11,212 research outputs found

    Predicting Health Impacts of the World Trade Center Disaster: 1. Halogenated hydrocarbons, symptom syndromes, secondary victimization, and the burdens of history

    Get PDF
    The recent attack on the World Trade Center, in addition to direct injury and psychological trauma, has exposed a vast population to dioxins, dibenzofurans, related endocrine disruptors, and a multitude of other physiologically active chemicals arising from the decomposition of the massive quantities of halogenated hydrocarbons and other plastics within the affected buildings. The impacts of these chemical species have been compounded by exposure to asbestos, fiberglass, crushed glass, concrete, plastic, and other irritating dusts. To address the manifold complexities of this incident we combine recent theoretical perspectives on immune, CNS, and sociocultural cognition with empirical studies on survivors of past large toxic fires, other community-scale chemical exposure incidents, and the aftereffects of war. Our analysis suggests the appearance of complex, but distinct and characteristic, spectra of synergistically linked social, psychosocial, psychological and physical symptoms among the 100,000 or so persons most directly affected by the WTC attack. The different 'eigenpatterns' should become increasingly comorbid as a function of exposure. The expected outcome greatly transcends a simple 'Post Traumatic Stress Disorder' model, and may resemble a particularly acute form of Gulf War Syndrome. We explore the role of external social factors in subsequent exacerbation of the syndrome -- secondary victimization -- and study the path-dependent influence of individual and community-level historical patterns of stress. We suggest that workplace and other organizations can act as ameliorating intermediaries. Those without acess to such buffering structures appear to face a particularly bleak future

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    On the Truly Noncooperative Game of Island Life II: Evolutionary Stable Economic Development Strategy in Brief

    Get PDF
    This paper offers a solution to 'The Problem of Sustainable Economic Development' on islands. This hypothesis offers a foundational, sub-game solution to The Island Survival Game, a counterintuitive, dominant economic development strategy for ‘islands’ (and relatively insular states). This discourse also tables conceptual building blocks, prerequisite analytical tools, and a guiding principle for The Earth Island Survival Game, a bounded delay supergame which models 'The Problem of Sustainable Economic Development' at the global level. We begin our exploration with an introduction to The Principle of Relative Insularity, a postulate which informs ESS for ‘island’ and ‘continental’ players alike. Next, we model ‘island’ economic development with two bio-geo-politico-economic models and respective strategies: The Mustique Co. Development Plan, and The Prince Edward Island Federal-Provincial Program for Social and Economic Advancement. These diametrically opposed strategies offer an extraordinary comparative study. One island serves as a highly descriptive model for 'The Problem of Sustainable Economic Development'; the other model informs ESS. 'The Earth Island Survival Game' serves as a remarkable learning tool, offering lessons which promote islander survival, resource holding power, cooperative behaviour, and independence by illuminating the illusive path toward sustainable economic development.Non-cooperative games, evolutionary game theory, relative insularity, islands, tragedy of the commons, sustainable economic development, theory of value, resource holding power, evolutionary stable strategy, natural selection, long distance dispersal

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), CovilhĂŁ, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)

    Seismology - Responsibilities and requirements of a growing science. Part 2 - problems and prospects

    Get PDF
    Theoretical and applied seismology, earthquake engineering, earth structure, industrial uses, facilities, and underground nuclear explosion detectio

    Simulation methods in the modelling of bioaffinity assays

    Get PDF
    Computational model-based simulation methods were developed for the modelling of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological substance in biological research, development and in routine clinical in vitro diagnostics. Bioaffinity assays are based on the high affinity and structural specificity between the binding biomolecules. The simulation methods developed are based on the mechanistic assay model, which relies on the chemical reaction kinetics and describes the forming of a bound component as a function of time from the initial binding interaction. The simulation methods were focused on studying the behaviour and the reliability of bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics provide, such as predicting assay results even before the binding reaction has reached equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay sample can be very significant, e.g. even the smallest elevation of a heart muscle marker reveals a cardiac injury. The simulation methods were used to identify critical error factors in rapid bioaffinity assays. A new kinetic calibration method was developed to calibrate a measurement system by kinetic measurement data utilizing only one standard concentration. A nodebased method was developed to model multi-component binding reactions, which have been a challenge to traditional numerical methods. The node-method was also used to model protein adsorption as an example of nonspecific binding of biomolecules. These methods have been compared with the experimental data from practice and can be utilized in in vitro diagnostics, drug discovery and in medical imaging.Siirretty Doriast
    • 

    corecore