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Abstract

Machine learning (ML) has been extensively employed for strategy optimization, decision

making, data classification, etc. While ML shows great triumph in its application field, the increasing

complexity of the learning models introduces neoteric challenges to the ML system designs. On the

one hand, the applications of ML on resource-restricted terminals, like mobile computing and IoT

devices, are prevented by the high computational complexity and memory requirement. On the

other hand, the massive parameter quantity for the modern ML models appends extra demands on

the system’s I/O speed and memory size. This dissertation investigates feasible solutions for those

challenges with software-hardware co-design.

In many emerging wireless IoT systems, the captured latency-sensitive data and the chan-

nel dynamics are governed by stochastic processes that are unknown a priori, which introduces the

necessity of a self-learning system that can dynamically adapt to such unknown dynamics and statis-

tical information. To this end, we find reinforcement learning (RL) a promising approach. However,

current RL technologies are either too slow-converged (like Q-learning) for real-time learning or too

complex (like deep Q-learning) for resource-constrained wireless IoT systems that cannot satisfy the

learning requirement of the wireless IoT systems.

To address the limitations of the existing approaches described above, we design an novel

RL technique, post decision states (PDS) learning and the corresponding hardware accelerator. In

PDS learning, the learning problem is decomposed into known and unknown components , which

significantly accelerates the learning convergence rate compared to Q-learning with the cost of ad-

ditional computational complexity to integrate the known components into the algorithm. Solving

this problem, we then exploit efficient hardware architectures for PDS learning. We first implement

an arithmetic accelerator with paralleled structures and customized look-up table with state encod-

ing so that it is 5.3× faster than Q-learning. Then we propose a stochastic computing (SC) based
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reconfigurable hardware architecture to estimate the probability distribution instead of calculating

the true value. Ultimately, the proposed SC-based architecture further reduces the critical path of

the arithmetic accelerator by 87.9%.

In order to minimize the parameter sizes for ML models, we study a novel number system

called posit number, which delivers better value accuracy and dynamic range compared to floating

point. Those advantages are yielded from a varying-length segment, regime bits, which lead to

the size variations for all rest components except the sign bit. Consequently, it requires an extra

decoding process to extract the numerical value of a posit number. The current posit decoder is

designed based on a leading one/zero detector. However, we find that this conventional method holds

implicit redundancy when dealing with binary numbers. Based on that, we design a novel hardware

architecture, i.e., the leading difference detector, to optimize the circuit operation by eliminating the

redundancy. The experimental results show that the proposed architecture can decrease the delay

and power consumption by over 41% compared to the conventional designs for 16-bit, 32-bit, and

64-bit posit decoders.

Recent studies show that the current machine learning models perform poorly in tracking the

implied uncertainty of real-world problems. Improving this weakness, Bayesian neural network use

probability distributions instead of single value numbers as its parameter to represent the involved

uncertainty. However, the computational complexities for the current Bayesian neural networks are

unacceptably high, it limits the application scenarios of the Bayesian neural networks. To this end,

we proposed Bayesian optimization for neural networks based on the piecewise probability distribu-

tions, which can perform efficient Bayesian updates on the current hardware to improve the neural

network’s performance. In addition, we proposed a hardware accelerator that generates samples

based on the piecewise probability distributions. The simulation result shows that it burns about

half of the energy when generating the same amount of samples compared to the basic hardware

structure.
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Chapter 1

Introduction

1.1 Motivation

Since invented, machine learning (ML) has been dramatically promoted by researchers with

its extraordinary potential for strategy optimization, decision making, data classification, etc. As

one of the most popular ML models, reinforcement learning (RL) [109, 70] trains agents to optimize

the decision-making strategies for maximizing the reward. Additionally, artificial deep neural net-

works (DNN) have become one of the most successful ML models that outperform the conventional

statistical models and regression [4]. In recent studies, RL and DNN are combined in the way that

DNN holds the underlying state values for RL model. This combination forms many deep RL models

like deep Q-learning (DQL) [75], deep deterministic policy gradient (DDPG) [63], proximal policy

optimization (PPO) [94], and asynchronous advantage actor critic (A3C) [74]. By introducing the

deep models, deep learning methodologies show great ability to capture the non-linear features of

complex problems.

With all the advantages of deep learning, it comes with the cost of the extremely high

hardware requirement, which forces most of the deep learning models to be trained offline on powerful

GPUs. For example, as a relatively “old” middle-size deep learning model, VGG-16 [102] has

1.38 × 108 parameters and performs 1.55 × 1010 multiplications for each iteration. This high cost

limits the application of deep learning on mobile devices like cell phones and Internet of Things (IoT)

systems. Targeting on this weakness, [53] designed a light weighted DNN for mobile and embedded

vision applications, [97] proposed a survey on Mobile Edge Computing where the resource-hungry
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tasks were transferred to the near servers. Despite all the works on low-energy machine learning

systems, there is still not a high-performance solution for the real-time learning on wireless IoT

devices, where both efficient training and inference need to be executed online, at run time, since

the energy support on those devices is insufficient to run small-size neural networks, and each device

need to be trained individually for its own environment dynamics.

At the same time, growing ML model sizes also bring challenges to memory access with

the enormous number of parameters [26]. As mentioned by [49], a 32-bit DRAM operation burns

approximately 173× energy compared to a 32-bit float multiplication with 45nm CMOS process.

Driven by this, recent studies have been trying to decrease the parameter sizes for ML models.

[108, 128] reduced the parameter sizes of DNN to 8 bits, and binary neural networks were proposed

and studied by [125, 64, 113] to further shrink the parameter size to only 1 bit. However, we found

the training accuracy of the mentioned studies inevitably suffered distinctly from the lost parameter

dynamic ranges.

1.2 Objective

In this dissertation, we aim to develop a hardware friendly ML methodology for real-time

learning on wireless IoT systems and its hardware accelerators. In addition, we try to find a way

to reduce parameter sizes without sacrificing the dynamic range for ML. Our contributions can be

summarized as follows:

• We proposed a network-free novel RL model called post-decision state (PDS) learning to

capture the latency-sensitive data and the channel dynamics for wireless IoT systems and

optimize the system performance. Our simulations show that PDS learning delivers similar

converging performance compared to DQL even without the costly deep learning structures.

• We design an efficient optimized hardware accelerator for the action evaluation of PDS learn-

ing, which computes the action to select given the present state. We implement many novel

structures like look-up tables with state encoding, highly parallel multi-sum tree, and ordered

storage register array with component auto-disable. The accelerator optimize the speed and

power consumption for applying PDS learning on wireless IoT systems.

• We then propose a novel stochastic computing (SC)-based hardware architecture, referred

2



to as the transition probability distribution estimator (TPDE), for calculating the known

transition probability from the state to the PDS without using multipliers. Leveraging the

PDS learning’s robustness to stochastic perturbations, TPDE further accelerates the required

computation and reduces the induced power consumption, and introduces extra error tolerance

to the system.

• We study the novel number system named posit number, which holds better accuracy and

dynamic range compared to floating point and shows great prospect for ML. We design a

brand new structure called leading difference detector (LDD) and the corresponding posit

number decoder, which outperforms the current decoding circuits on both speed and power

consumption.
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Chapter 2

Hardware Acceleration for

Next-Generation Real-Time

Reinforcement Learning in

Emerging IoT Systems

2.1 Motivation

A variety of emerging applications spanning autonomous driving, mobile augmented and

virtual reality, remote multi-view sensing, personalized healthcare, virtual teleportation, UAV-IoT,

360◦ video streaming, remote robot navigation, cooperative video delivery, and telemetry [19, 96, 22,

23, 114, 21, 71, 18, 20, 30], rely on computing and communication limited Internet of Things (IoT)

devices and sensors [69, 5, 123]. The stochastic processes governing the captured latency-sensitive

data and the channel dynamics, arising in such emerging settings, are not known a priori. This

necessitates learning the respective desired optimal transmission policies online, during operation,

to adapt to the experienced traffic and channel dynamics.

To this end, reinforcement learning (RL) [109, 70] has been shown to be an extremely

effective tool, with Q-learning being its most widely-used method [121]. For instance, Q-learning
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has been employed to maximize the throughput of an energy-harvesting transmitter [13]. While Q-

learning can solve problems with small state/action spaces, it exhibits poor convergence rates, which

makes it inappropriate for problems involving large state/action spaces. Additionally, this approach

is purely data-driven, which does not incorporate any useful information about the underlying system

dynamics.

Recently, we explored and advanced the concept of post-decision states (PDS) [73, 70, 109,

84, 117, 99, 98, 72], which exploits basic system knowledge to considerably advance the RL learning

rate. PDS capture the system state after an action is taken, but before the unknown dynamics take

place, which allows us to decompose the problem into known and unknown components, where only

the latter must be learned. Though using PDS can speed-up the convergence to the optimal policy,

it introduces the cost of increased action-selection complexity [70], which brings challenges to real-

time applications. Moreover, the limited computing and power of wireless IoT systems [?] represent

further challenges to actual deployment. Thus, hardware acceleration is a promising direction to

enable real-time IoT applications of PDS based learning [83, 95].

In this chapter, we design an efficient architecture for action evaluation, which computes

the action to select given the present state. This step is the computational bottleneck in PDS

based RL systems, as it is involved in greedy action selection and state value updating in each

iteration. The key novelty of our design includes i) re-structuring the action evaluation of PDS

based RL for hardware optimization, which yields a speed up of over 49 times, compared to the

software counterpart; and ii) further optimizing the hardware accelerator’s performance by efficiently

computing the transmission power costs (Ptx) and packet loss rates (PLR) using lookup tables

(LUTs), re-ordering the register array for the value function V (s), and parallelizing the computation

with two dedicated trees. As a result, the computational delay of our hardware accelerator is further

reduced by 66.3%, while the power consumption and cells number are also decreased by 85% and

86%, respectively. Meanwhile, when compared to Q-learning, our optimized accelerator achieves a

83% delay reduction and a 59% power consumption reduction.
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2.2 Related Work

2.2.1 PDS based Reinforcement Learning

We consider a time-slotted wireless IoT sensor and aim at improving the wireless power

management, with the specific objective to minimize the sensor’s energy consumption, subject to an

operational delay constraint.

To implement RL for the wireless power management problem, we first formulate it into a

constrained MDP. We assume that time is divided into slots with length ∆T (seconds) and that the

system’s state in the n-th time slot is denoted by sn ≜ (bn, hn, xn) ∈ S, with packet buffer state bn

(i.e., the number of packets stored in the buffer), channel fading state hn, and power management

state x (radio on/off). At the beginning of each time slot, the IoT sensor observes its state sn

and takes an action an = (BEPn, yn, zn), where BEPn is its target bit-error probability, yn is

its power management action (turn on/off the radio), and zn is its packet throughput (number of

transmitted packets). We aim to determine the action in each state to minimize the cost c(sn, an) =

ρ(sn, an) + λg(sn, an) over time, where ρ(s, a) is the power cost, g(s, a) is the delay cost, and λ is a

Lagrange multiplier to set the delay constraint.

The sequence of states sn : {n = 0, 1, ...} can be modeled as a controlled Markov chain with

transition probabilities equal to the product of individual state transitions, as in Equation (3.10),

where b′ is defined by Equation (2.2). Here f is the packet goodput (correctly received packets), l

is the number of packet arrivals, and Nb is the buffer’s capacity.

P (s′|s, a) = P b(b′|[b, h], a)Ph(h′|h)P x(x′|x, a) (2.1)

b′ = min(b− f + l, Nb) (2.2)

From Equation (2.2), it can be concluded that P b depends on the goodput distribution

P f . Assuming independent packet losses, P f (f |BEP, z) = binomial(z, 1 − PLR), where PLR =

1− (1−BEP )L is the packet loss rate for a packet with size of L (bits).

A post-decision state (PDS), represented by s̃ ≜ (̃b, h̃, x̃) ∈ S, denotes a state of the system

after all known/controllable dynamics have occurred but before the unknown dynamics occur [90,
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70, 109]. In our problem,

s̃n = ([bn − fn], hn, xn+1). (2.3)

We can formulate our problem in terms of PDSs instead of conventional states by decomposing

the transition s → s′ into two parts: a known transition s → s̃ with cost ck(s, a) and transition

probability Pk(s̃|s, a), and an unknown transition s̃→ s′ with cost cu(s̃) and transition probability

Pu(s
′|s̃). We can define two optimal value functions V ∗(s) and Ṽ ∗(s̃) over the conventional states

and PDSs, respectively. The two value functions are related by the following equations:

Ṽ ∗(s̃) = cu(s̃) + γ
∑

s′∈S
Pu(s

′|s̃)V ∗(s′) (2.4)

V ∗(s) = min
a∈A(s)

{
ck(s, a) +

∑
s̃∈S

Pk(s̃|s, a)Ṽ ∗(s̃)

}
. (2.5)

Knowing Ṽ ∗(s̃), the optimal policy π∗ can be found by taking the action in each state that minimizes

the right-hand side of Equation (3.20). To solve the problem online, we use the PDS learning

algorithm [90, 70, 73], which is a stochastic iterative algorithm. PDS learning takes the greedy

action in each time slot and updates the value of the present state s̃n by using a weighted average

of (i) the current PDS value function estimate Ṽ (sn), and (ii) a new sample estimate of the PDS

value function based on the next state’s estimated value as:

Ṽ n+1(s̃n) = (1− αn)Ṽ n(s̃n) + αn[cnu(s̃
n) + γV n(sn+1)]. (2.6)

Since the unknown system dynamics are not dependent on the action taken, using PDSs

obviates the need for action exploration. Algorithm 2 presents the pseudo-code for the PDS learning

algorithm using an adaptive learning rate αn ∈ [0, 1], where action evaluation requires computing

{ck(sn, a) +
∑

s̃ P
k(s̃|sn, a)Ṽ n(s̃)} in Equations (3.22) and (2.8).

