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ABSTRACT

Pilvi J. Ylander
Simulation methods in the modelling of bioaffinity assays
Laboratory of Biophysics, Department of Biomedicine, University of Turku
Annales Universitatis Turkuensis D 1025, Turku, Finland, 2012

Computational model-based simulation methods were developed for the modelling of 
bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological 
substance in biological research, development and in routine clinical in vitro diagnostics. 
Bioaffinity assays are based on the high affinity and structural specificity between the 
binding biomolecules. The simulation methods developed are based on the mechanistic 
assay model, which relies on the chemical reaction kinetics and describes the forming 
of a bound component as a function of time from the initial binding interaction. The 
simulation methods were focused on studying the behaviour and the reliability of 
bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics 
provide, such as predicting assay results even before the binding reaction has reached 
equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay 
sample can be very significant, e.g. even the smallest elevation of a heart muscle marker 
reveals a cardiac injury. 

The simulation methods were used to identify critical error factors in rapid bioaffinity 
assays. A new kinetic calibration method was developed to calibrate a measurement 
system by kinetic measurement data utilizing only one standard concentration. A node-
based method was developed to model multi-component binding reactions, which have 
been a challenge to traditional numerical methods. The node-method was also used to 
model protein adsorption as an example of nonspecific binding of biomolecules. These 
methods have been compared with the experimental data from practice and can be 
utilized in in vitro diagnostics, drug discovery and in medical imaging.

Keywords: bioaffinity assay, binding reaction, reaction modelling, kinetics
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TIIVISTELMÄ

Pilvi J. Ylander
Simulaatiomenetelmiä bioaffiniteettimääritysten mallintamiseen
Biofysiikan laboratorio, Biolääketieteen laitos, Turun yliopisto
Annales Universitatis Turkuensis D 1025, Turku, Finland, 2012

Väitöskirjatyössä on kehitetty tietokoneavusteisia matemaattisia menetelmiä bioaffi-
niteettimäärityksiin, jotka perustuvat biomolekyylien spesifiseen sitoutumiseen, ra-
kenteeseen ja korkeaan affiniteettiin. Nämä määritysmenetelmät ovat laajasti käytös-
sä biologisten näytteiden kvantitatiivisissa mittauksissa, tutkimuksessa sekä in vitro 
–diagnostiikassa. Esimerkkinä  näistä on vasta-aineen ja antigeenin sitoutumisreaktio. 
Työssä kehitetyt simulaatiomenetelmät perustuvat mekanistiseen malliin, joka ottaa 
huomioon biomolekyylien kemiallisen sitoutumisreaktiokinetiikan ja jonka parametrit 
ovat helposti ymmärrettävissä, kuten aika, pitoisuus ja sitoutumis- ja erkaantumisvakiot. 
Simulaatiomallin avulla pystytään kuvaamaan minkä tahansa sitoutumisreaktioon osal-
listuvan komponentin konsentraatio ajan funktiona. 

Työssä keskityttiin reaktiomallinnuksen tarjoamiin mahdollisuuksiin, kuten tulosten en-
nustamiseen ja virhelähteiden arvioimiseen kineettisissä menetelmissä. Esimerkiksi hy-
vin pieni kohoama sydänlihasmerkkiainearvoissa on osoitus tulevasta sepelvaltimotauti-
kohtauksesta ja siksi havaitseminen on erityisen tärkeää. Työssä kehitettiin kinetiikkaan 
perustuva kalibraatiomenetelmä, jonka avulla voidaan suorittaa kalibraatiomääritys vain 
yhtä standardikonsentraatiota ja tämän kineettistä vastetta apuna käyttäen. Hyvin moni-
mutkaiset sitoutumisreaktiot ovat haastavia perinteisille ratkaisumenetelmille. Tämän 
vuoksi on kehitetty solmupohjainen simulaatiomenetelmä, jossa jokainen solmu edus-
taa erikseen yhtä sitoutumisreaktiota. Näistä solmuista rakennetaan verkko, joka ku-
vaa kaikkia sitoutumisreaktioita tietyllä ajan hetkellä. Solmumenetelmää on sovellettu 
proteiiniadsorption mallinnuksessa, joka perustuu epäspesifiseen sitoutumiseen. Nämä 
matemaattiset menetelmät on todennettu ja vastaavat laboratoriossa mitattuja tuloksia. 
Tutkimuksen tarkoitus on osoittaa kineettisten mittausten, mallinnuksen sekä simulaati-
oiden tarjoamia mahdollisuuksia tulevaisuudessa. Tutkimuksessa syntyneitä matemaat-
tisia menetelmiä voidaan soveltaa yleisesti in vitro diagnostiikan mittauksiin, lääketutki-
mukseen sekä biolääketieteen kuvantamiseen.

Avainsanat: bioaffiniteettimääritys, sitoutumisreaktio, reaktiomallinnus, kinetiikka
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ABBREVIATIONS

Ab	 antibody

Ab’	 labelled antibody 

Ag	 antigen

BLI	 biolayer interferometry

BRET	 bioluminescence resonance energy transfer

BSA	 bovine serum albumin

CME	 chemical master equation	

CRP	 C-reactive protein

cTnI	 cardiac troponin I

DNA	 deoxyribonucleic acid

EIA	 enzyme immunoassay

ELISA 		 enzyme-linked immunosorbent assay

EU		 European Union

Fab	 antibody binding fragment

Fc	 (antibody) crystallizable region fragment

FCS		 fluorescence correlation spectroscopy

FDA		 U.S. Food and Drug Administration

FP	 fluorescence polarization

FRET	 fluorescence resonance energy transfer

	 förster resonance energy transfer

Fv	 (antibody) variable fragment

GNLS	 generalized nonlinear least square

GPL	 general public licence

HTS	 	high throughput screening

hTSH	 human thyroid stimulating hormone

IgG	 immunoglobulin G (also A, D, E, M)

in vitro	 Latin for ‘in glass’, in a test tube, outside the living body or in artificial 
environment
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in vivo	 Latin for ‘within the living’

IRMA	 immunoradiometric assay

KRYPTOR TM 	time-resolved energy transfer assay concept

LabVIEW TM 	 graphical programming environment (by National Instruments NI)

MM	 Michaelis-Menten

MSE	 mean square of error

NSB	 nonspecific binding

ODE	 ordinary differential equation

ODESOLVE	 ordinary differential solver library package in R

PCFIA	 particle concentration fluorescence immunoassay

PDE	 partial differential equation

PDF	 probability density function

POC	 point of care

R	 R-programming language and software environment, GPL-software 

RIA	 radioimmunoassay

RNA	 ribonucleic acid

SPA	 scintillation proximity assay

SPR	 surface plasmon resonance

SSA	 stochastic simulation algorithm

SSR	 sum square of residuals

TPE	 two-photon excitation

TPX	 technology that utilises two photon excitation of fluorescence

TRACE	 time-resolved amplified cryptate emission

TST	 transition state theory

QCM(-D)		 quartz crystal microbalance (with dissipation)

4PL	 	four-parameter logistic
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1	 Introduction 

Bioaffinity assays are widely used in biology, biomedicine and in related research fields 
to recognize qualitatively or to quantify the presence of a biological substance in a sample 
volume. A bioaffinity assay is based on the binding interaction between biomolecules, 
which have a high affinity and structural complementarity e.g. antibody and antigen or 
ligand and receptor. The behaviour of the binding reaction can be studied by binding 
reaction kinetics. During recent decades, the development of sensitive separation free 
bioaffinity assays and analytical detection techniques together with computerization have 
improved system robustness, sensitivity and stability. Several technological advantages 
e.g. rapid assays, simplified protocols providing high throughput screening (HTS) and 
real-time measurement systems have been established to provide quantitative biological 
measurement data with quality and speed.

Computer-assisted mathematical methods have been used to model the behaviour of 
biological systems in many related fields in biology. The benefits the modelling methods 
provide are clear: it is possible to simulate what-if scenarios, to predict results without 
performing the actual measurements and to estimate the parameter dependency by 
sensitivity analysis. Thus, simulation methods save time, costs and labour. Molecular 
binding reactions have been widely studied theoretically on the single molecule level, 
but there still remains the high potential of modelling and simulation methods that could 
be utilized in experimental measurements and data analysis of bioaffinity assays by data 
processing. 

In in vitro diagnostics the bioaffinity assays are used to quantify protein concentrations 
such as C-reactive protein (CRP), thyroid stimulating hormone (TSH) and cardiac 
troponin (cTnI) protein specific to heart muscle in serological samples. Reaching for a 
quantitative result from clinical tests may take time, though the benefits of rapid assay 
response are obvious, e.g. the elevations in specific cardiac muscle proteins can detect 
minor heart muscle injury and predict a major heart attack. Thus, research on the binding 
reaction kinetics of biomolecules creates the background for inventions concerning 
accurate and rapid diagnosis in clinical health care and also in drug discovery by speeding 
up the research of targeted binders and their binding kinetics through modelling methods. 

This thesis highlights the possibilities that the modelling methods and simulation tools 
provide for the research and evaluation of binding reaction kinetic data. The kinetic 
binding reaction models presented are based on the mechanistic assay model, which 
obeys the mass action law and provides understandable parameters for simulations, 
such as time, concentrations and kinetic rates. Simulation methods are used to estimate 
the errors in rapid response immunoassays due to inaccurate timing and antibody 
concentrations. A calibration method, which requires only one measurement point in 
order to calibrate a bioaffinity assay measurement system, is presented. A new method 
was developed to model complex multi-component binding reactions by decomposition 
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of binding reactions in nodes. The node-method was used to model the complex binding 
behaviour of a multi-component assay based on adsorption as an example of the 
nonspecific binding of biomolecules. This work concentrates mainly on immunoassays 
as an example of bioaffinity assays. Experimental data utilizing label-based two-photon 
excitation fluorescence detection technology (TPX-technology) from practice was used 
to confirm our models.
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2	 Review of literature

2.1	 Mathematical modelling in biomedicine and biology

A model is an imitation of reality and a mathematical model is a particular form of 
representation (Hangos and Cameron, 2001). Mathematical modelling is used to 
gain a deeper understanding of the system’s behaviour and help in decision-making, 
optimization and predicting. Simulations based on validated models point out how 
sensitive the dynamics of the system can be to changes in parameters, which is often 
difficult and usually important in sensitivity analysis (Murray, 2002). Mathematical 
modelling has been on the rise and enhanced by computerization during recent decades. 
Model-based computational methods are important in various ways as they provide 
powerful computing tools that contribute to all fields of science. Simulations can be 
easily carried out instead of many time-consuming expensive experiments, including 
facility, material and labour costs. They also provide the possibility of studying cases 
which may be very difficult, dangerous or even impossible to carry out by experimental 
methods. Thus, the benefits of mathematical modelling are clear and undisputed.

Mathematical modelling is widely utilized in the biology and biomedicine research fields 
in order to describe the structure and the function of a biological system. Biological 
systems are often more difficult to model in comparison to systems in mechanical or 
electronic engineering. This is due to the complexity of the biological mechanisms on 
several scales, sensitivity to time-variant environmental conditions (e.g. light, humidity 
and pH) and unknown factors causing errors, greater in magnitude than instrumental 
errors (Zheng and Sriram, 2010). Though the problems in physics, chemistry and 
engineering sciences sound very different, the algorithms and procedures are suitable 
for solving the problems in biomedicine and biology. 

Mathematical modelling in medicine is applied to various scales of size and time from 
the nanometre to the metre scale and from the nanosecond to the month and year scale, 
depending upon the system being modelled, see Figure 1 (Sloot and Hoekstra, 2009; 
Southern et al., 2008). On the large scale the modelling methods in medicine comprise 
population models (e.g. epidemiology models for infectious disease in a population 
(Anderson and May, 1979; Garnett, 2002)), models for a function of a single organ such 
as heart and brain (Šterk and Trobek, 2005; Markham, 2006) and for a complex system 
such respiratory and circulatory systems (Aittokallio et al., 2006; Conlon et al., 2006). 
On a small scale, the modelling methods are used to describe the behavior of single cells, 
proteins and viruses in inter- and intracellular systems in in vivo and tissue samples in 
vitro e.g. in diagnosing and observing the progression of a disease (Louzoun, 2007; Cohn 
and Mata, 2007; Siepmann and Siepmann, 2008). In the modelling of gene expression, 
the research on a genetic disease can be narrowed down to a certain gene (Peltonen et al., 
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2006; Rios et al., 2010). In drug discovery, the modelling of structural aspects together 
with interaction behaviour could shorten the preclinical phase of research by providing 
a reliable tool to make predictions about the effects of drugs (Bersani et al., 2008). 
Thus, mathematical methods and simulations provide advantageous tools in biomedicine 
and biology research. However, a mathematical model must be constructed carefully in 
creating a theoretical basis that meshes with possible data from experiments, hand in 
hand, in order to produce reliable predictions. 

