to the healthcare domain. In addition, we benchmark various hardware platforms by performing a biomedical electromyography (EMG) signal processing task and drawing comparisons among them in terms of inference delay and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that different accelerators and neuromorphic processors introduce to healthcare and biomedical domains. This paper can serve a large audience, ranging from nanoelectronics researchers, to biomedical and healthcare practitioners in grasping the fundamental interplay between hardware, algorithms, and clinical adoption of these tools, as we shed light on the future of deep networks and spiking neuromorphic processing systems as proponents for driving biomedical circuits and systems forward.Comment: Submitted to IEEE Transactions on Biomedical Circuits and Systems (21 pages, 10 figures, 5 tables
    corecore