2.2.2 Conventional Q-Learning

For the algorithmic comparison, we also briefly introduce Q-learning. The key step in Q-

learning is performing an update at the end of every time slot according to the current experience
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Algorithm 1 Post-Decision State Learning

1: initialize Ṽ 0(s̃) = 0 for all s̃ ∈ S
2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = argmin
a∈A

{
ck(s

n, a) +
∑
s̃

P k(s̃|sn, a)Ṽ n(s̃)

}
(2.7)

4: Observe PDS s̃n, next state sn+1, unknown cost cnu
5: Evaluate the state value function at time n+ 1:

V n(sn+1) = min
a∈A

{
ck(s

n+1, a) +
∑
s̃

P k(s̃|sn+1, a)Ṽ n(s̃)

}
(2.8)

6: Calculate Ṽ n+1(s̃n) using Equation (3.23)
7: end for

tuple: (sn, an, cn, sn+1). The update can be expressed as:

Qn+1(sn, an)←

(1− αn)Qn(sn, an) + αn[cn + γ min
a′∈A

Qn(sn+1, a′)],
(2.9)

where sn+1 is distributed based on the transition probability distribution P (sn+1|sn, an); a′ is the

greedy action in time slot n + 1; αn represents the time-varying learning rate parameter; and

Q0(s, a) can be initialized arbitrarily for all (s, a) ∈ S × A. In the literature, many researchers

have explored various Q-learning based RL hardware accelerator structures for better performance

and lower power consumption [40, 8, 54, 87]. However, these hardware optimization techniques

are not, at least directly, applicable to our PDS learning algorithm, as PDS based methods are

uniquely optimized for emerging wireless IoT systems to reduce the convergence time. Therefore, it

is important to exploit dedicated hardware accelerators for the PDS based learning algorithms.

2.3 Proposed Hardware Architecture

Here, we present an optimized hardware accelerator for the action evaluation step to improve

the efficiency and hence facilitate real-world deployment of next-generation RL techniques. The

proposed hardware accelerator is mainly composed by two components: Known Cost (KC) block

and State Value Expectation (SVE) block, as shown in Fig. 3.3. Specifically, we optimize the

lookup table (green), tree structure (blue), and data selection (orange), according to the unique
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characteristics of the PDS based RL algorithm to speedup the computation and reduce the power

consumption. We present the detailed design and optimization approaches below.
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Figure 2.1: Top-level architecture of the proposed hardware accelerator for action evaluation. It
comprises two main blocks: Known Cost and State Value Expectation.

2.3.1 Lookup Table Reduction and State Encoding for RL

To avoid an infinite number of channel states in the proposed module, all analog states are

quantized to discrete values. In order to further reduce the computational complexity, we design

a lookup table reduction structure with state encoding. This reduces execution time and lowers

the power consumption of the learning system, which are critical aspects for real-time wireless IoT

systems [60].

At the beginning stages of our module, most computations are complex and computationally-

intensive with heavy multiplications and power operations (e.g.,
(
z
i

)
when computing the Binomial

goodput distribution, PLR = 1 − PRR = 1 − (1 − BEP )L, and Ptx defined by Equation (2.10),
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where β is proportional to z, and erf() denotes the error function). However, the combinations of

the inputs are limited by the size of state and action spaces. When the number of states is small, a

lookup table is proved to be a promising choice for the implementation [55, 2, 115]. Therefore, we

pre-process most computations at the input stage, which are then implemented as lookup tables, as

shown in Fig. 3.3.

Ptx =

√
2N0(2

β − 1)erf−1(1− β∗BEP
4 )

3 ∗ h
. (2.10)

However, in the PDS learning algorithm, a large number of state values are not used after quantiza-

tion (e.g. There are only 8 valid channel states, but 232 possible inputs for a 32-bit system), which

introduces redundant input space for the lookup table and negatively impacts the performance. To

this end, the lookup tables for BEP and h are further optimized by state encoding. Discrete values

are encoded into successive binary addresses to compress the input bit-width and unused cases, as

shown in Fig. 2.2, which achieved a reduction of 61× for unused case numbers. As a result, the

circuit cost, speed, and power consumption are all improved by using a smaller input size. In our

implementation, the bit-widths of both BEP and h are reduced from 32-bit to 3-bit for the 32-

bit system. Furthermore, the encoded case input makes the circuit more re-programmable friendly

across different applications [37, 111]. The inputs can be encoded similarly based upon the resolution

used for the channel state and BEP (or any other continuous parameter), while the lookup tables

can be easily updated for a different environment.

Cin=1
1 x y

CL=512

95% Unused
Cases

Only 25%
Unused

State Encoding

Figure 2.2: An example of case encoding, where the input bit-width is compressed from 6 to 2, and
unused cases are decreased over 61 times.

2.3.2 State Value Expectation (SVE)

Tree Structure: When calculating the SVE, all probabilities and state values for possible

PDSs have to be collected and calculated (3.22), which makes the SVE block in general much
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slower than the KC block. Inspired by the parallel designs in recent works of efficient hardware

implementation [120, 58, 104], we propose a parallelized structure for the SVE block with two

tree structures: power tree (Fig. 2.3(a)) and multi-sum tree (Fig. 2.3(b)). The power tree takes a

probability p as input and outputs all of the p0-p10 simultaneously (all the outputs will be read out

at the same time when the circuit finishes switching), while the multi-sum tree collects all PLRi

(packet loss rate), PRRi (packet receive rate), V (s), and chooses values
(
z
i

)
based on the current

state and action (77 values in total), then computes E(V (s̃)) with only 3 multipliers and 5 adders.

Besides accelerating the computation, the parallel design can also reduce power consumption since it

decreases the critical path and eliminates the need for extra registers for data buffering or redundant

computation.
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Figure 2.3: The proposed parallel structures for (a) power tree and (b) multi-sum tree.

Data Selection: During the AE step, a set of state values for each possible PDS needs

to be selected among all the state values (i.e., Ṽ (s̃) for all PDS s̃ such that Pk(s̃|s, a) ̸= 0). This

process introduces two challenges to the hardware design: 1) the total number of states could

change significantly based on the complexity of the system model; and 2) the number of possible

PDSs may vary, for instance, when the current buffer state b is smaller that the maximum value of

the transmission action z in our example system model. We propose to use an ordered state value

array and a component auto-disable mechanism to simplify the computation.

In all cases, the range of possible PDSs is near the current state b0, i.e., the PDS buffer state

range {b0−z, b0−z+1, . . . , b0} in our system model is just like the area around a player’s location in

video game that can be reached within one step. Therefore, we reorder the storage array such that
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all candidates of the PDSs for each possible case are stored consecutively, as shown in Fig. 2.4. At

the same time, we design the selection module to always output PDS values for b̃ = b0 to (b0−zmax)

for both x̃ = ON and OFF, since redundant state values will be canceled by the 0s from the Choose

Lookup. With all the designs above, the selection module needs to find only the location for Ṽ (b0)

then outputs it with its very next 21 state values. As a result, by implementing this for our wireless

model, the selection module is reduced from 416-to-(2∼22) selection (total 416 states and possible

2∼22 PDSs) to 52-to-1 selection, which only finds b0 (26-to-1) and x (2-to-1).
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Figure 2.4: Ordered storage array (left) vs. random storage array (right).

2.3.3 Known Cost (KC)

The computation of transmission power Ptx dominates the complexity of the KC block,

which includes multiplications, power options, and the inverse error function, as expressed by Equa-

tion (2.10). To speed up the computation, we decompose Ptx = g(z,BEP ) ∗ 1/h, where g(z,BEP )

can be given by:

g(z,BEP ) =

√
2N0(2

β − 1)erf−1(1− β∗BEP
4 )

3
. (2.11)

Consequently, we construct a lookup table for g(z,BEP ) of size size(z)∗size(BEP ) = 10×5, which

helps avoid integral and power computations.

2.4 Experimental Results

2.4.1 Learning Algorithm Comparison

Fig. 3.11 compares the simulated performance between our PDS learning implementa-

tion (Algorithm 2) and Q-learning. All results are generated by a MATLAB based simulator over
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3,000,000 time slots. It can be seem from Fig. 3.11 that the PDS learning algorithm outperforms

Q-learning in terms of both cumulative average delay and power consumption.
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Figure 2.5: Comparison between PDS learning and Q-learning.

Besides power and delay, we further analyse the convergence speed of our algorithm in Fig.

2.6. The red curve (circle markers) denotes the cumulative average cost incurred up to time slot n by

Q-learning (where the cost is defined in Section 2.2.1 as a weighted sum of the power cost and delay

cost) and the blue curve (+ markers) denotes the cumulative average cost for PDS learning. While

PDS learning approximately converges in 250,000 time slots, Q-learning has still not converged after
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3,000,000 time slots, so it is at least 12 times slower than PDS learning. This shows that PDS

learning is a better candidate for real-time IoT systems, where fast learning is needed to adapt to

the real environment.
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Figure 2.6: Comparison of convergence speed.

2.4.2 Hardware Implementation

We implemented and evaluated the following four approaches: Our proposed efficient action-

evaluation architecture, a baseline straightforward hardware design without employing the proposed

optimization, a software implementation with C++, and a Q-learning circuit using Verilog HDL. For

a fair comparison, all common intrinsic variables and state values V (s) use a bit-width of 32. They

were all mapped to a 32nm technology node using a Synopsys Design Compiler. The software is

coded and tested with C++ on macOS, with 2.6 GHz 6-core Intel i7 processor and 16GB RAM. No

multi-threaded optimization is added to the code, which means the software runs with only a single

core under the limitation of macOS. As wireless IoT systems usually have less computing resources,

we consider this setting as a guaranteed upper bound for the software implementation’s speed.

We evaluate and compare the execution delays and average runtime for our two hardware

designs and the software implementation of PDS learning. Furthermore, the power and area con-

sumption of the optimized hardware accelerator and the baseline design are compared to illustrate

the effectiveness of the proposed hardware optimization techniques. These results and comparisons

are shown in Table 3.1, where the execution times and power/area consumptions are also shown
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normalized to the optimized hardware design, for the baseline hardware design and software imple-

mentation. According to the experimental results, our optimized hardware accelerator is 3× faster

than the baseline circuit, while achieving a 49 times acceleration over the software implementation.

The power consumption and cells number are also decreased by 85% and 86% respectively, compared

to the baseline hardware design.

Table 2.1: Optimized vs. Baseline Architectures (32-Bit)

Optimized
Hardware
(PDS)

Baseline
Hardware
(PDS)

Software

Delay (ns) 86.97 258.31 (3×) 4240 (49×)
Power (mW ) 6.17 41.21 (7×) -
# of Cells 93448 666543 (7×) -

The comparison between our proposed architecture for PDS learning and Q learning is

presented in Table 2.2. The implementation of Q-learning is based on Equation (3.13). According

to the simulation results in Section 3.4.2, Q-learning converges over an order of magnitude slower

than PDS based learning. Therefore, since the hardware will be activated once for each time slot,

we normalize the hardware cost with respect to the convergence time for a fair comparison. These

results show that the proposed PDS based learning accelerator achieves reductions of 83% and 59%

in delay and power consumption, respectively, compared to Q-learning. Therefore, we can conclude

that the proposed PDS learning architecture is faster and consumes less energy than Q-learning.

Table 2.2: PDS vs. Q-learning on Hardware (32-Bit)

Optimized
Hardware
(PDS)

Normalized
Q-learning

Delay (ns) 86.97 521.9 (6×)
Power (mW ) 6.17 15 (2.4×)

In addition, to achieve better performance according to the data range of a certain appli-

cation scenario, designers vary the bit-width of the implementation[116, 15]. Thus, we also studied

the hardware cost of our PDS learning accelerator for different bit-widths (i.e., 16, 32, and 64) as

shown in Fig. 2.7. We normalize all the results to those for 16-bit. It can be observed that the

hardware complexity increases approximately linearly with the increase of the bit-width.
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Figure 2.7: Comparison of different bit-widths. All results are normalized to those for 16-bit, whose
delay is 49.89 ns, power is 1.87 mW, and cell number is 32,030 cells.

2.5 Summary

We presented an efficient hardware accelerator for action evaluation of PDS based real-

time RL for next generation wireless communication systems. By algorithmic and hardware co-

optimization of the PDS learning implementation, we achieved a significant speedup for the action

evaluation process of PDS, while simultaneously reducing its power consumption.
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Chapter 3

Stochastic Computing Based

Programmable Hardware

Accelerator for Post-Decision State

Reinforcement Learning in IoT

Systems

3.1 Motivation

In many emerging wireless IoT systems, the captured latency-sensitive data and the channel

dynamics are governed by stochastic processes that are unknown a priori. This introduces the

necessity of a self-learning system that can dynamically adapt to such unknown dynamics and

statistical information. To this end, reinforcement learning (RL) [109, 70] has proven to be a

promising approach. For example, in recent studies, the well-known Q-learning algorithm [121] has

been employed to maximize the throughput [13] of energy harvesting transmitters, to minimize the

sum of data compression and transmission energy of energy harvesting transmitters [48, 27], and

to optimally trade off power and delay in IoT edge computing [65, 32]. Although Q-learning is
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lightweight enough to be implemented on resource-constrained IoT devices, it converges too slowly

to effectively adapt to the experienced information source and channel dynamics.