2.1.1	 Modelling and simulation processes

It is important that the model is correctly posed and represented properly in order to 
operate as a reliable simulation tool. A simplified modelling process is illustrated in 
Figure 2. It includes four main steps: the formulation of the problem in a mathematical 
manner (construction of a model), the solution created by the model, its interpretation 
and its validation (Hangos and Cameron, 2001). The key question in formulating the 
problem is achieving an adequate level of detail, the recognition of entities, parameters, 
mechanisms and theories behind the problem and boundary conditions (Crampin et 
al., 2004). The solution created by the model is interpreted in a non-mathematical 
manner for comparison with the data from the real world. The modelling process can 
be considered finished in the validation process, when the criteria for the model are 
fulfilled. Thus, a validated theoretical model with prior knowledge of the system’s 
behaviour from experimental data provides a tool for simulations. The reliability of 
a simulation prediction depends on the accuracy of the model, precise quantitative 
details of boundary conditions and on the observed range of experimental data for 
comparison. Modelling processes in biomedicine and biology may also require a 
mandatory quality assurance and software validation step in order to meet the EU- and 
FDA- regulations and other standards prior to the implementation in practice e.g. in 
medical care. 

Figure 1. Mathematical modelling in medicine (Modified after: Sloot and Hoekstra, 2009; 
Southern J et al., 2008).
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2.1.2	 Modelling approaches in mathematical modelling

There are different modelling approaches available. The characteristics of, first the 
descriptive and mechanistic and then, second, the deterministic and stochastic approaches 
are introduced and compared. It is important to choose the appropriate approach for 
building the model concerning the purpose. 

Descriptive and mechanistic models
Models can be divided into descriptive and mechanistic based on their level of 
understanding of the system mechanisms. The descriptive model depicts the system 
studied, but does not explain the system’s behaviour. It represents the results of an 
experiment or an observation and characterise what the system does, but is a hypothesis 
of the system. A descriptive model can be considered to be a ‘black box’ model, in which 
the variables and their relations have little or no physical meaning at all. Thus, this model 
may be unsuitable for extrapolating and predicting results outside the validated observed 
range. However, descriptive models are widely used when the mechanism underlying 
the system is poorly understood. 

A mechanistic model is constructed explicitly by considering the first principles of the 
system and the identifiable variables (e.g. time, mass and volume). Therefore, a deep 
insight into the fundamental behaviour of the system is required. The mechanistic model 
has a clear cause-effect relationship, and a pure mechanistic model can be considered 
as a ‘white box’ model. It is dynamic and describes how the system behaves in different 
cases and it can be used to predict results from experiments. Thus, mechanistic models 
are used to increase understanding of the system’s behaviour, extrapolating and studying 

Figure 2. A simplified modelling process with comparison to experimental data (Modified after: 
Hangos and Cameron, 2001).



16 | Review of the Literature	

cases, which are hard to perform in real life. In most cases, a purely descriptive or a 
purely mechanical model does not exist, but a combination of these two, hence a ‘grey 
box’ model can be found (Tan and Li, 2002).

Deterministic and stochastic (probabilistic) models
Simulation methods can be divided into the categories deterministic and stochastic. 
Deterministic models are constructed and solved by analytical and numerical methods 
based on classical mathematical analysis. Analytical methods provide solutions 
for closed-form problems described by analytical equations without any degree of 
uncertainty. However, when the complexity of the mathematical problem increases, the 
numerical methods have to be developed to overcome technical problems, e.g. stiffness 
in solving ordinary differential equations (ODEs) (Érdi and Tóth, 1989). In deterministic 
models, the state of the calculation process is determined by the former state of the 
process, and the response is always the same for an identical set of initial parameters and 
conditions. Thus, deterministic models can predict, and they are reproducible. 

In stochastic modelling approach, the process is ruled by probabilistic equations based 
on fluctuations, noise or random event factors, which are stochastic by nature. Stochastic 
approaches are used in everyday life, e.g. in weather forecasting, insurance mathematics 
and risk management, and in theoretical studies of discrete random event processes, e.g. 
collisions between single molecules and particle events in detectors at the molecular 
level. Arguments for stochastic models for chemical reactions involve the consideration 
of the discrete or random character of the parameter, the large number of coupled degrees 
of freedom and appropriateness for describing small systems and instability (Turner 
et al., 2004; Raj and van Oudenaarden, 2008). Stochastic methods are widely used in 
sensitivity analysis and to analyse methods and models (Thakur et al., 1980; Gottschalk 
and Dunn, 2005).

In stochastic modelling, single simulations for an identical set of initial conditions 
differentiate from each other. This is why stochastic models are not used to yield a unique 
quantity but they are used instead to produce a collection of responses representing a 
probability function. A great number of simulations, hundreds or even thousands, are 
required in order to yield a reliable probability distribution of events in the model space. 
The most famous stochastic algorithm developed is the Monte Carlo method, which 
produces a collection of simulations to mimic the output range of experiments by using 
randomizing in sampling and then providing a probabilistic distribution (Metropolis and 
Ulam, 1949; Reiter, 2008). Therefore, stochastic modelling requires a reliable random 
number generator and enough processing time. The stochastic process which does not 
concern the previous state or how it has proceeded to the present state is defined as a 
Markov process (e.g. Brownian motion).

Notably, in many cases it is possible to describe the same system by both deterministic 
and stochastic models; a historical example of this is the predator-prey population 
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model (Abundo, 1991). Sometimes a hybrid model can be constructed by combining 
deterministic and stochastic parts. A hybrid model for Brownian dynamics has a 
deterministic part for modelling the motion equations and stochastic part for the random 
process of particle collisions.

2.2	 Bioaffinity assays

Bioaffinity assays are based on the binding reactions between binding partners, which have 
propensity to bind specifically with complementary structures in favourable conditions. 
The strength of the binding is defined by the affinity. Bioaffinity assay technologies are 
widely used in studies of biological phenomenon in environmental and food chemistry, 
in health science and medical care (Price and Newman, 1991) Their methodology is to 
provide a tool to detect the presence (qualitative analysis) or the quantity of exact amount 
of specific biochemical substance in a test sample (quantitative analysis). Therefore 
bioaffinity assays play an important role in science. The vast majority of bioaffinity 
assays in biomedicine are immunoassays, cell-based assays or DNA-probe assays. The 
last two are introduced only briefly here and immunoassays are introduced in depth as 
an example of a bioaffinity assay. 

The cell-based assays play a vital role in the pharmaceutical industry by providing 
information about the functional impacts and activity of a compound in cellular 
environment e.g. in drug screening. Cell-based bioaffinity assays can be used to screen 
and study e.g. the cell surface, to recognize proteins and viruses and to probe molecular 
interactions on cell surfaces, cell staining and to detect cellular responses due to 
inter- /intracellular activities. (Day and Schaufele, 2005; Gschwind et al., 2004; Ariel 
Michelman-Ribeiro et al., 2009) Other than for bioaffinity cell assays are used to study 
of cytotoxicity (how toxic a chemical is to cells), viability (to determine the ratio of dead 
or living cells based on the total amount of cells or the growth of cells) and apoptosis 
(programmed cell death).

The DNA-probe assay is based on identifying a predetermined complementary sequence 
of nucleic acids by a labelled DNA-probe. The benefit of the DNA-probe assay is that it 
can identify genetic disorders, oncogenes, microbes and viruses. The DNA-probe assays 
can be used when conventional microbiological methods are not appropriate.

2.2.1	 Binding theory of bioaffinity assays

Binding reactions in bioaffinity assays are equilibrium processes and are governed by 
the binding strength. A bioaffinity assay constitutes of the binding partners, the binder 
(e.g. an antibody) and the ligand molecule (e.g. an antigen or an analyte). The binding 
partners taking part in any binding reaction in assay are referred to later as binding 
components. The binding components are introduced from the immunoassay binding 
reaction point of view, and a short overview of binding theory is given in this chapter. 
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The principles of binding reactions are explained further in, for instance, Lehninger 
Principles of Biochemistry (Nelson DL and Cox MM, 2004).

Antibodies
Antibodies (immunoglobulins, Ig) are proteins produced by plasma cells (B-lymphocytes) 
in response to foreign targets (e.g. molecules, viruses and bacteria) in bodily fluids. 
They constitute the natural defence system in a human body, the immune system. There 
are five (5) types (classes) of immunoglobulins for mammalians: IgA, IgD, IgG, IgE 
and IgM. Immunoglobulin G (IgG) accounts for 70-75% of the Ig pool. The classes of 
immunoglobulins have different biological properties, functional locations and ability 
to deal with various antigens. The immunoglobulin classes are divided by the heavy 
chain type present and the number of Y-shaped Ig-units, which are composed of four 
polypeptide chains: two large ones, called heavy chains, and two light chains, linked by 
noncovalent and disulfide bonds. The complex structure of monomer antibody (e.g. IgG) 
is divided into two regions: antigen binding fragments Fab(s) and crystallizable region 
fragment Fc; see Figure 3. The antigen binding fragments are identically composed of 
variable (Fv) and constant domains of heavy and light chains. The antigen binding site 
has a complementary structure to the antigenic determinant; hence, it can recognize the 
antigen. These recognition parts of the antibody (i.e. paratopes) locate at the end of the 
Fab-arms. The Fv region is hypervariable, which provides a huge diversity of antibodies 
based on recombination. The immune system can therefore recognize a variety of 
antigens. The binding may also require conformational changes in the binding site for 
optimal induced fit. Thus, the interaction between the antibody and antigen is highly 
specific. 

The functional purpose of the Fc region is to ensure an appropriate immune response for 
the specific antigen (Heymann, 1996), and the Fc region also binds to immune cell Fc 

Figure 3. The structure of an antibody. (Modified after Wild, 1994).
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receptors in vivo and in vitro. In in vitro diagnostics, the Fc-region is used to anchor the 
antibody to a carrier, in other words a plate or polystyrene microparticle in immunoassay 
processes and direct conjugated antibodies can be labelled in the Fc region.

Physicochemical interactions between antigen and antibody
Like all biological interactions, antigen and antibody interactions are stereochemical. 
They require complementary structures in order to recognize, match and interact. In 
the binding reaction, the active site structures of the binding components may also 
undergo conformational changes and result in an induced fit. The binding specificity 
of an antibody is determined by the amino acid residues in the variable domains of 
its heavy and light chains. The chemical complementarity between the antigen and its 
specific binding site is defined in terms of the shape and the location of the charged, 
nonpolar, and hydrogen-bonding groups involved in binding interaction (Nelson and 
Cox, 2004). The major primary interaction is ionic bonding between the oppositely- 
charged antibody binding site and the antigen (Price and Newman, 1991). The secondary 
interaction by hydrogen bonds may be formed between hydrophilic groups, though in 
aqueous media the water competes with hydrogen bonding. Long-range van der Waals 
interactions, which are due to dipole polarization, may play a significant role in drawing 
the binding partners closer in primary and secondary bonding. Hydrophobic interactions 
are caused by the effects of hydrogen bonding and van der Waals (Price and Newman, 
1991). Hydrophobic interactions occur when apolar or partly apolar molecules are 
surrounded by water and the water molecules reorganize. This is a result of the free 
energy of cohesion of water molecules when the expulsion of interstitial water forces 
the binding molecules closer creating a stronger bond caused by van der Waals forces 
(van Oss, 1995). Thus, the binding interaction is composed of a multiple combination of 
weak interactions, which are collectively strong; see Table 1 for effective distances of 
interactions. On a microscopic, i.e. molecular level, the binding interaction is proposed to 
rely on molecular reaction dynamics, which considers the discrete state space of energy 
levels and the probability distribution that the particle is present at a specific location 
at a specific time. The reaction rate constants (introduced later) for single molecules 
have been commonly studied by the time- and temperature-dependent Fokker-Planck 
equation approach or by the temperature independent approach by Kramers (Levine, 
2005; Pollak and Talkner, 2005). According to these approaches, the reactant particle 
is considered to be a damped oscillator driven by a random force and assumes that the 
reaction occurs at the time the peak energy between initial reactants and product states is 
reached (Pollak and Talkner, 2005). However, the statistical behaviour of a large number 
of single molecules deduces the behaviour at the macroscopic level. 

The energetics of the binding interaction at the macroscopic level is characterized 
by reaction thermodynamics. The binding interactions, like all reactions, obeys the 
law of Gibbs free energy change ΔG (1). The standard free energy change ΔGo  (2), 
characteristic to each reaction, defines the thermodynamic equilibrium constant, which 
shows the tendency of the reaction as the ratio of concentrations of products and initial 
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reagents. The transition state (from reagents to products or vice versa) determines the 
amount of activation energy (ΔG+) required to overcome the potential barrier in order to 
react, bind or break, respectively. The chemical reaction kinetics of binding interaction 
is defined by this activation energy according to law of Arrhenius, which represents the 
rate of the reaction k (3).

	 STHG ∆−∆=∆ 	 (1)

	 a
o KRTG ln−=∆ 	 (2)

	 =k  A )/exp( RTEa 	 (3)

In equations (1), (2) and (3), the symbols are used as followed: enthalpy H, temperature 
T entropy S, molar gas constant R , equilibrium association constant Ka, reaction rate k, 
activation energy Ea and A for steric factor of the reaction. 

The binding reaction is temperature dependent. The temperature dependence of 
bimolecular binding interactions for equilibrium and transition state thermodynamics 
were studied and reviewed by Weiland and Molinoff (Weiland and Molinoff, 1981).

