13,243 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Connectivity analysis in clustered wireless sensor networks powered by solar energy

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Emerging 5G communication paradigms, such as machine-type communication, have triggered an explosion in ad-hoc applications that require connectivity among the nodes of wireless networks. Ensuring a reliable network operation under fading conditions is not straightforward, as the transmission schemes and the network topology, i.e., uniform or clustered deployments, affect the performance and should be taken into account. Moreover, as the number of nodes increases, exploiting natural energy sources and wireless energy harvesting (WEH) could be the key to the elimination of maintenance costs while also boosting immensely the network lifetime. In this way, zero-energy wireless-powered sensor networks (WPSNs) could be achieved, if all components are powered by green sources. Hence, designing accurate mathematical models that capture the network behavior under these circumstances is necessary to provide a deeper comprehension of such networks. In this paper, we provide an analytical model for the connectivity in a large-scale zero-energy clustered WPSN under two common transmission schemes, namely, unicast and broadcast. The sensors are WEH-enabled, while the network components are solar-powered and employ a novel energy allocation algorithm. In our results, we evaluate the tradeoffs among the various scenarios via extensive simulations and identify the conditions that yield a fully connected zero-energy WPSN.Peer ReviewedPostprint (author's final draft
    • …
    corecore