In parallel, deep RL has received increasing attention for its ability to solve difficult decision-

making problems with large (and possibly continuous) state and action spaces, both from the machine

learning community [93, 94, 63, 67, 74] and from the wireless networking community [45, 28, 14].

However, deep RL algorithms have complex deep neural network architectures that make them

infeasible to implement on resource-constrained wireless IoT systems where power, memory, and

computational resources are limited [62, 112].1 Worse still, deep RL algorithms are typically trained

offline; therefore, they are not suitable for real-time learning where both training and decision-

making need to be performed online, at run-time. For these reasons, none of the previously cited

papers [45, 28, 14] deploy deep RL algorithms directly on end-devices and all of them train the

algorithms offline. For instance, [45] investigates buffer-aware video streaming in a small-cell wireless

network, [28] studies uplink scheduling for multiple energy-harvesting user equipments in a small-cell

IoT system, and [14] demonstrates scheduling control in sliced 5G networks through an open radio

access network (O-RAN). All of these deploy the trained deep RL agent at the base station or in

the RAN, where sufficient computational resources are available.

To address the limitations of the existing approaches described above, our prior work ad-

vanced the concept of post-decision states (PDS) [73, 70, 117, 99, 100, 72], as have others [109, 84, 90].

PDSs allow us to exploit basic system knowledge to improve the learning performance. Concretely,

the learning problem is decomposed into known and unknown components, by identifying the tran-

sitory system state after the execution of an action (hence the name PDS) and prior to the unknown

system dynamics taking place. With this property, PDS-based RL is capable of significantly acceler-

ating the learning convergence rate compared to Q-learning, but this comes at the cost of additional

computational complexity to integrate the known components into the algorithm. Although PDS

learning is far less complex than deep RL, its complexity may still hinder its real-time implementa-

tion on resource-constrained IoT devices.

On the other hand, although software is a remarkable option in most use cases due to its

great flexibility, recent literature demonstrates that hardware acceleration is essential for various

machine learning methods to enable real-time and lightweight applications in resource-constrained

1For instance, in a recent study [86], even with optimizations to adapt deep neural networks to low-power spectrum
sensing applications, their solution still required at least one 128-output hidden layer to achieve relatively good
performance, and the training phase of their model had to be executed on a powerful GPU.
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wireless IoT systems [103, 34, 43, 33, 35, 107]. Following this direction, this chapter exploits effi-

cient hardware architectures for PDS learning. We first design a hardware accelerator for the action

evaluation (AE) step of PDS learning in Chapter 2, which evaluates the value of a prospective ac-

tion. In this chapter, we propose a stochastic computing (SC) based and reconfigurable hardware

architecture for the PDS learning algorithm. Specifically, by adopting SC, we eliminate the costly

multiplications involved in the AE and replace them with sample estimation, which hence simultane-

ously reduces the hardware area and power consumption. Thanks to the resiliency of PDS learning

to stochastic perturbations, we can further improve the computational efficiency by using extremely

short stochastic representations (i.e., each signal is represented by a very small number of stochastic

samples) without sacrificing arithmetic performance. To differentiate from the SC-based accelerator,

we refer to the arithmetic accelerator as the arithmetic circuit in the rest of this chapter.

3.2 Related Works

3.2.1 System Model

We assume that a resource-constrained wireless IoT sensor must transmit delay-sensitive

data over a fading channel to a receiver, while minimizing its power consumption. The system

operates over discrete time steps indexed by n ∈ {0, 1, . . .}, with fixed length ∆T seconds.

Fig. 3.1 illustrates the considered wireless IoT system. At the beginning of time step n, the

RL module observes the system’s state sn ≜ (bn, hn, xn) ∈ S, where bn ∈ Sb = {0, 1, . . . , Nb} is the

finite buffer state, which represents the number of packets waiting in the buffer to be transmitted;

hn ∈ Sh is the channel state, which represents the discretized channel gain between the transmitter

and receiver; xn ∈ Sx is the binary power management state, which indicates if the radio is “on”

and ready to transmit, or “off” in a power-saving state; and S = Sb × Sh × Sx is the discrete and

finite set of states. Subsequently, the RL module takes an action an = (BEPn, yn, zn) ∈ A, where

BEPn ∈ ABEP is the target maximum bit-error probability (BEP) at the receiver; yn ∈ Ay is the

binary power management action, which indicates whether to turn “on” or “off” the radio; zn ∈ Az is

the packet throughput, which specifies the number of packets to transmit; and A = ABEP ×Ay×Az

is the discrete and finite set of actions. In our specific model implementation (see Section 3.3), there

are a total of 416 states and 110 actions, which is relatively complex for resource-constrained wireless

IoT devices.

19



Power
Manager

Transmission 
Scheduler

Receiver

Reinforcement Learning Module

Transmission Buffer

In
fo

rm
at

io
n

 
So

u
rc

e

𝑏𝑛

𝑥𝑛 𝑦𝑛

𝐵𝐸𝑃𝑛

𝑧𝑛

𝑙𝑛

Feedback 
Channelℎ𝑛

Wireless IoT System

Figure 3.1: Wireless IoT system model.

In the remainder of this subsection, we describe the channel, physical layer, transmission

power, power management, transmission buffer, and traffic models in detail.

Channel model: We consider a frequency non-selective block fading channel with channel

gain hn ∈ Sh in time step n. As in prior work [100, 48, 129, 13, 90, 127], we assume that the

set of channel states Sh is discrete and finite, that the channel state hn is known and constant

in each time step, and that it evolves over time according to a discrete-time Markov chain with

transition probability function Ph(h′|h). We determine the discretized channel state by defining

fixed thresholds 0 = τ0 < τ1 < · · · < τNh
, where Nh denotes the number of channel states. Then,

we define the discretized channel state to be hk if the channel gain falls in the interval [τk, τk+1).

Physical layer model: We consider a single-carrier single-input single-output physical

layer with a fixed symbol period of Ts seconds. The physical layer supports M modulation schemes

that achieve data rates βn/Ts bits/s, where βn ∈ {β1, β2, . . . , βM} and βm is the number of bits per

symbol used by the mth modulation scheme. Therefore, to transmit zn packets of size L bits in ∆T

seconds, we must have

βn = ⌈znLTs/∆T ⌉ bits/symbol, (3.1)

where ⌈x⌉ denotes the ceiling operator, which rounds x up to the nearest integer. In time step

n, the transmission scheduler module in Fig. 3.1 takes as input the maximum bit-error probability

BEPn and the desired packet throughput zn, and then selects the modulation scheme according
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to Equation (3.1).

Transmission power model: Let Ptx(h,BEP, z) watts denote the power required to

transmit z ∈ Az packets in channel state h ∈ Sh with maximum bit-error probability BEP ∈ ABEP .

The transmission power Ptx(h,BEP, z) depends on the physical layer modulation scheme and is typi-

cally 1) convex increasing in the number of transmitted packets, 2) higher for lower bit-error probabil-

ities, and 3) higher in worse channel states. These assumptions hold for typical modulation schemes,

such as M -ary PSK and M -ary QAM [42, Table 6.1], and under information-theoretic bounds on the

minimum power required for error-free communication [12]. Note that, as in [129, 100], we do not

consider coding, but it can be introduced by appropriately modifying Equation (3.1) and defining

Ptx(h,BEP, z). In the rest of this chapter, we consider M -ary QAM for illustration; however, our

learning algorithm and hardware accelerator can be modified to consider other modulation schemes

and transmission power models. Under M -ary QAM, the transmission power can be expressed as

follows [42, Table 6.1]:

Ptx(h,BEP, z) =

√
2N0(2

β − 1)erf−1(1− β·BEP
4 )

3h
, (3.2)

where N0 denotes the noise power spectral density, erf−1(·) denotes the inverse error function, and

β is the number of bits per symbol determined using Equation (3.1).

Power management model: To trade off power and delay, the wireless transmitter can

be in one of two power management states, Sx = {on, off}, and can be switched “on” and “off”

using one of two power management actions, Ay = {s on, s off}.2 We let Pon and Poff watts denote

the power consumed by the wireless transmitter in the “on” and “off” states, respectively, and Ptr

watts denote the power required to transition between the “on” and “off” states. We assume that

Ptr > Pon > Poff > 0; therefore, there is a high cost for switching between the states, but less power

is consumed in the “off” state than in the “on” state. Importantly, packets can only be transmitted

if x = on and y = s on; otherwise, z = 0.

The total power cost ρ incurred by taking action a = (BEP, y, z) ∈ A in channel state

h ∈ Sh and in power management state x ∈ Sx, can be expressed as a sum of the transmission power

2The power management action s on should be interpreted as “stay on” in the “on” state or “switch on” in the
“off” state; and s off should be interpreted as “stay off” in the off state and “switch off” in the “on” state.
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and the system power : i.e.,

ρ([h, x], BEP, y, x) =


Pon + Ptx(h,BEP, z), if x = on, y = s on,

Poff, if x = off, y = s off,

Ptr, otherwise.

As in prior work [11], we assume that the power management state xn evolves over time

according to a discrete-time controlled Markov chain with the following transition probability func-

tion:

P x(x′|x, y = s on) =


on off

on 1 0

off θ 1− θ

, (3.3)

P x(x′|x, y = s off) =


on off

on 1− θ θ

off 0 1

, (3.4)

where the row and column labels represent the current power management state x and the next

power management state x′, respectively, and θ ∈ (0, 1] denotes the probability of a successful power

management transition (from “off” to “on” or from “on” to “off”). For simplicity of exposition,

we assume that the power management state transition is deterministic, i.e., θ = 1; however, our

learning algorithm and hardware accelerator can be extended to the non-deterministic case.

Transmission buffer and traffic model: At the end of the time step n, ln new packets

arrive into the IoT sensor’s transmission buffer from the information source, where ln is distributed

according to the packet arrival distribution P l(l).3 The buffer state evolves according to the following

Lindley recursion:

bn+1 = min(bn − fn(BEPn, zn) + ln, Nb), (3.5)

whereNb is the maximum number of packets that can be stored in the buffer and fn(BEPn, zn) is the

packet goodput (i.e., the number of packets successfully delivered to the receiver). Note that zn ≤ bn

because it is not possible to transmit more packets than are in the buffer and fn(BEPn, zn) ≤ zn

3We assume that the arrivals in each time step are independent and identically distributed; however, the proposed
system model can be extended to include Markovian traffic arrivals.
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because it is not possible to receive more packets than are transmitted. We assume that the value

of fn is sent to the transmitter over the feedback channel at the end of time step n.

Assuming that bit-errors are independent, the packet loss rate (PLR) can be expressed as

PLR = 1− (1−BEP )L, (3.6)

where L is the packet size in bits, and the goodput f has the following binomial distribution:

P f (f |BEP, z) = Bin(z, 1− PLR)

=

(
z

f

)
(1− PLR)f (PLR)z−f , (3.7)

where
(
z
f

)
= z!/f !(z − f)!. Importantly, since packets arrive at the end of each time step, packets

that arrive in time step n cannot be transmitted until time step n + 1 or later. Moreover, any

packets that are not successfully delivered to the receiver in time step n remain in the buffer to be

retransmitted in a future time step. Based on the above discussion, the buffer state bn evolves over

time according to a discrete-time controlled Markov chain with the following transition probability

function:

P b(b′|b, BEP, z) =

∞∑
l=0

z∑
f=0

P f (f |BEP, z)P l(l)I{b′=min(b−f+l,Nb)}, (3.8)

where I{·} is an indicator function that is set to 1 when the condition in {·} is true and is set to 0

otherwise.

Recall that our goal is to transmit delay-sensitive data while minimizing the IoT sensor’s

power consumption. We already defined the power cost in Equation (3.3). Now, we need to define

the expected buffer cost, which we introduce to penalize buffer delays and overflows. Please note that

here we do not put transmission delay into the consideration. The expected buffer cost incurred

when transmitting z ∈ Az packets with target maximum bit-error probability BEP ∈ ABEP in

buffer state b ∈ Sb can be expressed as

g(b, BEP, z) =

∞∑
l=0

z∑
f=0

P f (f |BEP, z)P l(l) × {[b − f ] + ηmin(b − f + l − Nb, 0)}, (3.9)

where the holding cost b − f penalizes large buffer states, the overflow cost ηmin(b − f +

l −Nb, 0) penalizes each packet overflow by η > 0, and the expectation is taken with respect to the
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packet arrival distribution P l and goodput distribution P f .

3.2.2 Markov Decision Process Formulation

The problem described above can be formulated as a Markov decision process (MDP) with

discrete and finite state space S = Sb × Sh × Sx and discrete and finite action space A = ABEP ×

Ay ×Az. The state sn evolves over time according to a discrete-time controlled Markov chain with

transition probability function

P (s′|s, a) = P b(b′|b, BEP, z)Ph(h′|h)P x(x′|x, y) (3.10)

and cost function defined as a weighted sum of the power and buffer costs: i.e.,

c(s, a) = ρ(s, a) + λg(s, a), (3.11)

where λ ≥ 0 can be used to set the buffer cost constraint. The goal is to determine the optimal

policy π : S → A, which specifies the optimal action to take in each state to minimize the average

power cost subject to an average buffer cost constraint.