The binding reaction between an antibody (Ab) and an antigen (Ag) is described by the 
association rate constant kon, which defines the reaction velocity for this second-order 
association reaction (kon [Ab][Ag]) and the dissociation rate constant koff for the reverse 
reaction (4):

	
AgAbAbAg

kon

koff

→
 ←+ 	 (4)

The measure of binding strength in a single bond between the antibody binding site 
and the antigen determinant is called affinity: the more complementary interactions the 
stronger affinity. Thermodynamically, the strength of the binding interaction between the 
antibody (Ab) and the antigen (Ag) can be determined by the binding affinity association 
constant Ka or by the dissociation constant Kd, the reciprocal of Ka. The binding strength 
according to the association constant is defined by the ratio of concentrations of the 
binding components Ab and Ag and the bound complex AbAg at the equilibrium, see 
(5):

	
[ ]
[ ][ ] off

on

d
a k

k
KAgAb
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Table 1. The effective distances of different bonding interactions (Price and Newman, 1991).

Bonding/ Interaction Effective distance up to / Å
Ionic 100

Van der Waals 100 - 1000
Hydrogen 1.5 - 5

Hydrophobic short
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In bioaffinity assays, the affinity of the antibody for its antigen is the most important 
parameter determining the assay performance for monovalent binding interactions. 
However, when a component with a bivalent binding site binds to a component with a 
multivalent structure, the ‘true affinity’ cannot be characterized in such a simple way. 
A more informative measure for binding is avidity, which is also known as ‘functional 
affinity’ or ‘apparent affinity’ and is a measure of antibody-antigen binding strength, 
considering the affinity and the number of antigen binding sites (Hemmilä, 1991; Ong 
and Mattes, 1993). These terms were introduced to describe more complex interactions, 
to approximate the true situation and to provide a basis to compare different antibodies, 
e.g. monoclonal antibodies, or to improve the performance of traditional assays (Xie et 
al., 2005). However, the concept of functional affinity has been criticized and discussed 
owing to validity reasons by Ong and Mattes (Ong and Mattes, 1993; Mattes, 1997; 
Mattes, 2005). They point out that the binding interactions cannot be described in terms 
of functional affinity, serving only to obscure the true interactions and that enhanced 
model alternative will be useful in the further development of improved monoclonal 
antibodies.

Structural modelling
The function of a binding component depends on its three-dimensional structure and 
conformation. Knowledge of molecular structures at high resolution is important. The 
structural information can be used first identifying epitopes and paratopes and then in 
modifying the antigen and antibody binding affinity. It is possible to detect very small 
differences in binding kinetics due to changes in remote residues from the paratope in 
the structure using high precision bioaffinity measurements (Van Regenmortel et al., 
1998).

The structural aspects can be determined experimentally by X-ray crystallography 
and NMR- methods (Nuclear magnetic resonance). X-ray crystallography is the most 
important technique for studying protein structures reaching high resolutions (1-2 Å). 
X-ray crystallography requires samples in solid phase crystal -form with a rigid, precisely 
ordered and repeating structure. However, X-ray powder diffraction, which does not 
require a solid crystal, has also been used to solve protein structures (van der Kamp et 
al., 2008). The multidimensional NMR- method is suitable for smaller proteins (50 – 
100) kDa. It provides the possibility of determining the structure of proteins, localizing 
the binding site and studying molecular recognition, low affinity interactions and activity 
even in liquid phase. The NMR- method builds up a list of distance constraints, by 
which the three-dimensional structure can be determined. Today, additional structural 
studies (protein structure prediction, protein docking) can be performed to some extent 
by computational biological approaches e.g. molecular mechanics (MM), molecular 
dynamics (MD) and software packages for molecular modelling (e.g. Rosetta), together 
with databank libraries, e.g. Protein Data Bank (PDB) (Tramontano, 2006; Kaufmall et 
al., 2010).
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The inexpensive production of recombinant antibodies in large quantities is a major 
advantage for the drug discovery research on recombinant antibodies. The identification 
of efficacious antibody drugs against viruses has benefitted from the development of 
libraries for synthetic recombinant antibodies. As a result, there has been more rapid 
manufacturing of new therapeutic antibodies and designing of drugs (Holt et al., 2000; 
Schofield et al., 2007; Bregenholt et al., 2006).

2.2.2	 Bioaffinity assay formats

Bioaffinity assays can be divided into qualitative (recognition) and quantitative 
competitive and non-competitive assays. The latter is also known as a sandwich 
assay or immunometric assay, in the case of non-competitive immunoassay. The first 
sensitive immunoassay detection technique, radioimmunoassay (RIA) was introduced 
to measure the concentration of antigens in 1960 by Yalow and Berson, and by Ekins, 
independently (Yalow and Berson, 1960; Ekins, 1960). Yalow received the Nobel Prize 
in Physiology and Medicine for the development of radioimmunoassay (competitive) 
for peptide hormones, in 1977. The first immunometric assay using immunoradiometric 
assay (IRMA) technology for detecting allergen antibodies was developed by Wide et 
al. (Wide et al., 1967). Radioactive label techniques have been partially replaced by 
non-isotopic techniques, such as enzyme and molecular labelling (Jolley et al., 1984). 
Enzyme immunoassay (EIA) and Enzyme-linked immunosorbent assay (ELISA) were 
developed independently by two research groups (Schuurs and van Weemen, 1971; 
Perlmann and Engvall, 1972; van Weemen, 2005). In EIA/ELISA, the enzyme works 
as a reporter label, converting a substrate into a detectable signal, e.g. a colour change. 
Luminescence-based labelling and different sensor techniques were developed as non-
isotopic alternatives to radioimmunoassay (RIAs), though in early years their sensitivity 
and cost were often comparable (van Emon J, 2007). 

Competitive (reagent limited) assay
In a competitive binding assay the presence or the concentration of a substance is measured 
by competitive binding of the free and the labelled molecule to the target immobilized 
molecule. The competitive assay format is presented in Figure 4, where antibodies are 

Figure 4. Competitive assay on a solid phase surface.
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immobilized on the surface of a solid support (e.g. tube, bottom of a microtiter well 
or microparticle), depending on the measurement technique. In competitive assays, the 
number of binding sites is limited in order to provide the conditions for competition. In 
a low sample concentration, the signal induced is high, since the labelled molecules bind 
to the immobilized binding pair. In a high concentration, the sample molecules block the 
binding sites on solid surface and the signal will be low. Competitive assays are used to 
measure small molecules (< 10 kDa). A dose-response curve for a competitive assay is 
presented in Figure 6A.

Non-competitive (reagent excess) assay
In a non-competitive assay, a sample molecule must have (at least) two epitopes, one for 
binding to the immobilized molecule on the solid surface and another for binding to the 
free labelled molecule. Therefore, a non-competitive assay is suitable for large sample 
molecules. In Figure 5, the free analyte binds specifically to the immobilized antibody 
and to the labelled antibody with the other epitope, and a three-component complex is 
formed. The measurement signal obtained from a non-competitive assay is proportional 
to the sample concentration. An excess of reagents are used in non-competitive assays 
in order to capture all the analytes in the sample. Non-competitive assays are considered 
inherently more sensitive than competitive assays, because they label the bound target 
(Ekins and Chu, 1991). Therefore, the immunometric assay method is preferred whenever 
possible.

In the two-site immunometric single step assays, a relevant working range is important 
due to the consequence of excess sample molecule concentration. When the sample 
molecule concentration exceeds the antibody concentration, the assay has passed 
over the dose-response saturation point, and the concentration of the three-component 
complex will begin to decrease due to the excess analytes binding to both antibodies, 
thus preventing the signal -producing three-component complex from forming. This 

Figure 5. Immunometric assay on a solid surface.
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phenomenon is called the ‘hook effect’ (Rodbard et al., 1978). A dose-response curve 
for a sandwich assay is presented in Figure 6B.

2.2.3	 Separation and single-step bioaffinity assays

The first bioaffinity assays were separation (heterogeneous) assays, which required 
several incubation and washing steps to enhance the assay performance: specificity, 
sensitivity and signal-to-noise ratio. An assay procedure for a conventional separation 
immunometric assay is described in Table 2. The drawbacks of separation assays are 
the time consuming labwork required due to the pipetting and washing steps, chemical 
waste and restrictions on volume minimization, due to the washing steps. Single-step 
(homogeneous) assays are established to provide simplified mix-and-measure assay 
protocols. an example of such a single-step assay protocol for immunometric assay is 
described in Table 2. These single-step assays require a sensitive detection technique in 
order to detect the signal in the presence of other binding components. They also can be 
performed in smaller (microliter) volumes and they are more applicable to automated 
high throughput screening (HTS) than separation assays. Single-step bioaffinity assays 
can be performed in both a heterogeneous environment, with a solid surface phase for 
immobilizing a binding component, and in a homogeneous environment, in which the 
reactions and detection are performed in liquid phase. Homogeneous environments are 
provided by the use of small particles as solid support carriers on nano or micro scale. 
However, single-step assays require a measurement instrumentation that is able to detect 
the signal from bound in the presence of other binding components without a separation 
step.

The binding interactions in a three-component non-competitive assay between an 
immobilized antibody (Ab), a labelled antibody (Ab’) and the sample antigen (Ag) in a 
single-step assay format can be described by the law of mass conservation. The reactions 
can be described by a set of equations (6); where binding reactions are taking place in 
solid phase (independent of the heterogeneous and homogeneous environment), this is 
marked with (s) and reactions present in liquid phase with (l):

Figure 6. Dose-response curves for A) a competitive assay and B) a sandwich assay, representing 
also the ‘hook effect’, the bend in the curve being due to the concentration of antigen exceeding 
the antibody concentrations.
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In the set of equations (6), k2n–1 stands for the association and k2n for the dissociation 
rate constants, respectively. It is notable that the first reaction in (6) would represent the 
first incubation step and that the last reaction would represent the second incubation in 
a separation assay. An assay scheme for a three-component binding assay can be seen 
in Figure 7.

Table 2. Procedures for separation and single step non-competitive (immunometric) assays

Figure 7. Assay scheme for a three-component binding assay between an immobilized antibody 
(Ab), a labelled antibody (Ab’) and the sample antigen (Ag) in a single-step assay format.
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2.2.4	 Kinetic behaviour of bioaffinity assays

The binding interaction of binding components forming bound complexes seeks an 
equilibrium. Each binding reaction can be described by a kinetic curve, which illustrates 
the rate of the reaction and the amount of bound complex forming as a function of 
time, see Figure 8. In the beginning, the initial binding components are added to the 
assay volume. The components, which enters the binding reaction, will be mixed last 
in the assay at time t = 0. The bound complex is formed according to the association 
rate and dissolved by the dissociation rate of the binding reaction. Eventually the 
reaction will reach its equilibrium. At equilibrium, the association and dissociation rates 
are equal. However, there may be binding reactions with fast and slow reaction rates 
present, since the reaction rates are considered faster in liquid phase compared with 
the reaction rates in solid phase (Stenberg and Nygren, 1988; Soini, 2002b). A rapid 
real-time evaluation of binding interaction is possible only with a single-step bioaffinity 
assay with a measurement system, which enables online-monitoring of a signal from 
a bound complex. Before the single-step assays, the kinetics was studied by several 
separate assays by interrupting the incubation after different durations in order to cover 
the incubation time range until the reaction reached its equilibrium.

Experimental binding reaction behaviour of bioaffinity assay kinetic data obtained 
by an on-line measurement system provides several advantages and possibilities 
over a conventional equilibrium endpoint assay. By observing the binding reactions 
during the incubation time, the kinetic association and dissociation rates become 
apparent. However, the kinetic rates resulting from different assay formats are not 
straightforwardly comparable to each other since the assay system with immobilized 
binding particles may suffer from geometry dependent diffusion limitations (Stenberg 
et al., 1988). 

2.2.5	 The dose-response of a bioaffinity assay

A dose-response curve is also known as the calibration curve or standard curve, see 
Figure 7. The dose-response curve illustrates the responses of equilibrium assays as 
a function of studied analyte concentration. A dose-response curve is used to back-
calculate the concentrations of samples (unknown concentrations). The standard 

Figure 8. Reaction kinetic curve as a signal induced by the bound complex as a function of time.
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analyte concentrations are chosen in order to cover the working range evenly, from the 
preliminary estimates of the lower limit and upper limit of quantitation. The entire assay 
performance, the clinical relevance of the dynamic range (working range), the minimum 
(detection limit) and maximum levels of reliable assay measurement and the assay 
sensitivity need to be considered carefully. 

Dose-response curve estimation methods
Today, the dose-response curves are often constructed in laboratory by a commercial 
instrument that has all the functionality “built-in” for assay calibration, which includes 
software for curve fitting. Earlier, this fitting was made by hand, but the choices of curve-
fitting method, weighting of data, acceptance criteria and outlier rejections are a part of 
the automated bioaffinity assay calibration systems today (Sadler, 2008). However, still 
little interaction by the user is required regarding curve fitting and acceptance. Hence, 
the technical experience of the user is needed for quality control (Daniels, 1994). The 
fitting methods used are based on interpolation, e.g. linear and curvilinear interpolation, 
and spline or descriptive empirical graphical methods, e.g. hyberbolic and polynomial 
functions and four-parameter logistic (4PL) and five-parametric logistic (5PL) models 
(Dudley et al., 1985; Anthony and Cox, 1989; Ragatt, 1991; Gottschalk and Dunn, 2005). 
The problem in using a program, which automatically fits data to thousands of equations 
and then presents the best fit, is that there is no connection to the scientific context of 
the experiment and to the underlying mechanisms of the reaction in a quantitative way 
(Ragatt, 1991, Motulsky and Christopoulos, 2003). 

2.2.6	 Error and sensitivity limiting factors in bioaffinity assays

A bioaffinity assay, like any experimental process, has several error- and sensitivity- 
limiting factors, from the production of reagents through the measurement system to 
the interpretation of data. An increase of assay sensitivity and reliability is an asset for 
providing quantitative results with quality. The most critical point in the assay process 
should be found in order to minimize the variation, increase the reliability and attain 
system robustness. Errors can be classified into three kinds: systematic, statistical and 
catastrophic errors (Ragatt, 1991) and should be recognized during the assay validation 
procedure. The reaction kinetics in immunometric assays (Ekins, 1991; Rodbard, and 
Feldman, 1978; Rodbard et al., 1978) are affected by many different factors, some of 
which are more easily controlled than the others. The variations within initial materials, 
assay preparation and incubation timing as well as nonspecific binding, diffusion (mass 
transport), and matrix effects of the sample must be considered as a probable cause of 
error in the immunoassay response. There are three major reasons for designing new 
immunoassay strategies: (1) to improve assay sensitivity, (2) to improve assay reliability 
by devising more reproducible sources of key reagents, and (3) to simplify the assay in 
order to achieve a direct readout of the result (Kricka, 1994).
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Temperature variations
Binding reactions are dependent on thermodynamics (Weiland and Molinoff, 1981). 
Temperature variations in incubation affect the binding kinetics and contribute to assay 
drift, because the reaction rate approximately doubles for each 10 °C rise in temperature 
(Wild, 1994; Van Regenmortel, 1998). In laboratory work, it should be noted that assay 
performance may be affected if the reagents are not stored and handled at the proper 
temperature: e.g., pipetted volumes may not be equal if the reagents are at different 
temperature. However, error factors due to temperature variations are easily avoided 
by careful and stable laboratory conditions, practice and proper storage temperature. 
Although these requirements are standard, one needs to be aware of situations arising, 
for instance, in mobile laboratories at remote locations where all requirements may not 
be met.

Nonspecific binding (NSB)
Bioaffinity assays are based on specificity between the binding species. However, there 
may exist substances with physicochemical similarities to the binding components in 
the assay. These substances interfere with specific binding by adsorption on the binding 
surface causing nonspecific binding (NSB). Protein adsorption on solid surfaces can be 
due to two major classes: 1) solute conditions such as temperature, pH and viscosity and 
2) protein properties such as charge, size and hydrophobicity (van Emon J, 2007; Kubiak-
Ossowska and Mulheran, 2010). The NSB may play a major role in assays in which 
the structural issues of components, such as artefacts in drug discovery and serological 
assays, are unknown (Furusawa et al., 2009). The optimal conditions for maximal 
bioaffinity assay sensitivity can be found by minimizing the nonspecific binding. In a 
competitive assay, this is carried out by a measuring assay without the antiserum and in 
a non-competitive assay by using a zero-concentration sample as an analyte (Wild D, 
1994). However, there may be a dependence between specific and nonspecific binding 
since the nonspecific binding is often proportional to specific binding and increases in 
relation to the specific binding of the binding component concentrations (Soukka et al., 
2001).

Timing errors in kinetic measurements
The incubation of a conventional bioaffinity assay may take hours until the binding 
reaction reaches the equilibrium phase and a reliable response can be read. Rapid 
quantitative bioaffinity assays rely on interrupted incubation and the assay response will 
be read from the non-equilibrium phase of the binding reaction. From the kinetic curve 
(Figure 8), it can be seen that the greater change of response in the non-equilibrium 
phase results in greater error due to error in timing. The measurement timing should start 
exactly when the binding reaction starts. Incubation timing is therefore critical in rapid 
bioaffinity assays. Reading the result from non-equilibrium phase is also proposed to be 
more susceptible to variation in incubation time and assay conditions resulting in error 
in assay results, especially in heterogeneous format (Soukka, 2003). 
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Instrumentation and measurement technique related errors
Errors due to instrumentation, such as laboratory equipment, are inevitable. In laboratory 
work, pipetting error is the major contributor to the overall measurement error in an 
immunoassay (van Emon, 2007). The errors in pipetting result mainly from inadequate 
precision in pipette calibration and/or human errors e.g., lack of competence. Bioaffinity 
assays are often carried out by using a plate reader. The plate variations and the well 
position on the plate should be checked by carrying out intra and inter assays. The 
errors caused by the detection system are dependent upon the measurement technique 
and should be studied individually with consideration of the possible pitfalls of each 
technique. Common error sources and limiting factors are inadequate calibration and 
instrumental noise.

Miscellaneous error and sensitivity limiting factors
The characteristics of binding components (e.g. stability) affect the assay performance. 
The binding component (e.g. a protein) may be denatured and undergo conformational 
changes upon adsorption at solid-liquid interfaces, which may affect the irreversibility 
and change protein activity and function (Nakahishi et al., 2001). The shelf-life 
expectations for assay products when stored at optimal recommended conditions are 
often underestimated to guarantee assay performance. However, degradation or loss 
in affinity of binding components during storage can be caused by denaturation or 
degradation. Thus degradation of assay products leads to poorer assay performance over 
time and this fact must be taken into account when results are compared.

2.3	 Enzyme kinetics

In clinical chemistry, the interest is not always in the concentration of a substance in 
a sample. In many cases, the interest is focused on the biological activity which has 
clinical significance. The activity of a reaction can be catalyzed by enzymes, which 
are highly specific to the reaction they catalyse due to complementary structure, charge 
and hydrophilic/hydrophobic properties. Enzymes are proteins or RNA molecules 
which may require a functional group, such as amino acid residues with a substituent 
group (coenzymes) and/or metal-ions (cofactors) for their catalysis (Nelson and Cox, 
2004). The purpose of enzymes is to increase the reaction rate; they do not to affect 
the equilibrium of the reaction and are not consumed in the reaction. The enzymes can 
accelerate the reactions from five (5) to seventeen (17) orders of magnitude (Nelson 
and Cox, 2004). The measurement of enzyme activity in a sample is important in the 
diagnosis of certain illnesses and many biological effects of drugs result from processing 
by enzymes. Further, enzyme kinetics and kinetic parameters are used to study the role 
of individual amino acids in enzyme structure and the reaction mechanism and also 
to compare the activities of different enzymes. The regulation of enzyme activity is 
determined by the amount of the product needed. The enzyme activity can be lowered 
by inhibitors in order to maintain the balance of chemical reactions. Enzyme reactions 
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often form a preferable reaction pathway, in which the regulation of enzyme activity is 
controlled by feedback inhibition and/or allosteric regulation (Pardee and Reddy, 2003).

2.3.1	 Enzyme-catalysed reactions

According to generalized transition state theory, a reaction requires a fixed amount 
of activation energy in order to reach the transition state at which proceeding to a 
substrate or a product is equally probable. The enzymes lower this activation energy 
of the reaction, which they catalyse. The enzyme-catalysed reactions can be divided 
into two steps, binding and catalysing. In a simplified enzyme-catalyzed reaction, 
the reaction progresses from substrate S and enzyme E through intermediates of ES 
(enzyme-substrate) and EP (enzyme-product) before conversion into product P. The 
binding interaction of a substrate and an enzyme is due to weak interactions and 
structural complementarity in the transition state. The formation of weak interactions 
in intermediates is accompanied by a release of a small amount of free energy, and the 
activation energy is lowered, thus providing a lower energy pathway (Copeland, 2000). 
Therefore, the energy for enzymatic rate enhancements is mainly contributed by the 
formation of weak interactions between the substrate and enzyme in the transition state. 
The kinetics of enzyme-catalysed reactions, which will be introduced next, have been 
widely researched, but the protein dynamics and a detailed understanding of the entire 
trajectory of the enzymatic catalysis are still a challenge (Schramm, 2005; Eisenmesser 
et al., 2005).

The substrate concentration determines the velocity of the enzyme reaction. At low 
concentrations of substrate, the initial rate of reaction increases linearly until the 
inflection point and saturates to its maximum. At higher substrate concentrations, the 
changes in substrate concentrations do not affect the rate due to the lack of free enzymes, 
see Figure 9. The velocity of the catalytic reaction in enzymatic reaction is characterized 
by the steady state approach. The steady state describes the time period during which the 
rate of formation of intermediate ES equals its decay rate to free enzyme and substrate 
(E + S), and the catalytic rate of the reaction can be derived (Copeland, 2000). This 
dependence can be expressed by the Michaelis-Menten kinetic model, see equation (7), 
where Km stands for the Michaelis constant representing the ratio between the kinetic 
rates of reverse (dissociation and catalytic rate) and forward (association rate) reactions 
considering the intermediate (ES):
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The model applies for single-substrate kinetics and the kinetic constants in enzyme-
catalyzed reactions Km and Vmax are not appropriate parameters to compare different 
enzyme-catalyzed reactions since the values vary from enzyme to another. The maximum 
velocity at which the reaction can proceed is defined by the limiting rate of the reaction. In 
enzyme kinetics the overall rate of catalysis for collective chemical steps is the turnover 
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number kcat, which is the maximum number of substrate molecules that an enzyme can 
convert to product per catalytic site per unit of time (Copeland, 2000). The catalytic 
efficiency is considered the best measure of substrate specificity and is described by the 
ratio of kinetic constant Km  and the turnover rate kcat (8). 

	 m

cat

K
k  	 (8)

Both enzymatic and receptor binding are characterized by hyperbola saturation curves. 
However, they may require a different interpretation and a direct translation of receptor 
equilibrium by using the knowledge from enzyme kinetics leads to flawed analysis 
(Krohn and Link, 2003).

2.3.2	 Enzymatic reaction pathways and biological networks

Enzymatic processes may require a large collection of intermediates and activated 
phases until the substance is transformed into the final product. These enzymatic reaction 
pathways, as well as metabolic (in cell) and signalling pathways, are widely studied to 
gather all information to illustrate and summarize all the potential reaction pathways to 
the final product (Sinanoğlu, 1975; Lanzeni et al., 2008; Conradi et al., 2005). Interest 
has lain mainly in the activation mechanisms and qualitative properties of the enzymatic 
reaction system. The pathways are usually large and complex processes including 
feedback control in the regulation system and are described as reaction networks. The 
computational modelling of reaction pathways has been widely carried out by differential 
equation methods (Orton et al., 2005). However, switch-like behaviour bistability and 
multistationarity issues, due to the complex reaction network, are the key concerns in 
the modelling of enzyme reaction systems (Crampin et al., 2004; Craciun et al., 2006). 

Figure 9. Michaelis-Menten (MM) curve. The MM curve illustrates the dependence of substrate 
concentration on the reaction rate in an enzyme-catalyzed reaction. The curve converges to the 
maximum velocity, Vmax and the substrate concentration at half the maximum velocity (½Vmax) 
represents the Michalis-Menten constant Km .
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During recent decades the stochastic simulation approaches have been gaining more 
ground on modelling biological reaction networks (Qian and Bishop, 2010). 

Various researches have considered the reaction network theories promising and 
beneficial for systems biology. The network theories are also used to construct models 
which describe the biological system by means of a network structure and not by 
individual parameters. This kind of approach is considered beneficial since sparse time 
course data from experiments and lack of general standards for measurements provide 
qualitative rather than quantitative data for direct modelling (Orton et al., 2005). The 
complexity of the biological model is thereby reduced, but the results are then based 
on the network structure itself. There are network theories developed for systems 
biology, such as the chemical reaction network theory (CRNT) and artificial neural 
network (ANN), (Feinberg, 1979; Feinberg and Horn, 1974; Baş et al., 2006a; Baş et 
al., 2006b). The CRNT was developed in the 70s to study the reaction mechanisms 
considering the dynamics of the chemical system and the complex network structure 
(Feinberg, 1979; Feinberg and Horn, 1974). The CRNT has been applied to the study 
of simple cases of enzyme activation mechanisms and it provides an identification and 
an exclusion of multistationary states in the pathway system, though limited to tens 
of complexes involved (Conradi et al., 2005; Conradi et al., 2007). ANN is composed 
of inter-connected adaptive processing elements (artificial neurons), which allow high 
parallel computing for data processing. The other benefits of ANNs in biological network 
modelling, according to Baş et al., are nonlinearity, robustness, learning, the ability to 
handle imprecise information and the capability to generalize. The ANN method has been 
applied to find a proper kinetic model and the kinetic constants of enzymatic reactions 
by training the network using biological experimental data until the minimum level of 
variation is reached (Baş et al., 2006a; Baş et al., 2006b).

In immunology, the Jerne interaction networks were used in the development of 
mathematical immunology and led to the proposing of the existence of regulatory 
immune networks (Jerne, 1972). However, the interest in Jerne networks faded 
over time due to the lack of a good correlation between the theoretical models and 
proper experimental validation (Louzoun, 2007). To my knowledge and according 
literature studied, network theories have not been widely applied to bioaffinity assays 
in practice.