For a given λ, the optimal solution satisfies the following Bellman equation:

V ∗(s) = min
a∈A

{
c(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
︸ ︷︷ ︸

Q∗(s,a)

,∀s ∈ S (3.12)

where V ∗(s) is the optimal value function, which indicates how good it is to be in each state when

following the optimal policy π∗(s), and the related optimal action-value function Q∗(s, a) indicates

how good it is to take an arbitrary action in each state and then follow the optimal policy thereafter.

The optimal policy π∗(s) can be determined by taking the action that minimizes the right-hand side

of Equation (3.12) in each state.

If the cost and transition probability functions are known, then the optimal value function

can be computed numerically using dynamic programming (e.g., value iteration or policy iteration

[109]) and the optimal value of λ that satisfies the buffer cost constraint can be computed using the

subgradient method. In the considered problem, however, the cost function in Equation (3.11) is only

partially known because the buffer cost in Equation (3.9) depends on the unknown packet arrival
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distribution P l(l). Moreover, the transition probability function P (s′|s, a) defined in Equation (3.10)

is only partially known because the buffer state transition probabilities P b(b′|b, BEP, z) defined in

Equation (3.8) depend on the unknown packet arrival distribution P l(l), and the channel state

transition probabilities Ph(h′|h) are unknown. Hence, the optimal value function and policy cannot

be computed using dynamic programming; instead, they must be learned online, based on experience.

Q-learning is a popular approach for this task, as described next.

3.2.3 Q-Learning

In each time step n, Q-learning updates an estimate of the action-value function based on

the observed experience tuple (sn, an, cn, sn+1), which comprises the current state, selected action,

incurred cost, and next state. The update is performed as follows:

Qn+1(sn, an)← (1− αn)Qn(sn, an) + αn[cn + γ min
a′∈A

Qn(sn+1, a′)], (3.13)

where sn+1 ∼ P (·|sn, an) and E[cn] = c(sn, an); a′ is the greedy action in state sn+1; αn ∈ [0, 1] is

a time-varying step size parameter; and Q0(s, a) can be initialized arbitrarily ∀(s, a) ∈ S ×A.

In the literature, many researchers have explored various Q-learning-based RL hardware

accelerator structures for better performance and lower power consumption [105, 31, 32]. However,

due to the limited training data and learning time for real-time learning, these hardware optimization

techniques are not, at least directly, applicable in emerging wireless IoT systems because of Q-

learning’s slow convergence speed. In real-time learning, training data is generated or observed over

time, which means that the agent has to wait for the new data no matter how fast each iteration is.

Under these circumstances, slow convergence speed means that Q-learning will spend a relatively

long period of time to reach the anticipated optimization level, during which energy and time is

wasted. Different from Q-learning, PDS-based methods are uniquely optimized for the underlying

wireless IoT system to increase the learning convergence speed.

3.2.4 Deep Q-Learning

Unlike tabular Q-Learning, deep Q-learning (DQL) estimates action values with a deep Q-

network (DQN [75]). By updating the weights of the DQN based on mini-batches of experience

tuples, DQL learns successful policies directly from (possibly high-dimensional) sensory inputs and
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optimizes its action selection policy to fit the unknown dynamics.

In recent studies, DQL showed great potential in IoT wireless network optimization [85,

9, 38, 45]. Nevertheless, all their DQL agents run on powerful platforms like network servers, base

stations, and satellites. In [86], the authors realized that deep learning was not suitable for low-power

wireless applications and optimized their model, but it still required at least one hidden layer with

128 units to achieve relatively good performance, and only the inference phase could be performed

on a low-power platform.

3.2.5 Post-Decision State Learning

Before we can describe PDS learning, we need to formally introduce the PDS concept. A

PDS denotes a state of the system after all known and controllable effects of the action have occurred

but before the unknown dynamics occur [73, 90, 109]. In our wireless IoT system, the PDS in time

step n is defined as follows:

s̃n ≜ (̃bn, h̃n, x̃n) = ([bn − fn], hn, yn) ∈ S, (3.14)

where b̃n = bn − fn denotes the buffer state after packets are successfully delivered to the receiver,

but before new packets arrive;4 h̃n = hn since we do not know anything about the channel state

transition; and x̃n = yn since we assume that the power management state transition is deterministic.

Given the PDS in time step n, we can express the state in time step n+ 1 as follows:

sn+1 = (bn+1, hn+1, xn+1)

= (min(̃bn + ln, Nb), h
n+1, x̃n), (3.15)

where ln ∼ P l(·) and hn+1 ∼ Ph(·|h̃n) denote the realizations of the packet arrivals and next channel

state, respectively.

We formulate our problem in terms of PDSs by decomposing the transition s→ s′ into two

parts: a known transition s → s̃ with expected cost ck(s, a) and transition probabilities Pk(s̃|s, a),

and an unknown transition s̃ → s′ with expected cost cu(s̃) and transition probabilities Pu(s
′|s̃),

4Although we do not know the realization of the goodput fn until the end of time step n, we know the goodput
distribution defined in Equation (3.7). This is sufficient to include fn in the definition of the post-decision buffer
state.
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such that:

P (s′|s, a) =
∑

s̃
Pk(s̃|s, a)Pu(s

′|s̃) and, (3.16)

c(s, a) = ck(s, a) +
∑

s̃
Pk(s̃|s, a)cu(s̃). (3.17)

Each of these factors can be easily derived based on the transition probability and cost

functions defined in Equation (3.10) and Equation (3.11), respectively. For example, the unknown

cost is nothing more than the expected overflow cost, i.e.,

cu(s̃) = η
∑∞

l=0
P l(l)min(̃b+ l −Nb, 0) (3.18)

because the arrival distribution P l is the only unknown component of the cost function defined in

Equation (3.11).

To map traditional RL to PDS learning, we define two value functions V (s) and Ṽ (s̃) over

the conventional states and PDSs, respectively. The corresponding optimal value functions are

related by the following two Bellman equations:

Ṽ ∗(s̃) = cu(s̃) + γ
∑

s′∈S
Pu(s

′|s̃)V ∗(s′), (3.19)

V ∗(s) =min
a∈A

{
ck(s, a) +

∑
s̃∈S

Pk(s̃|s, a)Ṽ ∗(s̃)

}
. (3.20)

Given the PDS value function Ṽ ∗(s̃), the optimal policy π∗(s) can be found by taking the

action in each state that minimizes the right-hand side of Equation (3.20).

To solve the problem online, we use the PDS learning algorithm presented in Algorithm 2 [70,

73]. First, the PDS value function Ṽ 0(s̃) is initialized to 0 for all s̃ ∈ S (line 1). In each time step

n, PDS learning takes the greedy action defined in Equation (3.22) using the known cost function

ck(s, a), the known transition probability function Pk(s̃|s, a), and the current estimate of the PDS

value function Ṽ n(s̃) (line 3). Subsequently, PDS learning updates the estimated PDS value function

as in Equation (3.23) based on the observed experience tuple (s̃n, cnu, s
n+1) (lines 4 and 5), where

the PDS s̃n ∼ Pk(·|sn, an) is defined in Equation (3.14); the realization of the unknown cost

cnu = ηmin(̃bn + ln −Nb, 0)
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satisfies E[cnu] = cu(s̃
n), where cu(s̃

n) is defined in Equation (3.18); and the next state sn+1 ∼

Pu(·|s̃n) is defined in Equation (3.15). In [100], we proved that the sequence of PDS value functions

Ṽ n generated by the PDS learning algorithm converges to Ṽ ∗ with probability 1 as n→∞.

PDS learning has several advantages over Q-learning. First, only the unknown information

in the transition s̃ → s′ needs to be learned. Second, by updating the value of one PDS, we learn

about all state-action pairs that can precede it due to the expectation over the known transition

probabilities in both Equation (3.22) and Equation (3.23). Third, in RL, there is a trade-off between

exploiting actions that currently have the best estimated value and exploring other actions that might

be better. However, if the unknown transition probabilities do not depend on the action (as in the

considered problem), then PDS learning does not require exploration.

Together, the above three features significantly increase PDS learning’s convergence speed

compared to Q-learning; however, this comes at the cost of increased action selection and learning

update complexity. In Q-learning, the action selection and update steps both require optimizing

Qn(s, a) over the actions, so they have complexity O(A). In PDS learning, in addition to optimizing

over the actions, both Equation (3.22) and Equation (3.23) require calculating the action-value

estimate Qn(s, a) for each prospective action based on the known cost and transition probability

functions:5

Qn(s, a) = ck(s, a) +
∑

s̃
Pk(s̃|s, a)Ṽ (s̃). (3.21)

Therefore, both steps have complexity O(S ×A). We will refer to the calculation in Equa-

tion (3.21) as the action evaluation step. In Section 3.3, we present efficient methods to calculate the

known cost ck(s, a) and the state value expectation
∑

s̃ Pk(s̃|s, a)Ṽ (s̃), which appear in the action

evaluation step.

3.2.6 Stochastic Computing

To further optimize our hardware circuit, we design Transition Probability Distribution Esti-

mator based on stochastic computing (SC). SC [39] enables complex computations to be performed

using simple bit-wise operations on streams of random bits. SC has recently been exploited for

various low-energy or low-area applications, such as neural networks acceleration and 5G decoding

[7, 88, 44, 80]. In particular, SC is highly suitable for error-tolerant applications where approximated

5PDS learning’s action selection and update steps are given in Equation (3.22) and Equation (3.23), respectively,
and require calculating Qn(sn, a) and Qn(sn+1, a), respectively, using Equation (3.21) for each prospective action.
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Algorithm 2 Post-Decision State Learning

1: initialize Ṽ 0(s̃) = 0 for all s̃ ∈ S
2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = argmin
a∈A

{
ck(s

n, a) +
∑

s̃
Pk(s̃|sn, a)Ṽ n(s̃)

}
(3.22)

4: Observe PDS s̃n, cost cnu, andnext state sn+1.

5: Update Ṽ n+1(s̃n):

Ṽ n+1(s̃n) = (1− αn)Ṽ n(s̃n) + αn[cnu + γV n(sn+1)], (3.23)

where

V n(sn+1) = min
a∈A

{
ck(s

n+1, a) +
∑

s̃
Pk(s̃|sn+1, a)Ṽ n(s̃)

}
6: end for

results are acceptable or certain errors in the intermediate stages are not perceivable by the end-used

[122, 6]. Moreover, SC enables very lightweight hardware implementations for resource-constraint

devices. One example of an SC circuit is shown in Fig. 3.2(a). It can be seen that stochastic mul-

tiplication can be easily realized by an AND gate on the two bit-streams, as the probability to get

a ‘1’ as the output equals to the product of the equivalent probabilities for each of the inputs. In

a typical SC architecture, stochastic number generators (SNGs) and comparators are also needed

to convert binary signals to stochastic representations and stochastic bit-streams back to binary

signals, respectively. To this end, a linear feedback shift register (LFSR) has been widely used

as the SNG to generate stochastic bit-streams, as shown in Fig. 3.2(b), while a counter can effec-

tively perform the stochastic-to-binary conversion, as illustrated in Fig. 3.2(c). Note that the goal

of adopting stochastic computing is to accelerate the hardware computation, which is qualitatively

different from Bayesian-based methods.

Although SC offers simpler hardware for complex operations, it requires a long sequence of

stochastic bits to obtain a precise result [7]. As a result, stochastic systems suffer from high latency

or require a large number of processing elements (e.g., AND gates for multiplication) to operate

on the bit-streams in parallel. Thus, it is imperative to exploit ways for reducing the length of the

bit-streams while maintaining the arithmetic performance. In Section 3.3.2, we develop an SC-based

accelerator to efficiently estimate the known transition probability function Pk(s̃|s, a) rather than

compute it arithmetically.
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(a) A stochastic multiplier implemented as an AND gate.
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(b) Stochastic bit-stream generator.
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(c) Stochastic-to-binary conversion.

Figure 3.2: Stochastic computing circuit.

3.3 Proposed Hardware Architecture

To address the high computational complexity of PDS learning, we design an optimized

hardware accelerator framework for the critical action evaluation (AE) step in Equation (3.21). As

noted earlier, this step is performed once for each prospective action in both the action selection step

(Equation (3.22)) and the learning update step (Equation (3.23)). For our accelerator framework, it

consists of two main components: the Known Cost (KC) block for computing ck(s, a) and the State

Value Expectation (SVE) block for computing
∑

s̃ Pk(s̃|s, a)Ṽ (s̃). To realize a hardware accelerator

for a specific system, we design the programmable lookup table (PLUT) (green) with state encoding

(wathet), transition probability distribution estimator (TPDE) (grey), state value array (orange),

and tree structure (blue), according to the unique characteristics of both the system and the PDS-

based RL algorithm.

For illustration, in the remainder of this chapter, we consider an instance of the example

system model in Section 3.2.1 with 26 buffer states (b ∈ Sb = {0, 1, . . . , 25} packets), 8 channel states

(h ∈ Sh = {−18.82,−13.79,−11.23,−9.37,−7.80,−6.30,−4.98,−2.08} dB), 2 power management
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states (x ∈ Sx = {ON, OFF}), 2 power management actions (y ∈ Ay = {SWITCH ON, SWITCH OFF}),

5 target BEPs (BEP ∈ ABEP yielding PLRs of 0.01, 0.02, 0.04, 0.08, and 0.16 for packets of

size L = 5000 bits), and 11 transmission scheduling actions (z ∈ Sz = {0, 1, . . . , 10}). Therefore,

there are a total of 416 system states and 110 possible actions. Although we consider this specific

parameter configuration, the PDS learning algorithm and hardware acceleration architectures can

be applied for any values of these parameters.