2.4	 Reaction modelling of bioaffinity assays

In bioaffinity assays, the modelling is focused on the behaviour of binding partner 
populations, not on the binding behaviour of a single binding pair. The main challenge 
in constructing a reliable reaction model is to combine theoretical concepts of binding 
interactions and experimental measurement data, as stated earlier. This highlights the 
importance of qualified quantitative biological measurement data, correct assumptions 
and boundary conditions. In the reaction modelling of bioaffinity assays, the appropriate 
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approach depends on the boundary conditions, limitations and the requirements for the 
model or simulation tool: e.g. if delivering a quantitative result rapidly is an asset for a 
simulation tool, then the time consumed in computing must be considered.

The binding reaction kinetics of biomolecules can be studied according to transient state 
kinetics and the law of mass action. According to transition state theory, the kinetic 
rates are dependent on the activation energy. Theoretical studies on binding interaction 
predictions based on binding and conformational energetics can be carried out by 
computational methods, since structural models are used to study the specificity of a 
binding pair (Morozov et al., 2005). According to the law of mass action, the reaction 
kinetic analysis is restricted and valid for a closed system where there is no exchange of 
energy or mass between the system and the environment. In this thesis, the bioaffinity 
assays are performed under isothermal conditions; therefore, temperature variations are 
not considered. However, the temperature dependence of binding interaction parameters 
can be determined by thermodynamic analysis for simple binding reactions (van 
Regenmortel et al., 1998; Tamil Selvi et al., 2002).

This chapter summarizes the reaction modelling approaches and their usability in the 
modelling of bioaffinity assays by examining the pros and cons. Bioaffinity assays are 
performed in different environments (e.g. homogeneous media, solid phase platforms 
and microfluidic tubes) which affect the binding interactions. Therefore, rate limiting 
factors are considered in homogeneous and heterogeneous reactions in bioaffinity assays. 
A short review of the history of mathematical modelling concerning bioaffinity assays 
is presented in the light of immunoassays: from separation assays to real time binding 
reaction kinetics.

2.4.1	 Homogeneous and heterogeneous reactions 

The reaction modelling of bioaffinity assay has its intrinsic basis in the binding behaviour 
of the binding partners. However, the bioaffinity assay reflects the binding behaviour 
of a large number of binding partners and components in the total assay volume 
environment. A proper model for an assay also considers error and sensitivity limiting 
factors, presented in Section 2.2.6, and assay platform issues concerning heterogeneous 
reactions at solid-liquid interfaces and homogeneous reactions in liquid phase. The rate 
at which the end product (measurable complex) appears is determined by the slowest 
reaction - limited either by the diffusion or kinetic (forward) reaction rate. The effect 
of diffusion in heterogeneous and homogeneous reactions has been studied carefully 
by Stenberg et al. and Nygren et al. (Stenberg et al., 1986; Nygren and Stenberg, 
1989). Further, the effect of the assay platform has been studied theoretically and it 
has been concluded that the reactions occurring on small spheres such as cell surfaces 
(micrometer scale) in well-mixed conditions do not easily become diffusion-rate limited. 
These homogeneous reactions can be reaction rate limited, while reactions at solid 
surfaces are diffusion limited for the same initial conditions (Stenberg et al., 1986). 
Thus, the binding reactions in molecular and particle based assays can be considered 
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kinetic reaction rate limited, whereas at the solid-liquid boundary the very first binding 
reactions are diffusion rate limited, though the intrinsic reaction is limited by the kinetic 
reaction rate. The kinetic reaction rates can be estimated when the reaction is limited by 
reaction kinetics (Nygren and Stenberg, 1989). The geometry of the incubation chamber 
may have a crucial effect on the reaction mechanism in heterogeneous reactions at 
solid-liquid interfaces (Kusnezow et al., 2006a). For instance, microspot arrays which 
would allow small assay volumes with single-step protocol and multi-analyte assay have 
been reported to have a strong dependence on the mass transport (Klenin et al., 2005; 
Kusnezow et al., 2006a; Kusnezow et al., 2006b). The mass transport and diffusion rate 
limited binding are modelled by reaction diffusion theory, which considers separately the 
binding reaction and the transport of reactant in the liquid phase to the surface (Nygren 
and Stenberg, 1989; Kusnezow et al., 2006b). More comprehensive theoretical studies 
on the diffusion-controlled irreversible and reversible binding in microspot assay are 
provided by Klenin et al. (Klenin et al., 2005).

It is widely assumed that the surface of the solid-phase is homogeneous and bound 
antibodies are distributed evenly and randomly across the surface. However, there is 
some evidence that antibodies may form self-similar fractal clusters, high densities 
of highly organized antibodies in the solid phase (Wild, 1994). In the surface, the 
diffusion-limited reactions on these clusters are expected to express fractal-like kinetics 
(Kopelmann, 1988). Fractal analysis of diffusion rate limited binding kinetics is more 
often utilized in in vivo conditions (Schnell and Turner, 2004) and rarely in in vitro. 
However, fractal analysis has been carried out in studying binding in the liquid-solid 
boundary of biosensor surface (Butala et al., 2003). 

2.4.2	 Approaches in binding reaction modelling

There are both descriptive and mechanistic model approaches used in modelling 
bioaffinity assays. Descriptive models have been used to model both dose-response 
curves and binding reaction kinetic curves (Zuber et al., 1997a). In the reaction modelling 
of bioaffinity assays the interest is in the response due to changes of parameter or initial 
value. Therefore experimentally accessible parameters (i.e. concentration, time and 
kinetic association and dissociation rate constants) and their dependence on the reaction 
mechanism are required for a precise model. Such mechanistic modelling approaches 
have been used to study the kinetic behaviour of the assay system (Rodbard and Feldman, 
1978; Rodbard et al., 1978; Zuber et al., 1997b; Hänninen et al., 2003)

The deterministic mechanistic approach in the modelling of binding reactions
The classical, deterministic mechanistic approach to modelling association and 
dissociation reactions in bioaffinity assays has at its core the law of mass action, which 
was proposed by Arrhenius in 1907 (Arrhenius, 1907), and has proven to be extremely 
successful in the in vitro environment (Turner et al., 2004). The model considers the 
errors of the initial components to be Gaussian-distributed; therefore, the parameters are 
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considered to be average values of the population. The models are based on constructing 
a set of ordinary differential equations (ODEs) for each binding component as a function 
of time. The mechanistic modelling approach is presented in more detail later in this 
chapter (2.4). 

The advantages of the deterministic mechanistic approach:
(1)	 Identifiable parameters
(2)	 Continuous, wholly predictable process

The limitations and requirements for deterministic approaches:
(1)	 Restricted to well stirred, homogeneous environments, populations large enough 

to result in an average behaviour and without being disturbed by single fluctuations 
(2)	 Do not result in a low level of details (in comparison to thestochastic approach, 

presented later)
(3)	 Parameter dependence must be identified in the reaction mechanism

Stochastic approaches in the modelling of binding reactions 
The arguments for stochastic models for chemical reactions involve the consideration of 
the discrete or random character of the component or the phenomenon, in accordance 
with the theories of thermodynamics and stochastic processes, and their appropriateness 
for describing small systems and instability (Turner et al., 2004). Stochastic approaches 
are inherently suited to in vivo conditions, such as in cellular systems (Gillespie, 2007; 
Nicolau and Burrage, 2008). 

Efforts and developments to mathematically accommodate the stochastic nature of well-
stirred chemically reacting systems and molecular dynamics were made by McQuarrie 
and later by Gillespie (McQuarrie, 1967; Gillespie, 1976; Gillespie, 1977). The stochastic 
approach to chemical reaction kinetics can be described by the probability density function 
(PDF), the time evolution of chemical reactions by differential-difference equation, the 
chemical master equation (CME) or stochastic simulation algorithm (SSA). The PDF 
describes the entire expected distribution which a continuous random variable has in a 
given interval. It is also used to describe the relative likelihood for a random variable at 
a certain point in a distribution curve. The CME determines the equation of probabilities 
and summarizes all the fluctuations of the system in the time evolution (Gillespie, 1976; 
Érdi and Tóth, 1989). Thus, the CME describes the molecular system by determining 
all the possible behaviour cases of each molecular species. Therefore, it is usually 
difficult to solve the CME analytically (Gillespie, 2007). The SSA was introduced by 
Gillespie in 1976 to overcome the problems that resulted from the CME. The SSA is 
a Monte Carlo procedure for numerically generating time trajectories of the molecular 
species and can be implemented when the CME cannot be solved. The SSA results are 
in exact accordance with the CME (Gillespie, 1977; Gillespie, 1992). However, the SSA 
approach requires massive computing and is therefore time consuming. A review of 
these stochastic approaches has been collected by Gillespie (Gillespie, 2007).
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The advantages of the stochastic approach are listed as follows: (Gillespie, 1977; Nicolau 
and Burrage, 2008; Louzoun, 2007; Turner et al., 2004):
(1)	 possible to take full account of the fluctuations and low level details (such as 

random behaviour of single molecules)
(2)	 never approximates the infinitesimal time increments but by finite time steps,
(3)	 easy to code for any specified set of chemical reactions

The limitations of and requirements for the stochastic approach:
(1)	 Requires several iterations and therefore excessive computer time and costs,
(2)	 Detailed information in the simulation result may be lost in the noise
(3)	 Requires a random number generator

Thus, the general advantage of stochastic approach is the possibility of including a great 
number of details; however, the drawback is the difficulty in understanding the basic 
mechanisms affecting the dynamics (Louzoun, 2007; Turner et al., 2004). 

The deterministic-stochastic hybrid approach
The appropriate approach, stochastic or deterministic, has been argued, though it would 
have been more fruitful to focus on the complementary aspects of the deterministic 
and stochastic computational methods instead of the competitive aspects (Gillespie, 
1977). Since there are inevitable benefits to both approaches, hybrid models have been 
introduced for solving chemical systems (Hellander and Lötstedt, 2007). A combination 
of both approaches can be applied by separating the components into subsets: those 
which can be treated as normally distributed, and those which require the stochastic 
treatment. This separation could also be carried out by using biological insight. This is 
proposed in order to either introduce stochasticity in some components of the reaction 
rate equation or to improve the efficiency of stochastic algorithm by reducing the number 
of species in the system vector (Hellander and Lötstedt, 2007). 

2.4.3	 Modelling of binding reaction kinetics – from equilibrium assays to non-
equilibrium assays

The development of the mathematical modelling of bioaffinity assays is presented here from 
the immunoassay point of view. Theoretical models developed for radioimmunoassays 
(RIAs) and immunoradiometric assays (IRMAs) were first constructed to optimize the 
assay conditions and estimate the assay performance, such as the minimal detectable 
dose, co-operativity and sensitivity (Rodbard and Feldman, 1978; Rodbard et al., 1978). 
Graphical methods were first utilized in studying the binding parameters based on 
experimental data and knowledge from the ratio of bound and free ligands in assay 
under equilibrium conditions (Yalow and Berson, 1960). In immunoassays, the binding 
site occupancy was studied by constructing a Scatchard plot (Pennock, 1973; Walker, 
1977). In the Scatchard plot, the ratio of bound and free ligands was plotted against the 
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bound complex and the dissociation constant was estimated from the plot, see equation 
(9) and Figure 10. 

	 LK
nLB
d +

= 	 (9)

In equation (9), B represents the bound concentration, n the total concentration of binding sites, L 
the free component (ligand) concentration and Kd the dissocation constant.

However, the use of Scatchard plot was criticized due to fitting data in straight line by 
linear regression, though the shape of the plot was often more complicated; e.g., ligand 
heterogeneity increases the degree of curvilinearity and results in a hyperbolic curve 
(Pennock, 1973; Thakur et al., 1980; Mendel et al., 1985). The effects of variations in 
assay parameters and conditions (affinity constant (K), specific activity (radionuclides), 
concentrations and duration of the reaction) were studied by simulation methods 
(Rodbard and Weiss, 1973). Notably, at that time there were only equilibrium separation 
assays available and effort was therefore put into the equilibrium binding studies and 
separation steps. The separation step, the separation of free components from bound 
components, was a concern because the secondary reaction could perturb the primary 
reaction (Rodbard and Catt, 1972).

Theoretical time course analysis of binding reactions in immunoassays began around 
1970s (Rodbard and Weiss, 1973; Vassent, 1974; McPherson and Zettner, 1975). The 
study of binding interactions was based on a binding pair, and the reaction schemes were 
simple due to separation steps. The following preliminary theoretical limitations and 
assumptions were considered in a model in order to obey the law of mass action (Price 
and Newman, 1991): 
(1)	 Both antigen and antibody have to be present in homogeneous form, consisting of 

only one chemical species each
(2)	 Both antigen and antibody must be univalent
(3)	 There should be no effects to modify the reactivity of the binding partners

The solution for the binding reaction was carried out by constructing time derivative 
of the bound component, e.g. for competitive binding of single ligand species (P) and 
specific binder molecule (Q) in equations (10-12). This approach was used to graph the 

Figure 10. Scatchard plot for one binding specie (on left) and for two binding species (on right).
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simple kinetic behaviour of binding and to estimate the incubation time for equilibrium 
(McPherson and Zettner, 1975):

	
[ ] [ ][ ] [ ]PQkQPk
dt
PQd

offon −= 	 (10)

If initial concentrations of P and Q are set to be p and q, then at any time:

	 [ ] [ ]PQPp +=  and [ ] [ ]PQQq += 	           (11)

Substituting (11) into (10):

	
[ ] [ ] ( )[ ] pqkPQkqkpkPQk
dt
PQd

onoffononon +++−= 2  	           (12)
				  
The modelling of the radioimmunometric (sandwich) assay was considered more 
difficult due to the higher number of parameters and experimental variables involved 
(Rodbard and Weiss, 1973). Rodbard and Weiss (Rodbard and Weiss, 1973) wrote the 
reaction scheme for an immunometric assay and solved it by numerical methods. These 
deterministic mechanistic assay models are the basis for modelling bioaffinity assays 
today. 