Fig. 3.3(a) illustrates an instance of the hardware accelerator design for the example system

model in Section 3.2.1, which is extended from our prior work [107]. Recall that we do not have

complete information about our model because we do not know the data arrival probability distri-

bution P l(l) or the channel state transition probabilities Ph(h′|h). We briefly introduce the circuit

functions below, while detailed circuit designing can be found in Sections ??, 3.3.1, and 3.3.2.

The bottom KC block in Fig. 3.3(a) calculates the known buffer cost and transmission cost,

and then combines them to calculate the known components of Equation (3.11). The known buffer

cost only includes the known components of Equation (3.9), which do not depend on P l(l), i.e.,

gk(s, a) =

z∑
f=0

P f (z|BEP, z)[b− f ], (3.24)

and is computed with an arithmetic circuit. For the transmission cost, the dominant part is the

computation of Ptx defined in Equation (3.2), where we implement two lookup tables to simplify

the calculation. By multiplying Ptx by h, Ptx ∗ h lookup cancels the existence of h and stores the

results for all the combinations of BEP s and zs. Then, with another lookup table outputting values

for 1/h, Ptx is calculated with very minimal cost.

The top block in Fig. 3.3(a) computes the SVE as:

∑
s̃∈S

Pk(s̃|s, a)Ṽ (s̃) =
∑
x̃∈Sx

z∑
f=0

P x(x̃|x, y)P f (f |BEP, z)Ṽ (b− f, x̃, h), (3.25)

where P f is the goodput distribution defined in Equation (3.7). The SVE block includes the following

components:

• The BEP Lookup block takes as input the BEP ’s address and outputs both PLR and 1−PLR,

where PLR is defined in Equation (3.6).

• The Power Tree block takes as input p = PLR and q = 1 − PLR and outputs p0, p1, . . . , p10
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and q0, q1, . . . , q10, which are used to calculate the goodput distribution in Equation (3.7).

• The Choose Lookup block takes as input the transmission action z and outputs the values

c(f) =
(
z
f

)
when f ≤ z and c(f) = 0 when f > z, for f = 0, 1, . . . , 10. The combinations c(f)

are also used to calculate the goodput distribution in Equation (3.7).

• The State Value Selection block takes as input the current state S and all state values, then

outputs the state values for possible PDSs.

• Finally, the Multi-Sum Tree block takes as input the outputs of the State Value Selection,

Choose Lookup, and Power Tree blocks, and outputs the SVE.

More details about the Power Tree and State Value Selection blocks are provided in Chapter 2.

Fig. 3.3(b) illustrates the proposed novel alternative SC-based SVE module, which we de-

scribe further in Section 3.3.2.

3.3.1 Programmable Lookup Table with State Encoding for RL

The channel state in the PDS learning algorithm is quantized into discrete state values.

Since the number of states is typically limited to simplify the learning process and save energy in IoT

applications, we implement lookup tables for the input stages to further accelerate the computation.

For a directly implementation, there will be 232 possible input values (for a 32-bit system) from the

channel sensor, which corresponds to a ‘costly’ 32-bit lookup table. However, since many input cases

share the same output and there are only eight channel fading states h in our model, we introduce

state encoding (SE) to compress the input space of the lookup table. It encodes the input values into

successive binary state addresses to compress the input bit-width, as illustrated in Fig. 3.4, where a

3-bit input is mapped into two states with ‘100’ as the boundary. With state encoding applied, its

input width is compressed by 3 (from 3 bits to 1 bit). Additionally, in order to adapt the same IoT

circuit to various environments and use cases, the lookup table and state encoding are designed to

be programmable with a memory module controlled by a SCM (single chip micro-controller). The

functionality and state encoding of the lookup table are defined by the corresponding values from

memory, which can be modified by the SCM, as shown in Fig. 3.5.

The circuit design for state encoding is shown in Fig. 3.6. Each block illustrates the basic

SE unit, where port in takes the input value of the lookup table and std indicates the boundary
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Figure 3.3: Action evaluation hardware accelerator designs for the example system model. The SVE
block is illustrated in Fig. 3.3(a) assuming that up to 10 packets can be transmitted in each time
step, i.e., Sz = {1, 2, . . . , 10}.

value between the neighboring states that can be defined by the memory. The SE unit will compare

in with std and then set one of the 1-bit outputs large or small to ‘1’ and another to ‘0’. Besides,

when en is ‘0’, both large and small will be set to ‘0’, which can be simply implemented by logical

AND operations.

By connecting multiple SE unit blocks as a binary tree structure and making all ins share

the same input value as the input of the lookup table, we can easily obtain a programmable state

encoding circuit for arbitrary state numbers. A four-state circuit design is demonstrated in Fig. 3.6,
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Figure 3.4: An example of state encoding where the input bit-width is compressed from 3 to 1.
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Figure 3.5: Programmable lookup table with memory and SCM.

which has the function:

State =



0, if in ∈ (0, b1]

1, if in ∈ [b1, b0)

2, if in ∈ [b0, b2)

3, if in ∈ [b2,+∞)

(3.26)

The circuit for our lookup table is designed based on the SE unit, as shown in Fig. 3.7.

S0 to Sn−1 are outputs of the state encoding circuit that correspond to n states. Then the desired

value can be quickly selected using AND gates, where D0 to Dn−1 are the corresponding output

values from memory. To reconfigure the function for different use cases, we only need to update the

boundary values and output values in the memory.
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Figure 3.6: The logic circuit of state encoding (SE) module (4 states example).

3.3.2 Transition Probability Distribution Estimator and Stochastic Sam-

ple Generator

Transition Probability Distribution Estimator (TPDE): The TPDE estimates the

distribution of the PDS based on the current state and action as Pk(s̃|s, a), where s̃ denotes the

PDS and s, a are the current state and action, respectively. In PDS RL, this distribution is crucial

as it needs to be computed at least two times in each time step (once for action selection and once

for the learning update). However, calculating the entire transition probability distribution can

be computationally expensive. For example, the transition probability distribution from the buffer

state b to the post-decision buffer state b̃ = b − f depends on the goodput distribution P f defined

in Equation (3.7).

It can be seen that costly operations, including multiplications and powers, are involved in

Equation (3.7), which are not suitable for resource-constraint IoT systems. To tackle this challenge,

we design a novel SC-based TPDE that can significantly reduce complexity while lowering power

consumption. Based on the Monte Carlo sampling method, which is widely adopted for estimating

expectations, in order to get:

E[f(x)] =
∑

x
f(x)p(x), (3.27)
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we can sample L data points {x1, . . . , xL} then establish an unbiased estimator for E[f(x)]:

f̂ =
1

L

∑L

i=1
f(xi). (3.28)

The variance can be given by var(f̂) = 1
LE

[
(f − E[f ])2

]
, which indicates that the estima-

tion accuracy improves with the sample size L. The goal of the TPDE is to estimate the transition

probability distribution:

P (Si|S,A) =
∑

S′
f(Si, S

′)P (S′|S,A) (3.29)

where Si is one specific case of the next state, f(Si, S
′) = 1 when S′ = Si and 0 when S′ ̸= Si. By

gathering L samples S′
1, . . . , S

′
L for the PDSs from distribution P (S′|S,A), based on Equation (3.27)

and Equation (3.28), we can obtain P̂ (Si|S,A) as the unbiased estimator for P (Si|S,A), which is

expressed as:

P̂ (Si|S,A) =
1

L

∑L

j=1
f(Si, S

′
j) (3.30)

Thus, based on Equation (3.29) and Equation (3.30), we construct a TPDE with a sample

generator (P (S′|S,A)) and a discriminator (f(Si, S
′)).

Stochastic Sample Generator (SSG): To obtain an accurate estimation for the transi-

tion probability distribution, it is also crucial to design a sample generator that can generate samples

based on the specific distribution. The design of our stochastic sample generator is shown in Fig.

5.2, which consists of three main structures: stochastic number generator (SNG), distribution tuner,
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and accumulative discriminator array.

SNG

𝑷(𝑺′) Distribution Tuner

𝑺𝟏
Discr.

𝑺𝒊
Discr.

Accumulative
Discriminator

Array
…… ……

Figure 3.8: The framework of the stochastic sample generator.

We use the same SNG as in most prior stochastic computing designs, which is composed

of LFSRs and a comparator that can generate a random bit-stream with a probability of P to be

1. After the SNG, the distribution tuner turns the bit-stream into samples based on the target

distribution. For example, the tuner directly outputs each n bits as one sample for the binomial

distribution in our PDS learning algorithm:

Si ∼ Bin(P, n) (3.31)

It is shown in prior works [25, 106] that the binomial distribution can be used to fit many

other common distributions, such as Poisson distribution with λ = nP and standard distribution

with µ = nP and σ2 = nP (1 − P ). It is also possible to design a tuner for a logically descriptive

distribution, similar to the distribution on the check node of the LDPC decoding [118].

Finally, the accumulative discriminator array will gather all the samples. Each discriminator

will count the number of samples Ni that belong to the specific state Si. The output of the Si

discriminator is an estimate of L ∗ P (Si), i.e.,

P (Si) ≈
Ni

L
(3.32)

Although a larger L will increase the accuracy of this estimation, we find that the PDS

learning method implies remarkable tolerance to the random error, which means a small L can be
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adopted for acceleration and energy saving. This property is further discussed in Section 3.4.2.

TPDE Circuit Design for Binomial Distribution: The circuit design of the TPDE

for the binomial distribution family (Bin(n, p)) is shown in Fig. 3.9, where the controlled counter

is implemented as a distribution tuner. It takes a stochastic bit-stream and the throughput z

(corresponding to the n of the binomial distribution), generates one sample for each z-bit, and

informs the accumulative discriminator array when one sample is ready. For the accumulative

discriminator array, each discriminator will count the number of received samples that belong to its

state.

LFSR ComparatorD
Controlled 

Counter
D D

Clock Clear

1-PLR z

𝑺𝟏
Discr.

𝑺𝒊
Discr.

Accumulative
Discriminator

Array

…………𝑺𝟐
Discr.

Figure 3.9: TPDE for the binomial distribution family.

3.3.3 Programmable Parallel Greedy Action

In PDS-based RL, the AE step defined in Equation (3.21) must be performed twice for every

action in each time step (i.e., once for every action during the action selection step and once for

every action during the learning update step). This presents challenges to wide applicability since

the length of one time step can be small due to the high communication frequency, which brings

the requirement of high-speed computation. On the other hand, in scenarios such as smart homes,

saving energy becomes more important. Therefore, programmability is desired to enable a trade-off

between speed and power consumption for different applications. A 4-way example of the proposed

programmable parallel structure is shown in Fig. 3.10. Here AE represents the action evaluation

module as described above. MC is the minimum comparator module that takes two numbers as

input and compares them, then outputs the smaller one. By connecting the MC module in series,

we can then realize the argmin function. With the MUX gate at the output node, the parallelism

can be configured by the control signals.
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3.4 Experimental Results

3.4.1 Experiments Setup

For software simulation, all algorithms are coded and tested with MATLAB on Windows

11, with a 3.80 GHz i7-10700K processor and 32GB RAM. As wireless IoT systems usually have

fewer computing resources, we consider this setting as a guaranteed upper bound for the software

implementation’s speed. For hardware testing, we implement our circuits with Verilog HDL, and

then map them into a 32nm technology node using Synopsys Design Compiler. All simulations are

conducted using the state and action sets defined at the beginning of Section 3.3 and with packet

size L = 5000 bits.

3.4.2 Algorithmic Performance

Fig. 3.11 compares the simulated performance of our PDS learning implementation (Al-

gorithm 2), Q-learning, and DQL. DQL is implemented with MATLAB’s deep RL toolbox. We

examine two architectures with one and two fully connected hidden layers. The activation function

is ReLU. The feature input layer for our model inputs current state, (bn, hn, xn), to DQL and applies

data normalization. And the output layer is designed with the same size as the action space A, so
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that each output corresponds to one possible action. In order to minimize the cost function, the

reward for each action selection is defined as −c(s, a). Consistent with the network size of a recent

study [86] on low power wireless applications and the output layer’s size for our model (110), we set

the output size for each fully connected layer to be 128. The learning step size for DQL is 1× 10−3.

All results are averaged over at least 75,000 time slots. It can be seen from Fig. 3.11 that

our PDS learning algorithm outperforms Q-learning and DQL in terms of both cumulative average

delay and power consumption. Moreover, we find that DQL with one hidden layer (marked as

‘DQL 1*128’) performs much worse than DQL with two hidden layers (marked as ‘DQL 2*128’),

which further proves that DQL requires a relatively complex network in order to achieve acceptable

performance.
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Figure 3.11: Comparison between PDS learning, Q-learning, and deep Q-learning.
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We also evaluate the convergence speed of our algorithm in Fig. 3.11(c) with 3 × 106 time

slots. The red curve (circle markers) denotes the cumulative average cost incurred up to time slot n

by Q-learning (where the cost is defined in Equation (3.11) as a weighted sum of the power cost and

delay cost, which makes it the best representative of the overall performance) and the blue curve (+

markers) denotes the cumulative average cost for PDS learning. While PDS learning approximately

converges in 250,000 time slots, Q-learning has still not converged after 3,000,000 time slots, and

hence is at least 12 times slower than PDS learning.

We now evaluate the algorithmic performance when using the TPDE. As discussed in Sec-

tion 3.3.2, the randomness introduced by the TPDE is highly dependent on the sample number L.