Since the 1970s, computer simulations have been used in studying the equilibrium 
behaviour of binding complexes in simple cases, e.g. divalency. Most of the models in 
those days were ‘deterministic’ rather than stochastic in approach, dealing with systematic 
rather than random errors (Rodbard and Catt, 1972). In the 1980’s, the computer-based 
approaches were employed for the characterization of equilibrium assay systems for 
dose-response data and calibrating the assay curve using LIGAND software (Munson 
and Rodbard, 1980).

2.4.4	 Modelling of binding reaction kinetics – single-step bioaffinity assays

The single-step (homogeneous) assay method and the developments in detection 
technologies (both label-based and biosensor-based) together with real-time monitoring 
techniques have promoted the bioaffinity assay technologies. They provide the ability 
to monitor binding reaction kinetics in a nonequilibrium state without interrupting the 
reaction. This provides a more rapid way of obtaining measurement data (results) for the 
comparison of binding affinities and kinetics resulting from different binding conditions.

In single-step assays, the number of component species (initial components, intermediates 
and (final) bound products) present in the assay reaction increases the complexity of the 
binding interaction. From a modelling point of view, the larger number of parameters 
requires more computational capacity and advanced numerical methods. The mechanistic 
assay model based on the law of mass action for three component immunometric assay 
reaction scheme (equation 6) is constructed by writing a set of differential equations, in 
which the time derivative, the rate of change, is determined for each concentration of 
binding component present, see equation 13. In equation 13, the kinetic rate constants for 
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association reactions are associated with odd numbers (k1, k3, k5…) and for dissociation 
associated with even numbers (k2, k4, k6…).

By constructing a Jacobian matrix, which is a multivariable matrix consisting of all 
the partial derivatives of the vector in the system, the behaviour of the system can be 
simulated. This requires the initial concentrations, kinetic parameters and the duration 
of the reaction, i.e. the end time point. The calculation is performed by an ordinary 
differential equation solver (odesolver), which one can program oneself or use a ready-
made solver provided by several program libraries, such as in R (R Development Core 
Team, 2005; Setzer, 2004). The odesolvers use numerical methods such as Runge-Kutta, 
which is an iterative method for approximating a solution.

The mechanistic assay reaction model has been shown to predict the behaviour of the 
assay kinetics over a wide range of analyte concentrations (Hänninen et al., 2003; Zuber 
et al., 1997b). Zuber et al. also studied the kinetic characteristics, such as the inflexion 
point and the kinetics steepest slope. They suggested that the inflexion point could 
be used as an indicator for samples suffering from analyte excess, the ‘hook effect’ 
(presented in Figure 6B). The time of occurrence was seen constant as long as the analyte 
concentration did not exceed the smallest antibody concentration. The steepest slope of 
the kinetic curve was correlating with the analyte concentration, which indicates the 
possibility of assaying higher analyte concentrations than can be  done by classical end-
point assay methods (Zuber et al., 1997b). 

As can be seen, mathematical modelling of reaction kinetics becomes more complicated 
when the number of binding complexes increases. Therefore, modifying the model 
by rewriting the equations in a large matrix becomes exceedingly cumbersome and 
error-prone. The mechanistic assay model has been criticized for its dependence on 
kinetic parameters, which have to be well-defined. However, in practice, by using a 
well-standardized assay system and a validated reaction model, early access to the 
results (signal level at equilibrium) is possible. This can be carried out by following 
on-line measurement and predicting the equilibrium signal level from non-equilibrium 
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dt
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reaction kinetics with prior knowledge of the reaction rates. This can all be done without 
interrupting the measurements as the binding reaction proceeds and the accuracy of the 
assay result increases upon longer incubation. Thus, by using model-based methods and 
a validated assay system, it is also possible to already predict the sample concentration 
from the non-equilibrium phase.

2.5	 Detection technologies for kinetic measurement of bioaffinity assays

There exist several technologies which can be utilized to detect real-time bioaffinity 
interactions and measure kinetic data. The general prerequisites for these technologies 
are single-step protocols, sensitivity and a real-time monitoring system which enables 
prompt observation of the signal from the bound component. The technologies introduced 
here are divided into biosensor-based and label-based techniques.

2.5.1	 Biosensor-based methods in bioaffinity assay techniques

There are several biosensor-based technologies utilized in measuring binding reaction 
kinetics and determining the kinetic rate constants for interactions (Rich and Myszka, 
2007; Rich et al., 2009). Here, the following technologies are presented: surface plasmon 
resonance (SPR), biolayer interferometry (BLI) and quartz crystal microbalance (QCM). 
The basic idea in biosensor-based methods is the sensor surface, which is coated by 
immobilized binding molecules. Dependent on the detection system the sample is 
brought into contact with the sensor and the binding of the sample molecules and the 
immobilized target molecules on surface is detected. These detection methods are label- 
and radiation free.

The most critical points in biosensor techniques are related to the biosensor surface area: 
immobilization of molecules on the surface and nonspecific binding (Chen and Sadana, 
1996; Deng et al., 2006). Another criticism is that the surface-based sensors suffer from 
mass transport, which alters the binding constants (Fong et al., 2002). The biosensor 
-based methods require larger reagent volumes due to microfluidistics compared to small 
volume fluorescence based techniques. This causes costs and waste. 

Surface plasmon resonance (SPR)
The surface plasmon resonance (SPR) based biosensor technique was introduced in the 
early 1990s (Patrick Englebienne et al., 2003). The surface plasmon resonance biosensor 
involves a detection surface immobilized with a binding component (the ligand). The 
immobilization is carried out by either a direct ligand immobilization with covalent 
attachment or by a ligand -capturing method. In ligand -capturing method, a specific 
molecule is immobilized on the sensor surface to capture the ligand. The biosensor is 
located inside a microfluidic channel through which the analyte (the sample) flows and 
binds to the ligand. The biosensor is attached to an optical set-up, see Figure 11. 
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The principle of the SPR method is to evoke the resonance-phenomenon of the surface 
plasmons, excitations in the metal-dielectric interface caused by the incoming beam 
of light with specific intensity, wavelength and angle of incidence. The photons of 
p-polarized light interact with the free electrons of the metal layer. The excited surface 
plasmons induce surface plasmon resonance and the electromagnetic waves propagate 
parallel to the dielectric-metal surface. Due to the loss of energy, the intensity of the 
reflected light is suppressed at a specific wavelength angle, and the change in refractive 
index due to binding causes a shift in the resonance angle. The refractive index changes 
at the sensor surface are detected as an SPR signal. The use of a functionalized metal 
surface, the high energy concentration in the near field of surface plasmons and high 
sensitivity makes it possible to detect adsorption of molecular monolayers on the surface 
(Maier, 2007; Homola, 2006). The SPR system consists of either an evaporated metal 
layer on dielectric media, e.g. glass (Kretsch mann configuration), or a metal layer 
isolated by air (Otto configuration) (Homola, 2006). The former set-up is generally 
used due to advantages in the freedom of design of the liquid handling system and is 
introduced in Figure 11. 

SPR biosensors have been used to carry out equilibrium analysis, determine the binding 
constants and thermodynamic properties. The association rate can be determined from 
the SPR signal, when the analyte binds to the immobilized ligand and reaches its 
equilibrium. After this a solution without analyte (buffer) is injected in the flow cell and 
the dissociation rate can be determined from the decreasing SPR sig-nal. The effect of 
nonspecific binding in SPR biosensor is estimated by measuring a reference cell which 
does not include the sample analyte. Higher throughput screening has been increased 
by increasing the number of flow cells and by using a microspot array plate as a sensor 
surface (Rich and Myszka, 2007). However, combining flow cell microfluidics with the 
array plate system causes transport rate deviations between the spot positions on the 
array plate (Rich et al., 2008). 

There are several manufacturers of commercial SPR biosensors e.g. BiaCore AB (part 
of GE Healthcare), which manufactured the first commercial SPR biosensor launched. 

Figure 11. A schematic figure of an optical biosensor using the surface plasmon resonance 
technique.
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There are also Bio-Rad Laboratories’ ProteOn, Reichert’s SR7000 DC and BioNavis’ 
SPR Navi™ (Rich et al., 2008; www.bionavis.com).

Bio-Layer Interferometry (BLI) Technology
Bio-Layer Interferometry (BLI) is a label-free technology based on an optical fibre 
biosensor technique for detecting and quantifying molecular interactions in real time 
(Abdiche et al., 2008). BLI analyses the changes in refractive index using the interference 
pattern of white light reflected from two surfaces: a layer of immobilized protein on the 
biosensor, and an internal reference layer. Any change in the number of molecules bound 
to the biosensor causes a shift in the interference pattern that can be measured in real-
time using optical interferometry. Therefore, binding between a ligand immobilized on 
the biosensor surface and an analyte in the solution produces an increase in the optical 
thickness of the biosensor, which in turn results in a shift of the interferogram and is a 
direct measure of the change in thickness of the biological layer (www.fortebio.com).

A commercialized BLI based biosensor called Octet is manufactured by ForteBio (Menlo 
Park, CA, USA), shown in Figure 12. The Octet biosensor is a dip-and-read assay with 
a single-use sensor tip customized for the binding assay. The Octet platform also offers 
a parallel set of assay measurements when sensor tips are delivered to the sample wells 
and no extra microfluidics is required (Abdiche et al., 2008).

Quartz crystal microbalance (QCM)
Quartz crystal microbalance (QCM) was developed to analyse mass and viscoelastic 
changes on rigid surfaces 50 years ago, first in gas and vacuum, and later in liquid 
media (King, 1964). The quartz crystal microbalance-based sensor technique utilises 
an oscillating piezoelectric quartz crystal, the resonance frequency change of which is 
proportional to the mass change of deposited material on the quartz’s surface (Schaible et 
al., 2004). The detection device is connected to an oscillator with a real-time measurement 
system. A schematic of aQCM-based biosensor can be seen in Figure 13. This method 

Figure 12. Application of the Bio-Layer Interferometry based biosensor, the Octet. The biosensor 
tip is coated with a biocompatible matrix and customized for binding assays. The changes in the 
sensor surface thickness are detected by a shift of the wavelength in the interference pattern due 
to binding interaction (www.fortebio.com).

http://www.fortebio.com
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provides a nanogram-sensitive measurement technique for mass and viscoelastic changes 
and can therefore be utilised as a biosensor for measuring the binding of biomolecules 
on-line. In the biosensor method, the biological molecules bind to the immobilized target 
molecules on the surface of quartz crystal and the changes of frequency are monitored 
during the binding process. The quartz crystal microbalance method has been developed 
for screening purposes and for evaluating the binding kinetic and equilibrium constants 
of binding reactions (Schaible et al., 2004; Deng et al., 2006; Másson et al., 1995). 
A commercial QCM-based biosensors is available the Q-Sense QCM-D system by 
BiolinScientific AB.

2.5.2	 Label-based methods in bioaffinity assay techniques 

Label-based methods are widely used among bioaffinity assays detecting various 
physical phenomena (Hemmilä, 1991; Wilumsen et al., 1997). The principle of 
label-based techniques is to attach a detectable (tracer) label to one of the binding 
components of interest, observe the detectable signal during the binding reaction and 
determine the concentration of the sample. In the 1950s, the radioisotopic labelling 
technique provided higher sensitivity and shorter assay times compared to the other 
detection methods in diagnostics in those days. Alternative nonisotopic labels were also 
developed, such as enzyme labels, based on enzymatic reactions (change of colour) 
and luminescent labels, based on the energy source used for excitation: fluorescence, 
electroluminescence and chemiluminescence (Hemmilä, 1991). The reasons for this 
were the radioactive waste problems, slow performance times unless high doses of 
label were used, health risks and the public attitude against radioactive isotopes. 
However, the development of radioisotopic labelling based techniques resulted in e.g. 
scintillation proximity assay (SPA) using beta-radiation from low energy isotopes 
which provides high throughput, low sample volume and single-step assays (Hart and 
Greenwald, 1979; Cook, 1996).

Figure 13. A schematic of a quartz crystal microbalance (QCM)-based biosensor. Gold plating 
provides the electrical contact to the oscillator and support for the biomolecule immobilization. 
It contains a quartz crystal with immobilized ligand and free analyte in the flowthrough cell 
(Schaible et al., 2004).
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Fluorescence is theoretically the most sensitive analytical technique (Bazin et al., 
2002). The first fluorescent-based marker application, the immunofluorescent staining 
technique, was developed in 1941 (Coons et al., 1941). The developments and number 
of applications based on fluorescence techniques have significantly increased during 
the recent decades. The development of efficient high peak power lasers has been a 
prerequisite for several sensitive fluorescence techniques today. Applying confocal 
microscopy, the measurement volume can be reduced to a femtoliter and the sensitivity 
reaches down to the level of single molecule detection (Jäger et al., 2003).  