By decreasing the sample number for each estimation, the delay and energy consumption of the

TPDE can be reduced. However, the convergence of the learning algorithm may suffer from the es-

timator’s high variance. To study the impact of this randomness on the learning process of our PDS

model and to select the best sample number for the hardware test, we also evaluate the arithmetic

performance of the SSG model. The same learning simulation processes are executed for sample

numbers per estimation of a single PDS of 1, 10, 100, 1000, and 10000. The results are shown as

Fig. 3.12, which show that all learning processes with different sample numbers converge similarly.

Please note that the differences between each curve are caused by the combination of the stochastic

channel model, stochastic arrivals, and randomness from the TPDE. We further repeat the simu-

lation of the learning process five times with only a single sample per estimation and compare the

results with arithmetic PDS learning in Fig. 3.13, where we print the best and worst cumulative

average cost among all five learning episodes for each time slot. It can be seen that all the learning

curves have similar convergence speeds. Thus, we conclude that PDS learning is very resilient to the

randomness introduced by stochastic computing, which can be leveraged to optimize the hardware

cost by using a single sample without sacrificing the arithmetic performance.
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Figure 3.12: Effect of stochastic process from SSG.
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3.4.3 Fault Tolerance

Fault tolerance is another advantage of stochastic computing, which indeed is also a desired

characteristic for wireless IoT systems under noisy and low-energy environments. Many studies

have shown that bit-flip errors are very common in those environments [91], while SC is inherently

resilient to these soft transient errors [77, 51, 92]. Based on that, we verify the error-tolerance of our

proposed method in Fig. 3.14, where we randomly flip the bits of all the outputs from multipliers in

the power tree and multi-sum tree based on the error rate. The results show that our PDS learning

accelerator achieves a high degree of error tolerance as all learning processes converge similarly.
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Figure 3.14: Error-tolerance.
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3.4.4 Hardware Performance

We implement our proposed efficient architecture, a straightforward baseline design without

employing the proposed optimization, and Q-learning using Verilog HDL. For a fair comparison, all

common intrinsic variables and state values V (s) use a bit-width of 32.

We evaluate and compare the execution delays and average runtime for our two hardware

designs and the software implementation of PDS learning. The power and area consumption of the

arithmetic hardware accelerator and the baseline design is also compared to illustrate the effective-

ness of the proposed hardware optimization techniques. These results and comparisons are shown in

Table 3.1, where the execution times and power/area consumption are normalized with respect to

those of the arithmetic hardware design. It can be observed that our arithmetic hardware accelerator

is 2.6× faster than the baseline circuit while achieving a 1×104 times acceleration over the software

implementation. Besides, the power and area consumptions are also decreased by 85.7% and 86.1%,

respectively, compared to the baseline hardware design.

We use Synopsis IC compiler to generate the layout of the arithmetic hardware design with

32nm technology, as shown in Fig. 3.15, where the post-layout area (not # of cells) and power are

0.38mm2 and 5.72mW , respectively.

Table 3.1: Arithmetic vs. Baseline Hardware vs. Q-Learning (32-Bit)

Arithmetic
Hardware
(PDS)

Baseline
Hardware
(PDS)

Normalized
Q-learning

Software

Delay (ns) 98.76
258.31
(2.6×) 521.9 (5.3×) 1.04×106

(10, 531×)
Power (mW ) 5.87 41.21 (7×) 15 (2.6×) -

Area (# of cells) 92567
666543
(7.2×) 20040 -

The implementation of Q-learning is based on Equation (3.13). According to the simulation

results in Section 3.4.2, Q-learning converges over an order of magnitude slower than PDS-based

learning. We normalize the hardware cost with respect to the convergence time for a fair comparison.

These results show that even though Q-learning costs less for a single iteration compared to PDS

learning, when considering the convergence time, the proposed PDS-based learning accelerator yields

reductions of 81% and 61% in delay and power consumption, respectively, compared to Q-learning.

Therefore, we can conclude that the proposed PDS learning architecture achieves much superior
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Figure 3.15: The layout of the arithmetic hardware design.

hardware performance than Q-learning.

3.4.5 TPDE vs. Arithmetic Circuit

From the experimental results, we find that the delay of the Know Cost module is only

39.8% of the SVE module and the SVE module’s delay takes 100% of the total delay (which means

it is the critical path of the accelerator), indicating that the optimization for the SVE module is

more crucial for speeding up the overall accelerator. This further confirms the motivation to adopt

stochastic computing (i.e., TPDE) in the proposed architecture.

For a fair comparison, we implement TPDE and the corresponding circuit from the arith-

metic accelerator (Fig. 3.16) that performs the same function as the TPDE. Here the corresponding

circuit is the SVE module without the state value selection module (as it is not included in the criti-
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cal path) or adders at the output stage that perform the sum function. Both circuits are individually

implemented under the same 32-bit input setting. The comparison of the arithmetic hardware ar-

chitecture in our prior work [107] and the proposed TPDE is summarized in Table 3.2, where the

time per result for TPDE is defined by z×SampleNumber
ClkFreq (z ∈ [1, 10]). We set the sample number

for one estimation as 1. It can be seen that the TPDE is 86.7% faster while consuming only 0.74%

energy compared to the optimized arithmetic hardware architecture even with the largest packet

throughput z.
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Figure 3.16: Replaced circuit from the arithmetic accelerator.

From the results, we can see that the TPDE significantly reduces the energy consumption

and circuit area as most stochastic circuits do. Besides that, the TPDE is 8.3x faster compared to

the corresponding arithmetic circuit that executes the same function thanks to the resiliency of the

PDS learning algorithm to the stochastic errors as shown in Fig. 3.12.

Table 3.2: Comparison with our prior work [107] (32-Bit)

Arithmetic
Hardware
(PDS)

TPDE

Delay (ns) 75.54 0.79
Power (uW ) 3695 206
Area 132134 1095
Clk Freq (MHz) 12 1000
Latency 83ns 1-10ns
Power-delay Product 1× .00067-.0067×
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3.4.6 Programmable Parallel Greedy Action

To adapt our learning accelerator to broader application scenarios, we introduce programmable

parallel greedy action in Section 3.3.3. The comparison of non-parallel and 4-way parallel AE (Fig.

3.10) is shown in Table 3.3. In the worst-case (i.e., all four paths are activated), the additional

MC modules and 4-to-1 MUX only incur an additional delay of 3.69ns and 0.17mW extra power

consumption, which correspond to only 3.7% and 2.9% overhead, respectively.

Table 3.3: 4-way parallel AE (32-Bit)

Non-Parallel 4-Way Parallel

Delay (ns) 98.76 102.45
Power (mW ) 5.87 6.04 ∗ 4

3.5 Summary

This chapter presented efficient hardware architectures for accelerating PDS learning in IoT

applications. We first designed a hardware accelerator for the most costly computation, i.e., the

action evaluation step in Chapter ??. Then, built upon this architecture, we developed a SC-based

hardware architecture, which can further simplify the computation while simultaneously reducing

the power consumption. The effectiveness of the proposed methods is comprehensively verified from

both arithmetic and hardware perspectives. Future work will be directed towards the generalization

of the proposed architecture to various wireless and IoT settings.
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Chapter 4

Efficient Data Extraction Circuit

for Posit Number System:

LDD-based Posit Decoder

4.1 Motivation

Since the universal number was proposed, IEEE 754 Standard floating-point format [1] has

become one of the most commonly used number formats. In searching for higher accuracy and

dynamic range to better serve modern applications, [47] designed posit number in 2017, a drop-in

replacement for IEEE 754, as claimed by the developers.

With the same bit size as floating-point, posit number offers a more flexible trade-off than

floating-point between decimal accuracy and dynamic range. Compared with floating-point, posit

shows many advantages such as larger dynamic range, higher accuracy, better closure, and overflow

resistance. Besides, [24] found that posit can save the hardware cost such that an n-bit IEEE 754-

2008 adder and multiplier can be safely replaced by an m-bit Posit Arithmetic Units adder and

multiplier where m < n. In addition, posit number achieves superior performance in computing

some special functions. For example, it only requires simple bit shifting and flipping to estimate the

value of the sigmoid function (1/(1 + e−x)) with posit number.

Recent works have been exploring its applications by leveraging the advantages of posit
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numbers. For instance, [57, 24, 119] designed ASIC architectures for posit arithmetic core generator,

[82, 56, 52] exploited the implementations of posit system on FPGA, [79] applied approximate

computing to the posit system, [126] designed efficient multiplier for posit number, and [29, 17,

78, 61] adapted posit number system to deep neural networks (DNN). For instance, one of the

biggest challenges for DNN is the DRAM capacity and speed limits due to its massive trainable

parameters [89, 66]. Alleviating the challenge, techniques like low-precision arithmetic [124, 50] are

studied to lessen the data size. Enlightened by this approach, researchers found posit number a

great fit to neural network applications due to its high dynamic range [68], which means the users

can either have higher dynamic range with the same number size, or similar dynamic range with

smaller number size, compared to the floating-point.

A posit number is composed by four parts: sign bit (s), regime bits (r), exponent bits (e),

and fraction bits (f), as shown in Fig. 4.1. The size of regime bits varies, which can even take over

the space of fraction bits and exponent bits for different number values. This key property yields the

trade-off between decimal accuracy and dynamic range. However, it requires an extra decoding/data

extraction process to obtain the sizes and values for each component before arithmetic calculation.

1 1 1 1 0 1 1 0 1 0 1 1

0 0 0 1 0 0 0 0 0 0 0

𝑠 𝑟 𝑟 𝑟 𝑟 𝑟 … ҧ𝑟 𝑒1𝑒2𝑒3𝑒4𝑒5…𝑒𝑒𝑠 𝑓1𝑓2𝑓3𝑓4𝑓5𝑓6…
sign
bit

regime
bits

exponent
bits, if any

fraction
bits, if any

Figure 4.1: Generic posit format for finite, nonzero values.

To perform the decoding process for posit, the state-of-the-art posit decoder designs [59, 57,

24, 119, 36] are based on hardware structures named leading one detector (LOD) or/and leading zero

detector (LZD) [3] (some papers call them leading one/zero counter), whose function is to detect

the size of the regime bits. After regime size is obtained, the decoder then ‘flush out’ the specific

values for all parts and get them ready for the subsequent arithmetic calculations. However, we find

that this design does not fully utilize the hardware when encoding the regime’s size into a binary

number and decoding it for bit shifting, and the implied redundancy introduces extra delay and

power consumption. In this paper, to address this weakness, we design a novel circuit structure,

leading difference detector (LDD). Then we implement a posit number decoder based on the LDD.

Our experimental results show that the proposed LDD-based posit decoder can reduce the delay

50



and energy consumption by about 60% and 50%, respectively, compared to the conventional LOD

decoder for 16-bit, 32-bit, and 64-bit posit numbers.

The rest of the paper is organized as follows: Section 4.2 reviews the basic principle of

the posit number system, the current decoding methodology, and the corresponding circuit design.

Then, our proposed efficient LDD-based posit number decoder is presented in Section 4.3. In Section

4.5, we present the experimental results to verify the advantages of our design. Finally, Section 4.6

concludes this paper.

4.2 Background

4.2.1 Posit Number System

The universal number (unum) has several types. The “type I” unum is a superset of IEEE

754 Standard floating-point format, which is widely used today, but it requires extra management

to activate variable length. Unlike the “type I” unum that is used for expressing interval arithmetic,

the “type II” unum is designed based on the projective reals, which means it becomes a pointer

to the values instead of the value itself. Although having many ideal mathematical properties, the

“type II” unum has exaggerated hardware cost since it requires a bigger lookup table for most

operations [46]. As a representative of the “type III” unum, posit number system is designed to

create a hardware-friendly version of the “type II” unum.

As shown in Fig. 4.1, a posit number is composed by: sign bit (s), regime bits (r), expo-

nent bits(e), and fraction bits (f), together with two pre-known parameters: number size (N) and

exponent size (es).

The highest bit will always be the sign bit, where ‘0’ stands positive and ‘1’ stands negative.

When negative, we need to take the 2’s complement before decoding the rest parts. The very next

part is the regime bits. To decode it, we need to count the number of consecutive 0s or 1s after the

sign bit, and the last bit of regime bits will be the first different bit. For m consecutive 0s, regime

r = −m, while for m consecutive 1s, regime r = m − 1. If all the bits except the sign bit are the

same, they will all be counted as m. One 4-bit decoding example is shown in Table 4.1.

After the regime bits, the very next es bits will be e. If there are not enough bits left, e

equals the remaining bits or just 0 if no bit is left. After decoding all the parts mentioned above,

the rest of the bits are all f , and f = 0 when there is no bit left. With all the extracted data, the
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Table 4.1: Regime Bits Decoding Example

Regime Bits 000 001X 01XX 10XX 110X 111

r −3 −2 −1 0 1 2

value of a posit number can be expressed as:

(22
es

)r × 2e × 1.f (4.1)

Due to the variable bit sizes for each component of a posit number, an extra data extrac-

tion/decoding process is necessary to perform arithmetic operations.