Fluorescence simultaneously yields several parameters of interest, e.g. intensity, lifetime, 
anisotropy and spectral characteristics, which will respond to environmental changes. 
Fluorescent labels, labels with delayed fluorescence and lanthanide chelates provide 
long-lifetime fluorescent labelling for single-step bioaffinity assays. However, there are 
several requirements for the label. The label should be optimal, contain a reactive group 
for covalent attachment to molecule, be biocompatible (pH, solubility, hydrophilicity), 
have appropriate physical properties in the assay (introduce minimum perturbation to the 
host molecule) and have appropriate photo-, electro- and physico-chemical properties 
for the excitation system (Meltola et al., 2005). 

The advantages of the homogeneous fluorescence-based bioaffinity assays are cost 
reductions due to microvolume samples, simplified assay protocols and the possibility 
offer multiplexing measurements for high-throughput screening (HTS). The usual 
disadvantages and sensitivity limiting factors among fluorescence techniques are 
autofluorescence, quenching and label-related issues, e.g. photobleaching. The signal-
to-noise ratio and the background signal are also considered critical factors. However, 
background signal discrimination can be improved by instrumentation and optimal 
labelling chemistry. 

The following fluorescence-based methods are introduced: Fluorescence correlation 
spectroscopy (FCS), Fluorescence polarization (immunoassay) (FPIA), time-resolved 
Förster resonance energy transfer (TR-FRET) and two-photon fluorescence excitation 
(TPX).

Fluorescence Correlation Spectroscopy (FCS)
The fluorescence correlation spectroscopy (FCS) technique has been developed for 
measuring molecular dynamics and concentrations at the single molecule level (Qian 
and Elson, 1991; Sterrer S and Henco K, 1997). FCS embedded within a confocal 
microscopy system is a sensitive technique to measure fluorescence intensity and 
fluctuations in microscopic detection volumes. The principle of FCS is to illuminate 
a focal volume and to excite fluorescent molecules, which will emit bursts of 
fluorescence photons. The FCS system is capable of discriminating between small 
and large molecules and the interaction between small fluorescent ligand and a large 
macromolecule can be determined and quantified from retarded diffusion. For example, 
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the molecules in solution diffuse through the focal volume by Brownian motion, and 
the time that it takes to diffuse is proportional to physical size. The rapid and sensitive 
photon detection system detects the fluorescence intensity fluctuations and the FCS 
software calculates the autocorrelation function, which decays according to the 
intensity fluctuation of diffusion time. This autocorrelation function is characteristic 
of molecular processes causing fluorescence changes, e.g. diffusion, reaction kinetics 
and photophysical triplet state (Visser and Hink, 1999; Michelman-Ribeiro et al., 
2009). The sensitivity limiting factors in FCS are the mass dependence (in order to 
discriminate between the labelled molecules), autofluorescence and fluorescence 
quenching. 

Fluorescence polarization (FP)
Fluorescence polarization (FP) primarily provides information on the mobility and the 
orientation of the substance in the sample. In the fluorescence polarization assay method, 
the sample is illuminated by polarized light. The molecules that have their absorption 
dipoles (absorption transition moments) aligned with electric vector of polarized light 
are effectively excited. The electric field oscillates along a predetermined direction, and 
any change in the orientation of the transition moment during the excited state lifetime 
of the molecule will cause a decrease and depolarization of fluorescence (Lakowicz, 
1983). Thus, the fluorescent-labelled analyte is bound to an antibody, the sample is 
excited by polarized light, the free and bound components have different rotational 
rates, and the emission of polarized light is detected from the bound labelled component. 
The competitive assay format is used in most cases of fluorescence polarization 
immunoassay (FPIA) in order to measure the increase in fluorescence polarization of 
fluorescent labelled antigens when bound by a specific antibody and decreasing when 
competiting with the sample antigens. FPIA provides a simple and single-step detection 
method which is suited for high-throughput screening (Smith and Eremin, 2008). A 
fully automated instrument and kits are commercially provided by, for instance, Abbott 
IMx™ (Shipchandler and Moore, 1995).

Time-resolved fluorescence resonance energy transfer (TR-FRET)
Fluorescence (or Förster) resonance energy transfer (FRET) is a distance-dependent 
interaction between two chromophores, an acceptor-donor pair with overlapping 
emission and absorption bands. The principle of FRET is to excite the donor, which 
will transfer the excitation energy from its excited state to the acceptor. This energy 
transfer occurs through dipole-dipole coupling within less than 100 Å distance, and 
the spectroscopic technique detects the decrease in the fluorescence intensity of the 
donor and the concomitant increase in the fluorescence intensity of the acceptor. The 
phenomenon of FRET indicates that the acceptor-donor pair is in proximity within a 
complex. A characteristic value for each FRET pair is the Förster distance at which the 
energy transfer efficiency is 50 % (Selvin, 2000). The FRET technique can be utilized 
in detecting changes in molecular proximity (DNA rulers), conformational changes of 
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single biological molecules and studying interactions between biomolecules (proteins, 
motifs of DNA and RNA) including real-time kinetics (Ha, 2001; Singh et al., 1999: 
Mank et al., 2006).

The time-resolved measurement system with fluorescence resonance energy transfer 
(TR-FRET) and homogenous fluoroassay technique, is applicable for measuring reaction 
kinetics (Bazin et al., 2002). The commercially available high throughput, homogeneous, 
separation-free FRET-based systems, TRACE and HTRF technologies utilises the 
cryptate-based assay technique and LANCE technology utilises lanthanide-chelates 
(Zuber et al., 1997b; Hemmilä, 1999). The FRET technique may also be applicable to 
different labels, such as bioluminescence resonance energy transfer (BRET), which is 
an variation of FRET, but with a bioluminescent label, i.e. luciferase as donor (Xu et al., 
2003).

TPX-technology
The TPX-technology is based on the two-photon excitation (TPE) microscopy technique 
with a pulsed near infra-red laser (e.g. 1064 nm). The two-photon excitation constitutes 
of simultaneous absorbance of two photons by a fluorescent label molecule, which 
corresponds to double the energy of a single photon. The advantages of this technology 
are the restricted small focal volume of about 1 fl (corresponding to the size of a 
microsphere), the optical pressure and trapping by Gaussian distributed and high average 
power of laser beam, and the background signal suppression. The optical pressure guides 
the microparticle through the centre of the laser beam focus, which is monitored by a 
microfluorometer. The fluorescence signal from out of the focus is suppressed during 
detection due to the properties of two-photon excitation (Hänninen et al., 2000; Soini et al., 
2000a). The TPX technology utilizes biochemically-activated polystyrene microparticles 
as solid phase carriers, which correspond to the size of the focal volume, see Figure 14. 
Microparticles are continuously monitored and tracked three dimensionally by an optical 
scanner which stops when the backscattering amplitude rises above a pre-set threshold 
level, indicating the presence of a microparticle in the close vicinity of the focal volume. 
The fluorescence signal is detected and measured from the surface of microparticle. The 
fluorescence emitted at visible wavelengths from the labelled binding complexes on the 
surface of a single microsphere is related to the concentration of the analyte present. 
The optical set-up discriminates between the fluorescence signals of the unbound tracer 
molecules. This is achieved by the small focal volume and activating the measurement 
while a single microparticle appears at the focal point (Soini, 2002a; Hänninen et al., 
2000; Soini et al., 2000a; Soini, 2002b).
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Figure 14. Fluorescence excitation of a single particle in TPX system. The signal is measured 
from the focal volume and is suppressed from outside the focus. The arrows indicate the optical 
pressure guiding the microparticles through the focal volume. (Figure courtesy of Juhani Soini 
and Marko Mäenpää.)
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3	 Aims of the work

The aim of this work has been to develop computational model-based methods and 
simulation tools for bioaffinity assays, based on chemical reaction kinetics and the law 
of mass action. This research explains the possibilities that the modelling of binding 
reaction kinetics together experimental data provide. The methods developed in this 
thesis can be used to research and predict the behaviour of binding interactions (I-IV) and 
estimate the reliability of the bioaffinity assay results (I). The methods were confirmed 
by experimental kinetic data and are widely applicable also to other bioaffinity assays.

In brief, the objectives of the work were (articles indicated by Roman numerals according 
to which article the subject relates):

1)	 To estimate the reliability of rapid immunoassay concerning initial concentrations 
and incubation timing by mechanistic modelling and simulation methods (I)

2)	 To develop a new calibration method from assays that use kinetic data (II)

3)	 To develop a new node-based method and simulation tool for the modelling of 
complex multi-component assays, which can be applied to study specific binding 
in bioaffinity assays (III) and protein adsorption as a case study of modelling 
nonspecific binding (IV)
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4	 Materials and Methods

Materials and methods used in the studies are described here briefly. Details of the 
studies are presented in original publications (I-IV).

4.1	 Materials and kinetic measurement data

The binding reaction kinetic data measurements had been carried out earlier in our 
laboratory and published, for example, the kinetics of human thyroid stimulating hormone, 
hTSH (Hänninen et al., 2003) (I, II, III) and the kinetics of human C-reactive protein, 
hCRP (Waris et al., 2002)(II). The data were used for confirmation and comparison 
purposes in articles as indicated. 

In the research on nonspecific binding, in this case protein adsorption (IV), several 
protein candidates for adsorption on polystyrene microparticle, were studied. In the 
end, the hen egg white lysozyme was selected due to several favourable properties: it is 
stable, globular (slightly ellipsoidal) in shape, small in size and hard protein, which does 
not undergo significant conformational change upon adsorption (Kubiak-Ossowska 
and Mulheran, 2010; Ravichandran, 2001; Wahlgren et al., 1995, Lundin et al., 2010). 
The reagents used in this study (lysozyme from hen egg white, polyethylene glycol 
p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100) and hydrochloric acid) were 
purchased from Sigma-Aldrich (St. Louis, MO). Carboxylate modified polystyrene 
particles 3.098 µm in diameter were purchased from Seradyn, Inc. (Indianapolis, IN). 
Glycin was sourced from Merck KGaA (Darmstadt, Germany). High purity MilliQ 
water was used to prepare all aqueous solutions. Lysozyme was conjugated with 
dipyrrylmethene-BF2 530, succinimidyl ester (BF530) (Arctic Diagnostics Oy, Turku, 
Finland).

4.2	 Measurement methods for real-time kinetic data  

All real-time binding reaction kinetic data was measured by TPX technology, presented 
as a detection technology in Section 2.5.2 ‘Label-based techniques’. 

Reliable kinetic data requires careful incubation timing. The delay in assay measurement 
is period between adding the last binding component, which starts the incubation and 
binding process (t=0), and starting the TPX-measurement (t>0). This delay, duration of 
incubation, was timed separately in this study and considered by adding the exact delay 
time in the TPX measurements in the kinetic data analysis.
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4.3	 Mathematical modelling methods

The modelling and simulations of the binding reactions have been written using open 
source GPL-software R for constructing mathematical models based on differential 
equations (I, II, III) and the LabVIEW™-program for constructing mathematical models 
using the newly developed node-method (III, IV). 

The R provides a statistical software and user interface with library R packages (R 
Development Core Team, (2005); Woodrow Setzer, 2004), for instance, random number 
generator and solvers for differential equations. The following R packages were utilized:

- ODESOLVE was utilized to solve ordinary differential equations with the function 
lsoda.

- NLME was utilized in weighted fitting with the function gnls.

The National Instruments’ LabVIEW™ software was adopted for constructing the 
NODE-method to solve multicomponent binding reaction kinetics. LabVIEW™ 
provides a graphical programming environment with a user interface which is easily 
constructed and customizable by modifying built-in blocks. Thus, a network of functions 
was implemented rapidly with LabVIEW™. 
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5	 Results

The main results of this work consist of the following four original publications referred 
to by Roman numerals (I-IV).

The modelling approach in this work is mechanistic. The fluctuations in initial parameters 
and assay measurements are considered Gaussian-distributed due to the high number of 
occurrences. The temperature during assay performances was constant.

5.1	 Theoretical assessment of errors in rapid immunoassays – how 
critical is the exact timing and reagent concentrations?

In in vitro diagnostics, obtaining rapid and reliable quantitative assay results is a great asset 
in patient care, contributing to correct treatment. The reliability of rapid immunoassay is 
a concern due to incomplete incubation to a non-equilibrium state. In the first article (I) 
the effect of error and variation of initial parameters in rapid immunoassays was studied 
in order to provide theoretical information about how the magnitude of error affects the 
response. Special attention was paid to timing and initial concentrations of antibodies, 
focusing on the early phase of incubation. 

The behaviour of rapid assays was predicted by simulations using a carefully-constructed 
mechanistic assay model, based on antibody-analyte binding reaction kinetics and the 
law of mass action. This antibody-analyte binding reaction model was constructed for 
a three-component immunometric assay, and the kinetic rate constants were chosen to 
be those determined experimentally for an hTSH immunometric assay (Hänninen et al., 
2003). The range of the analyte concentration covered the dynamic range, while one 
concentration was selected outside these limits to represent a sample with excess analyte 
concentration and therefore suffering from the ‘hook effect’. The magnitudes of errors 
in the input parameters were estimated using knowledge from practical immunoassays.