4.2.2 Leading One/Zero Detector

To decode a posit number and perform data extraction, LOD and LZD are employed by

the state-of-the-art studies [59, 57, 24, 119, 36]. Those hardware structures detect and output the

location for the first 0/1 for a binary number. The circuit design for fast LOD used by, to the

best of our knowledge, all the recent studies, is shown in Fig. 4.2. A LOD/LZD has two outputs,

K = (i−1) indicates the first 0/1 occurs at the i− th bit (counting from left), and V ld = 0 when no

0/1 is detected. For example, an LOD will output K = 101 to indicate that the first 1 occurs at 6th

bit when the input number starts with ‘000001...’. Then, based on the outputs of LOD, the posit

decoder can obtain the value for regime bits and flush out the rest parts of the posit number with

a shifter. Since the posit’s decoding process typically finishes within one clock cycle, the ‘shifter’

here is actually a selector, which selects the correct output from all possible shifting results that

are pre-defined. As LOD and LZD have a similar circuit design and current posit decoders only use

one of those combined with inverters to handle all the input patterns (as shown in lines 7 and 8 of

Algorithm 3), we implement an LOD-based decoder as the baseline comparison in this paper. The

detailed decoding process with LOD can be found in Algorithm 3.

Although this design is intuitive, there are several places that we can further optimize in

the hardware implementation. During the decoding process of the example we mentioned above,

the LOD encodes the first 1’s location into a binary number ‘101’, then the ‘shifter’ decodes this

number and makes the selection. Such redundancy introduced by the encoding and decoding of

binary numbers will consume extra power and circuit area.
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Cells: 
Critical Path: 2𝑖 − 1

Figure 4.2: Circuit design for LOD.

4.3 LDD-based Posit Decoder

4.3.1 Leading Difference Detector

In this section, we present the design of a novel posit decoding circuit based on a leading dif-

ference detector (LDD), which eliminates the redundant binary decoding process of the conventional

decoder.

The decoding process with LDD is shown in Algorithm 4. In essence, the LDD generates a

binary indicator ‘LDD ’ instead of a binary number based on the location of the first different bit.

This indicator has the property that its (i − 1) − th bit will be ‘1’ and the rest will be ‘0’ if the

input’s first difference occurs at the i − th bit. An example is shown as Fig. 4.3, where the output

of LDD ‘00010000000’ indicates that the first difference occurs at the 5th bit. Please note that the

output size of LDD will be 1 bit smaller than its input size, as the difference will never occur at

the very first bit. Then, based on the obtained value of LDD, the corresponding output for each

component will be generated by a customized selection circuit.

For a better illustration, we provide an example of the circuit design with a 4-bit input in

Fig. 4.4. There are 3 stages in the LDD circuit:

• The ‘dif ’ stage (Fig. 4.4(a)) checks the differences for all adjacent bits in the way that dif [i] =

‘0’ when in[i+ 1] ̸= in[i] (Algorithm 4, line 6).

• The ‘en’ stage (Fig. 4.4(b)) implements a priority arbiter [16] to examine the existence of the
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Algorithm 3 Posit Data Extraction with LOD

1: Input: IN [N − 1 : 0]
2: Outputs:

Sign(s), Regime(r), Exponent(e), F raction(f), Zero(z), Infinity(inf)
3: Known: Input Size(N), Exponent Size(ES)
4: z ← NOR(IN [N − 1 : 0])
5: inf ← IN [N − 1]&(NOR(IN [N − 2 : 0]))
6: XIN ← IN [N−1]?(∼ IN [N−2 : 0]+1) : IN [N−2 : 0] (Take 2’s complement if IN [N−1] = 1)
7: LIN ← XIN [N − 2]?(∼ XIN [N − 2 : 0]) : XIN [N − 2 : 0]
8: K ← Leading One Detector(LIN)
9: r ← XIN [N − 2]?(K − 1) :∼ (K − 1)

10: temp← XIN << (K + 1)
11: if N −K − 2 > ES then
12: e← Highest ES bits of temp
13: else
14: e← Highest (N −K − 2) bits of temp
15: end if
16: f ← temp << ES

Algorithm 4 Posit Data Extraction with LDD

1: Input: IN [N − 1 : 0]
2: Outputs:

Sign(s), Regime(r), Exponent(e), F raction(f), AllZero(z), AllOne(o)
3: Known: Input Size(N), Exponent Size(ES)
4: XIN ← IN [N−1]?(∼ IN [N−2 : 0]+1) : IN [N−2 : 0] (Take 2’s complement if IN [N−1] = 1)
5: for i = 0 : (N − 3) do
6: dif [i]← XIN [i]⊙XIN [i+ 1]
7: end for
8: for i = 0 : (N − 4) do
9: en[i]← AND(dif [(N − 3) : i])

10: end for
11: LDD[N − 3]←∼ dif [N − 3]
12: LDD[N − 4]← dif [N − 3] & ∼ dif [N − 4]
13: for i = 0 : (N − 5) do
14: LDD[i]←∼ dif [i] & en[i+ 1]
15: end for
16: z ← XIN [N − 2] & en[0]
17: o←∼ XIN [N − 2] & en[0]
18: s← IN [N − 1]
19: r, e, f ← Corresponding values from NAND selection

arrays based on current LDD. Follow the principle
that introduced in Section 4.2.1. Circuit design is
introduced in Section 4.3.2.
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Input

LDD 
Figure 4.3: LDD output format example.

differences among the higher bits with AND logic (Algorithm 4, line 9). When a difference

is detected among the higher bits, the current en[i] will be locked at ‘0’ ignoring the value

of dif [i]. A straightforward implementation is shown as Fig. 4.5(a), which uses fewest logic

gate but have largest delay. To balance the cell number and circuit delay, we start from

implementing a large tree-structured AND gate for en[0] = AND(dif [(N − 2) : 0]), and then

add 2-to-1 AND gates onto that large AND gate to obtain the rest en. Fig. 4.5(b) illustrates

the design for a 3-bit output ‘en’ stage, where the red AND gate is added to generate en[1].

• The output stage computes the final decision of LDD based on the en (Algorithm 4, line 14).

Besides, it uses en[0] to check if all the bits are 0s or 1s, as en[0] = 0 only when no difference

is detected.

By removing the process of ‘encoding the first 1’s location into a binary number’ introduced

by LOD, the LDD circuits utilize the AND-gate tree instead of the multiplexer (MUX) tree for LOD

(Fig. 4.2) to identify the first difference’s location. Since the tree sizes for LDD and LOD are similar,

better performance on LDD with simplified logic gates can be expected. Specific comparisons are

shown in Section 4.5.

4.3.2 Bit Shifter

As we mentioned above, a ‘bit shifter’ is typically implemented as a selection circuit, which

selects the corresponding output from all possibilities based on the input of ‘# of bits to be shifted’.

The conventional posit decoders with LZD/LOD utilize MUX for the shifter [76] as illustrated in

Fig. 4.6(a), where ‘o i[j] ’ indicates the corresponding output value for out[i] when left shifting j

bits. As the first difference will never occur at the first bit, the o i[1] is always unused (marked as

red) for all cases.
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(a) ‘dif’ stage

dif[2] dif[1] dif[0]

en[1] en[0]
(b) ‘en’ stage

!dif[1] dif[2]

LDD[1]

!dif[0] en[1]
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!dif[2]

LDD[2]

en[0]in[3]

allzero

!in[3]

allone
(c) Output stage

Figure 4.4: Example circuit for 4-bit LDD.

In contrast, with LDD, suppose the input size for LDD is N bits, we can simply express the

out[i] as:

out[i] = (o i[N ]LDD[0])...(o i[j]LDD[N − j])..., (4.2)

which can be implemented as a tree-structured NAND selection array. A 4-bit example is shown

in Fig. 4.6(b), where the LDD’s input size N = 5. With the ‘en’ stage from LDD module, only

LDD[N − j] will be ‘1’ and the rest bits of LDD will be ‘0’ when the first difference appears at

in[N − j]. With this characteristic, the NAND gate that takes LDD[N − j] as input will output

∼ oi[j], while all the rest of NAND gates in the input stage will output 1 since the rest bits of

LDD are ‘0’. Then with another stage of NAND operation, we will have out[i] = oi[j], according to

Eq. 4.2, which achieves the same selection function with a conventional ‘shifter’. In addition, since

LDD has the bit-to-bit flexibility, no input bit will be unused here.

Similar with LDD, the ‘shifter’ for LDD replaces the MUX tree of conventional shifter with

NAND tree by removing the redundancy introduced by the binary numbers, which further optimizes

the hardware cost of posit decoder.
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LDD[1]

dif[2] dif[1]dif[0]dif[3]
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(a) Fewest logic gates.

LDD[1]

dif[2] dif[1]dif[0]dif[3]

en[1] en[0]en[2]

dif[2] dif[1] dif[0]dif[3]

en[1] en[0]en[2]

(b) Balanced design. The red AND gate is added
to generate en[1].

Figure 4.5: 3-bit output ‘en’ stage.

4.4 Hardware Cost Estimation

In this section, we theoretically analyze the hardware cost and compare our LDD based

decoder with the conventional design. We evaluate the circuits with respect to two parameters, i.e.,

the total logic gates number (T ) and the longest-path logic gates number (L). Here, every 2-input

basic logic gate (like NAND, AND, XNOR...) is considered as one logic gate, which means that

each 2-to-1 MUX will be counted as 3 logic gates and 2 longest-path logic gates based on the CMOS

MUX design. Based on the definitions, T will have a positive correlation to the circuit’s area, and

L can be used as an estimation to the circuit’s delay.

Suppose the input size of the posit decoder is N = 2i, and we use T i and Li to represent
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(b) 4-bit shifter for LDD.

Figure 4.6: Example circuit for 4-bit shifter.

the T and L with 2i bits input.

For LOD circuit shown in Fig. 4.2, we know that T 1
LOD = 2 and T i+1

LOD = 2 × T i
LOD + 4,

from which we can get T i
LOD = 3× 2i − 4. It is obvious that Li

LOD = 2i− 1.

For LDD design shown in Algorithm 4 and Fig. 4.4, it is easy to tell there are 2i−1 gates in

‘dif’ stage and 2i gates in output stage. In the ‘en’ stage, our design aims at minimizing the delay,

by adopting an AND gate tree to obtain en[0] and then adding AND gates to get the rest ens based

on lines 8 and 9 of Algorithm 4. With mentioned design strategies, we have T i
LDD = (i+4)2i−1− 3,

Li
LDD = i+ 2.

Regarding the shifter circuits, the conventional shifter and LDD-based shifter are composed

by tree structured MUX gates and NAND gates, respectively, as illustrated in Fig. 4.6. Assume the

total size of the decoder’s output is 2i bits (the output size for the decoder may vary with different

ES, but it will always close to 2i), and we use CS and DS to represent the conventional LOD-

based shifter and LDD-based shifter, respectively. It is easy to get: T i
CS = 3(2i − 1)2i, Li

CS = 2i,

T i
DS = (2i+1 − 1)2i, Li

DS = i+ 1.

All the estimations are summarized in Table 4.2. To better demonstrate the advantage of our

design over, we calculate the total T i and Li for conventional LOD-based decoder and LDD-based

decoder as:

RT =
T i
LDD + T i

DS

T i
LOD + T i

CS

(4.3)
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and

RL =
Li
LDD + Li

DS

Li
LOD + Li

CS

(4.4)

Fig. 4.2 plots the estimation results for i = 2 to 7. It can be seen that the proposed LDD-

based decoder outperforms the current technology on both T and L for all tested data sizes. Besides,

we can observe that the LDD-based decoder performs even better with a larger input size.

Table 4.2: Hardware Cost Estimation

N = 2i LOD-Based Decoder LDD-Based Decoder

LOD Shifter LDD Shifter

T i 3 · 2i − 4 3(2i − 1)2i (i+4)2i−1−3 (2i+1 − 1)2i

Li 2i − 1 2i i + 2 i + 1

T i
Decoder T i

LOD + T i
CS T i

LDD + T i
DS

Li
Decoder Li

LOD + Li
CS Li

LDD + Li
DS

4.5 Experimental Results

Our experimental results are presented in this section. We implement the LDD-based posit

decoder and the LOD-based posit decoder proposed by recent studies [59, 57, 24, 119, 36] using

Verilog HDL. Each decoder has three specific circuit designs that are compatible with the 16-bit

number system with ES = 1, the 32-bit number system with ES = 3, and the 64-bit number system

with ES = 4, according to the posit inventor’s recommendation [47]. All the designs are then

mapped into a 32nm technology node using Synopsys Design Compiler. To make the comparison

fair, all designs are synthesized with exact same synthesis setting and optimization effort.

All of our Verilog codes can be found in the GitHub link: https://github.com/JSCooode/

Posit_Decoder_LDD. The modules for 16-bit and 64-bit LDD-based decoders are parameterized so

that they can be easily configured for any posit system with different number sizes.

We compare the hardware complexities of these decoders to show the advantages of the

proposed LDD-based decoder. For a fair comparison, all circuits are optimized with the same effort

level and are driven by identical inverters. Our experimental results are summarized in Table 4.3,

where ‘P-D Product’ stands for ‘power–delay product’, which represents the average energy con-

sumption under the same throughput. The result shows that the delay of the LDD-based decoder is

decreased by 47.6%, 60.1%, and 61.2% for 16-bit, 32-bit, and 64-bit designs, respectively, compared
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Table 4.3: Comparison: LDD vs. LOD [59, 57, 24, 119, 36]

16-Bit 32-Bit 64-Bit
LDD LOD LDD LOD LDD LOD

Delay (ns) 1.44 2.75 1.8 4.61 1.88 4.85
Power
(µW )

22.2 19.6 66.8 56.1 231.7 167.8

Area
(µm2)

369 489 1201 1461 4474 4733

P-D Prod. 1× 1.7× 3.8× 8.1× 13.6× 25.5×

to the LOD-based decoder. Meanwhile, the average energy consumption of the LDD-based decoder

is also about 50% smaller than the LOD-based decoder for 16-bit, 32-bit, and 64-bit posit numbers.

In addition, the LDD-based decoders also have smaller area consumption. For a better illustration,

we plot the changes of delay, area, and P-D product for both LDD and LOD under different bit sizes

in Fig. 4.7, from which we can see that LDD-based decoder outperforms LOD-based decoder for all

input sizes, and an increasing advantage of LDD-based decoder on P-D product when expanding the

input size can be observed in Fig. 4.7(c). This indicates that the LDD-based decoder will be even

more applicable for modern computer systems that work with bigger data size (like the upgrade

from 32-bit systems to 64-bit systems).

To evaluate the novelty of our design in small-data-size use cases like 8-bit Neural Net-

works [10], we also implement the LDD-based decoder for extremely small sized posit number (8-bit,

ES = 1) and compare it with state-of-the-art decoder as shown in Table 4.4, which shows that LDD

still outperforms in all the aspects.

Table 4.4: Comparison for Extremely Small Data Size

Delay (ns) Power (µW ) Area (µm2) P-D Prod.

LDD-
based

1.16 9.11 118 1×

LOD-
based

1.28 10.21 136 1.24×

4.6 Conclusion

In this paper, we presented an efficient circuit structure named leading difference detector

(LDD) and designed a novel decoder based on that to perform data extraction for posit numbers.
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By eliminating the redundant binary number encoding and decoding processes, our proposed LDD-

based posit decoder approximately halves the delay and energy consumption with a smaller hardware

cost for 16-bit, 32-bit, and 64-bit decoders compared to the conventional design. Future work will

be directed towards the design of an efficient posit arithmetic core based on the proposed LDD and

the corresponding evaluation of the overall performance on a wide range of applications.
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Figure 4.7: LDD-based decoder vs. LOD-based decoder.
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Chapter 5

Bayesian Optimization for Neural

Network

5.1 Motivation

Deep learning (DL) has been showing incredible successes in solving challenging problems

like decision making and data classification. However, it also has many inevitable weaknesses like

overfitting, which limits the generalization capabilities [110]. One popular explanation for this

weakness suggested by recent studies is that the DL model cannot handle the problem’s uncertainty,

which is ubiquitous in the real world [81, 41]. To this end, Bayesian statistics show great potential

to express and quantify the uncertainty implied under the deep learning processes.

Recent studies implement the Bayesian statistics into DL by replacing the single-value-

represented parameters of conventional neural networks with the parameters that are expressed by

probabilistic distributions. By doing so, Bayesian neural networks (BNN) become uncertainty-aware

and are able to train and analyze the uncertainty of the problems.

Suppose all trainable parameters for DNN are θ ∼ P (θ), Dx is the network input data and

Dy is the data label. The Bayesian update for BNN can then be expressed as:

P (θ|D) =
P (Dy, Dx|θ)P (θ)

P (Dy, Dx)
(5.1)

where P (θ) is the trainable parameters’ prior that stands for the prior knowledge of the
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parameters, P (θ|D) is the posterior of θ after the training process. As calculating P (Dy, Dx) is

practically impossible, researchers adopt P (θ|D) ∝ P (Dy, Dx|θ)P (θ) and apply normalization to

get the final results. In addition, to simplify the computational complexity to an acceptable level,

Variational inference [101] is widely studied and applied for Bayesian neural networks. However,

the current solutions are still relatively computationally expensive for some unavoidable steps even

with finite solution space (piecewise distributions), like generating samples from specific distribution

equations and calculating the Kullback–Leibler divergence for two distributions (DKL(P ||Q) =∑
P (x)log(P (x)

Q(x) )). Besides, it is hard to track whether the selection of prior fits the real distribution

of parameters is also queried, and a bad fitness can cause avoidless converging issues. The mentioned

problems affect the feasibility of the BNN in practical application.

In this chapter, we propose a method to generate samples and execute Bayesian update for

piecewise probability distributions with only simple arithmetic operations. In addition, we further

proposed a way in 5.3.2 to potentially approximate infinite distribution ranges with finite piecewise

settings.

5.2 Bayesian Update for Peicewise Probability Distributions

We are looking for a piecewise solution for the BNN. Suppose θi is a single trainable param-

eter that θi ∈ θ. We divide θi into N discrete values so that θi = {θi0..., θij ..., θi(N−1)} and θij ∈ θi.

Then we can assign specific probability to each value point that satisfies
∑

j P (θij) = 1. With this

property, we can then update the Equation 5.1 to:

P (θij |D) ∝ P (Dy, Dx|θ)P (θij), (5.2)

where P (θij) is the prior of the θij and P (Dy, Dx|θ) is the probability to receive a correct estimation

based on current P (θ) and training data.

Now, consider the scenario that for each iteration, the value for each θi will be sampled from

the discrete distribution P (θi), and then execute the regular forward and backward propagation with

the sampled value. In this case, there will be:

P (Dy, Dx|θ)P (θij) = P (Dy, Dx|θ, θij) ∝
∑

P (Dy, Dx|θ, θij Sampled), (5.3)
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For the P (Dy, Dx|θ), it equals to the softmax of the correct training label based on the

property of the neural network. Combining all equations mentioned above, we can get that in our

piecewise scenario:

P (θij |D) ∝
∑

softmax(Dy, Dx|θij Sampled), (5.4)

where softmax(Dy|θij Sampled) means the value of softmax on the correct training label when θij

gets sampled.

With all the transforms, the original Bayesian updating problem is simplified into a plain

arithmetic problem, which is solvable for modern computer systems.

The main advantages of adopting a piecewise solution for BNN are: (1) Computational

complexity is massively simplified as no distribution is involved. (2) The final result will not be

limited by the prior distribution family as piecewise solution can be trained into any distribution by

Bayesian update.

5.3 Bayesian Optimization Algorithm

5.3.1 Bayesian Optimization for Pre-trained Neural Network

We call our algorithm Bayesian optimization, which is appended after the normal neural

network training. The basic idea is that we map the value for each trainable parameter θi of

Neural network into (2N + 1) pieces (θi0, ..., θi(2N)), every piece will be representing one of the θi’s

neighbour value. Then, a piecewise prior probability distribution P (θi) will be assigned to all the

trainable parameters with
∑

j P (θij) = 1. During each iteration of the inference, the P (θij) will be

updated based on the equations we discussed in Section 5.2. The detailed process is shown below

in Algorithm 5. To avoid the occasionally missing sampling for θij (θij is not sampled between two

Bayesian updates), we add an offset to all the P (θij) during the Bayesian updating, as presented in

Algorithm 5, line 10, 12.

After some iterations, the P (θij) will be updated by the Bayesian optimization based on

the validation accuracy as shown in Fig. 5.1 (a).

We run our simulation test on a pre-trained ResNet-18 over the CIFAR-10 database. We

set N = 3, c = 20, T = 64, α = 1/16. As the primary results, we improved the validation accuracy

from 89.4% to 91.24%.
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Algorithm 5 Bayesian Optimization for Pre-trained Neural Network

1: Optimization Parameters: Piecewise number: N , piecewise coefficient: c, Bayesian update
period: T , Bayesian update offset: α.

2: For each trainable parameter θi:
3: for j = 0 : 2N do
4: θij = θi + (j −N) ∗ (θi/c)
5: P (θij) = 1/(2N + 1)
6: end for
7: counter = 1
8: for Dy, Dx from Data Loader do
9: if counter%T == 0 then

10: SMoffset = α ∗max[softmax sum(θi0), ..., softmax sum(θi2N )]
11: for j = 0 : 2N do
12: Update P (θij) with P (θij) ∝ softmax sum(θij) + SMoffset

13: softmax sum(θij) = 0
14: end for
15: end if
16: Sample value for θi from P (θi)
17: Perform forward propagation
18: for j = 0 : 2N do
19: if θij get sampled then
20: softmax sum(θij)+ = softmax(Dy)
21: end if
22: end for
23: counter+ = 1
24: end for

66



5.3.2 Bayesian Optimization for Pre-trained Neural Network with Back-

propagation

One major problem for basic Bayesian optimization is the limitation of the piecewise number.

To make the P (θij) cover a wider range with higher resolution for θi, we need to increase the piecewise

number. However, a large piecewise number means more parameters are required, which can cause

a considerable cost on memory access.

To further improve the capability of our Bayesian optimization algorithm to handle preciser

probability distributions, we combine it with the original backpropagation of the neural network as

shown in Algorithm 6, the extra steps over the basic Bayesian optimization are marked with red

color. Generally, it updates both the data value and the probability distribution of the sampled θij ,

while the basic Bayesian optimization only update the probability distribution, as illustrated in Fig.

5.1.

Algorithm 6 Bayesian Optimization for Pre-trained Neural Network with Backpropagation

1: Optimization Parameters: Piecewise number: N , piecewise coefficient: c, Bayesian update
period: T , Bayesian update offset: α.

2: For each trainable parameter θi:
3: for j = 0 : 2N do
4: θij = θi + (j −N) ∗ (θi/c)
5: P (θij) = 1/(2N + 1)
6: end for
7: counter = 1
8: for Dy, Dx from Data Loader do
9: if counter%T == 0 then

10: SMoffset = α ∗max[softmax sum(θi0), ..., softmax sum(θi2N )]
11: for j = 0 : 2N do
12: Update P (θij) with P (θij) ∝ softmax sum(θij) + SMoffset

13: softmax sum(θij) = 0
14: end for
15: end if
16: Sample value for θi from P (θi)
17: Perform forward propagation
18: Perform backpropagation
19: for j = 0 : 2N do
20: if θij get sampled then
21: softmax sum(θij)+ = softmax(Dy)
22: Update the value of θij with the backpropagation’s result
23: end if
24: end for
25: counter+ = 1
26: end for
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(a) Basic Bayesian Optimization.

(b) Bayesian Optimization with Backpropagation.

Figure 5.1: Bayesian Optimization without and with Backpropagation.

5.4 Hardware Acceleration

The circuit design for our sample generator for piecewise probability distribution is shown in

Fig. 5.2. It takes a uniformly distributed random number IN as random input, then by comparing

it with the boundary values, which are set based on the piecewise probability distribution, the

generator can select the corresponding sample for θi and send it to the output with two stages of

AND gates.

The key architecture of the sample generator is the comp (comparator) array. A four-sample

example is shown in Fig. 5.3. The comp array is composed of tree-structured comp units, where

port in takes the input value of the uniformly distributed random number, and std indicates the

boundary values defined by the piecewise probability distribution. The SE unit will compare in with

stds and then set one of the 1-bit outputs large or small to ‘1’ and another to ‘0’. Besides, when en

is ‘0’, both large and small will be set to ‘0’.

By connecting multiple comp unit blocks as a binary tree structure and making all ins share

the same random input, we can easily obtain a comp array circuit for arbitrary sample numbers. A

four-sample circuit design is demonstrated in Fig. 5.3, which has the function:
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Figure 5.2: Sample generator for piecewise probability distribution.

Sample# =



0, if in ∈ (0, b1]

1, if in ∈ [b1, b0)

2, if in ∈ [b0, b2)

3, if in ∈ [b2,+∞)

(5.5)

In this example, for an i-bit random input, to generate sample 1 with probability P1, we

only need to make the boundary values satisfy (b0− b1)/2i = P1.

To check the novelty of our design, we implement our design together with a basic design

that performs a similar logic to the GPU when generating samples based on specific probability

(check the conditions one by one). All the circuits are designed with Verilog HDL and mapped into

a 32nm technology node using Synopsys Design Compiler. The synthesized results are tabulated

in Table 5.1, where ‘P-D Product’ stands for ‘power–delay product,’ which represents the average

energy consumption under the same throughput. The results show that our design is 24.1% faster

than the basic design, and it only consumes about half the energy of the basic design under the

same throughput. With all the advantages, it only costs 19% more chip area compared to the basic

design as the cost.
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Figure 5.3: The logic circuit of comp array (4-sample example).

Table 5.1: Comparison for Sample Generator

Delay (ns) Power (µW ) Area (µm2) P-D Prod.

Our Design 1.32 154.4 5190 1×
Basic Design 1.74 238.7 4358 2.04×
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Chapter 6

Future Work

6.1 LDD-based Posit Arithmetic Core and Neuron

An arithmetic core is the hardware structure that can perform all arithmetic calculations

and return the result for a specific number system. With all the great properties of leading difference

detector (LDD) over the convention technology, it is necessary to design a complete arithmetic core

based on LDD. Leveraging the bit-wise indicator of LDD and the corresponding efficient selection

circuit, we believe further optimization is promising for LDD-based posit arithmetic core.

In addition, to implement posit numbers for neural network applications, a well-designed

posit neuron is crucial. Designing an LDD-based neuron that can execute multiply-accumulate

operations efficiently can be an option for the future work.

6.2 Bayesian Optimization for Neural Network

There is great potential to further study the Bayesian Optimization. For example, is there

any better way to tune the training parameters like Piecewise number: N , piecewise coefficient: c,

Bayesian update period: T , and Bayesian update offset: α to receive a better validation accuracy?

In addition, the current prior is simply set as uniform distribution, which means there is potential

to improve the performance with specific prior distributions.

Besides that, more mathematical analysis can be added to the problem, like the error intro-

duced by the Monte Carlo process. Is softmax on the correct label a suitable representation for the
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P (Dy, Dx|θ)?

On the hardware side, the current hardware accelerator only considers the sample generation

for the piecewise distribution. A larger accelerator that can take over more tasks during the Bayesian

optimization can be a good direction for the future work.
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