The following simulations were carried out and compared with an ideal binding reaction 
kinetic curve, which describes the assay reaction without errors. The deviations of these 
modelled kinetic curves were given in percentages of relative error.

1.	 The effect of error induced by variation of initial concentrations: antibody 
concentration on microparticle solid phase surface [Ab] and labelled antibody 
concentration [Ab’]. The kinetic curves are modelled for reduced (-10 %) and 
extra (+10 %) antibody concentrations.

2.	 The effect of exact timing of the incubation adding an absolute error of 6 seconds.

3.	 The effect of Gaussian-distributed variation in incubation timing (standard 
deviations of 3s, 6s and 12 s) for different interrupted incubation times (60s, 120s, 
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300s, 600s). A collection of 100 randomized simulation responses represents 100 
assay measurement replicates.

According to the simulations, the inaccuracy in the solid phase antibody concentration 
resulted in a higher error response than that due to the inaccuracy in the labelled antibody 
concentration (Figure 15). Reduced concentrations resulted in a higher error in assay 
response than increase of both antibody concentrations. A local minimum can be seen for 
a concentration of 150 mIU/l in the percentage of relative error at 1000 s of incubation. 
According to the incubation timing simulations, the absolute error of 6 s in incubation 
timing resulted in errors during the early phase of the incubation while error decreased 
after the first hundred seconds (Figure 16). The effect of Gaussian-distributed variation 
in incubation timing on reading the result from the non-equilibrium state (respective to 
interrupted incubation) was studied by predicting a collection of one hundred randomised 
assay responses for each interrupted incubation time point. In the simulations, the 
standard deviations of randomized variance in timing were 3 s, 6 s and 12 s. The 
interrupted incubation time points selected were 60 s, 120 s, 300 s and 600 s. The results 
of these simulations are presented as percentage of the coefficient of variation (% CV), 
which is widely used to describe the inter-assay performance of replicate measurements 
(Figure 17). According to the simulations, the inaccurate incubation timing adds error to 
the results at very short incubation times, especially at low analyte concentration level, 
but the error diminishes significantly after the first hundred seconds.

The first derivative curves of the modelled kinetic assay curves were calculated and the 
inflexion points were studied. This highlighted early detection of the out-of working 
range concentration suffering from the ‘hook effect’. The inflexion point was reached 
after 70 s by out-of-range concentration, and after approximately 200 s by in-range 
concentrations.

A) B)
Figure 15. Relative error in percentage caused by inaccuracy in A) labelled antibody concentrations 
[Ab’], and B) solid phase antibody concentrations [Ab]. The error induced was -10% for reduced 
and +10% for elevated initial concentrations, respectively. (Modified with permission after: Pilvi 
J. Ylander, Zoltán Bicskei, Pekka Hänninen and Juhani T. Soini (2006) Theoretical assessment 
of errors in rapid immunoassays – how critical is the exact timing and reagent concentrations? 
Biophys. Chem. 123: 141-145).
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Figure 16. Relative error in assay response, when there is an absolute error of 6 seconds in 
timing. (Modified with permission after Pilvi J. Ylander, Zoltán Bicskei, Pekka Hänninen and 
Juhani T. Soini (2006) Theoretical assessment of errors in rapid immunoassays – how critical is 
the timing and reagent concentrations? Biophys. Chem. 123: 141-145).

Figure 17. Percentage of the coefficient of variation (% CV) of assay response as a function 
of analyte concentration range due to randomised Gaussian-distributed variation in incubation 
timing for the following standard deviations A) 3s, B) 6s, C) 12s. The results are read after 
the following incubation time points: 60 s (square), 120 s (circle), 300 s (triangle) and 600 s 
(upturned triangle). (Modified with permission after Pilvi J. Ylander, Zoltán Bicskei, Pekka 
Hänninen and Juhani T. Soini (2006) Theoretical assessment of errors in rapid immunoassays 
– how critical is the exact timing and reagent concentrations? Biophys. Chem. 123: 141-145).

5.2	 Calibration method for bioaffinity assays using kinetic data

Bioaffinity assays are usually calibrated by conventional methods, constructing a dose-
response (standard) curve using replicates of standard concentration measurements. 
The curve is fitted to a descriptive model of a certain shape; however, these descriptive 
empirical models do not take into account the underlying binding reaction mechanism. 
In this article (II), a new calibration approach based on the mechanistic assay model is 



54 | Results	

presented. This approach considers the reaction kinetics and requires only one standard 
concentration and one non-equilibrium kinetic data point in order to calibrate the assay 
system. This new calibration method is quick to perform, whereas the conventional 
methods would require six standard concentrations over the dynamic range measured to 
the equilibrium.

This calibration method was constructed by two iterative processes, one for the actual 
calibration process and another one for calculating the concentrations of unknown 
samples, see Figure 18. The first process calculates the reaction response using the 
required constants: initial concentrations for standard measurements [Ab0], [Ag0] and 
[Ab’0] and estimates for kinetic reaction rates ki. The reaction modelling is carried out by 
a mechanistic assay model. The measured signal is scaled by an instrumentation scaling 
factor converting the signal counts to concentration of bound component (AbAgAb’). 
The kinetic reaction rate constants are refined by weighted minimization of the difference 
between the scaled measurement signal and the modelling response concentration in 
the time domain. The minimization is carried out by weighted Generalized Nonlinear 
Least Squares (GNLS) fitting. Special attention has been paid to time points in early 
phase binding and near the equilibrium using larger weights in order to fix the start and 
equilibrium plateau. The refined rate constants ki  are used in numerically solving the 
ordinary differential equations of the reaction model for the minimization procedure 
until the stopping criteria are reached: high number of iterations and a limit for error 
margin.

Figure 18. Procedures for calibration (left) and predicting a sample concentration (right). 
(Redrawn and modified with permission after: Zoltán Bicskei, Pilvi Ylander and Pekka Hänninen, 
Calibration of bioaffinity assays using kinetic data. J. Biochem. Biophys. Methods 67 (2006) 75-
85).
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The calculation of concentration for analyte samples is carried out by reading the kinetic 
data (timepoint and signal) at any time during incubation. A binary search algorithm is 
used to approximate the analyte concentration by comparing the measured signal with 
the reaction model response for the approximate analyte concentration. The method 
was evaluated by experimental data from hTSH and C-reactive protein (CRP) assays, 
see Figure 19 for calibration of an hTSH assay. The calibrated standard curves were 
constructed after three different incubation times: 1000 s, 2000 s and 4000 s. The 
simulated dose-response curves were seen to fit well with the measured signals. The 
tolerance of the method was tested by reducing the data set from 100 measurement 
points to 30 points, but keeping the incubation time constant. The reduction of data 
points did not affect the quality of the calibration curve.

Figure 19. Calibration performed by a) hTSH assay kinetic data using analyte concentration of 
50 mIU/l. Calibration curves after b) 1000 s c) 2000 and d) 4000 are presented. (Modified with 
permission after: Zoltán Bicskei, Pilvi Ylander and Pekka Hänninen, Calibration of bioaffinity 
assays using kinetic data. J. Biochem. Biophys. Methods 67 (2006) 75-85).

5.3	 A node-based method for simulation of multi-component binding 
assays

The modelling of binding reactions may become too complicated for traditional numerical 
methods, if multivalent components are present in the binding reaction. This leads to 
binding complexes, which are not considered in the basic three-component assay model, 
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and as a result this model does not meet the complexity of experimental data. A new 
easy-to-use method was constructed for modelling complex multi-component bioaffinity 
assays (III), avoiding the large matrix when modelled by the mechanistic assay model. 
This method is a variant of the mechanistic assay model; it obeys the laws of mass 
action and utilizes the same initial parameters: initial concentrations, incubation time 
and kinetic reaction rate constants. The NODE-method will calculate a binding reaction 
network (of any shape) by decomposing the reaction network into separate binding 
reactions and small time steps according to Euler’s approach using predetermined 
fixed time steps. Each binding reaction is represented by a node with two associating 
components and one dissociating complex, see Figure 20 for an example of a node and a 
three-component assay model scheme presented by the NODE-method. The network of 
nodes is calculated in a loop representing an indefinite small incubation time step.

This method was confirmed and compared with a conventional mechanistic assay model 
and an hTSH experimental binding data. The kinetic rate constants were chosen to be those 
determined for hTSH in immunometric assay using experimental kinetic data (Hänninen 
et al., 2003). Simulations carried out by these two methods resulted in consistent binding 
curves. The effect of the time-step size used in the NODE-method was studied by comparing 
the kinetic curves delivered by the NODE-method, using different step sizes (1 s, 0.1 s and 
0.01 s) with kinetic curves from the mechanistic assay model. The relative error % curves 
were calculated as a function of incubation time, see Figure 21. The reduction of step size 
from 0.1 s to 0.01 s minimized the relative error in results only by 1 % and was considered 
insignificant in comparison to the typical experimental errors.

Figure 20. The reaction scheme of a three-component binding reaction based on the NODE-
method. An example of a node is shown on right.



	 Results | 57

Figure 21. The effect of the time-step (0.01s, 0.1s and 1s) in the NODE-method compared to 
the mechanistic assay model as a function of incubation time. The insert allows comparison 
of the deviation between the two models during the first minute of incubation. (Reproduced 
with permission after: Ylander PJ and Hänninen P, Modelling of multi-component immunoassay 
kinetics – a new node-based method for simulation of complex assays. Biophys. Chem. 151 
(2010) 105-110).

5.4	 A study of the kinetic behaviour of protein adsorption based on the 
NODE-method

Nonspecific binding (NSB) is one of the sensitivity limiting factors in bioaffinity assays. 
In this article (IV), the protein adsorption of lysozyme onto the surface of polystyrene 
microparticles was studied as a case of nonspecific binding. The measurements were 
carried out by competitive assay protocol using labelled and unlabelled small globular 
(slightly ellipsoidal) lysozyme and single-step microparticle-based TPX technology. 
The kinetic behaviour was modelled by constructing a theoretical node net model 
utilizing our previously presented NODE-method and comparing the model with the 
experimental data. The number of microparticles present in the assay volume was 
converted mathematically to a concentration value, based on the free surface space on 
a microparticle for lysozymes to attach to. The lysozyme was considered to be globular 
and end-on or side-on combinations were not therefore considered separately.

The reversibility/irreversibility of lysozyme adsorption was monitored by incubating 
labelled lysozyme with microparticles until equilibrium was reached and adding 1000-
fold unlabelled lysozyme to the assay volume. The signal dropped to 1/3rd of the maximum 
reached at equilibrium. This indicated that the adsorption is partly irreversible. The 
model was first constructed for single layer binding and compared with an experimental 
data set comprising various lysozyme concentration measurements, see Figure 23 for 
data plots. The model that resulted was too simple and did not meet the complexity 
of the adsorption reaction. The model was reconstructed by considering the multilayer 
structure of lysozyme proposed by Lundin et al. (Lundin et al., 2010), which led us to 
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study the possibility of the second layer structure and the dimerization of lysozymes, 
which can represent one of the reaction paths to the second layer structure. Thus, 
the node net was constructed to study the following adsorption processes: lysozyme 
adsorption onto the microparticle surface, lysozyme adsorption onto lysozyme already 
adsorbed onto microparticle (second layer structure) and lysozyme dimerization, see 
Figure 22 for node network. The purpose of this study was not to find exact kinetic 
rate constants but to show the possibilities of the NODE-method. All the measurements 
indicated rapid kinetics as seen in the experimental kinetic data plot in Figure 23. The 
primary reaction of lysozyme adsorption onto the surface of the microparticle had a 
major contribution to the shape of the reaction curve. The dimerization of lysozyme 
was insignificant in the adsorption process since a 1000-fold increase in the kinetic 
rate parameters of dimerization resulted in a less than 1 % deviation in the response 
signal for the studied range of lysozyme concentrations. This was also stated in the 
literature according to Wilson et al. and Carlsson et al. [Wilson et al., 1996; Carlsson 
et al., 2001]. The adsorption of lysozyme onto lysozyme, which is already bound to the 
microparticle surface, can be due to favourable conditions resulting from changes that 
lysozyme undergoes upon adsorption onto the microparticle in the first place. According 
to the results the proportion of the signal induced from the second layer components 
increased as a function of lysozyme and resulted in a 25 % proportion of the signal in 
the measurement of the lowest lysozyme concentration (603 nM). See Figure 23 for the 
experimental and modelled adsorption kinetic curves. An error analysis was carried out 
by statistical methods for estimating the best fit in terms of overall fit (sum of square 

Figure 22. Network for modelling competitive adsorption of lysozyme (L) and labelled lysozyme 
(L’) on polystyrene microparticles (here u-part). Complexes with shaded background represent 
the signal inducing components.
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residuals, SSR), best unbiased estimation of error (mean square of error, MSE) and 
the goodness of fit in the non-equilibrium state (the coefficient of determination, ). A 
precondition for the best fitted group was also to have a conveniently low error for the 
upper and lower concentration ranges. The simulated best-fitted group of model curves 
for various concentrations of unlabelled lysozyme agree with the experimental data to a 
reasonable extent. The purpose of this study was not to find exact kinetic rate constants 
but to combine modelled and experimental data and to show the possibilities of the 
NODE-method.

Figure 23. Experimental data (data plot) and modelled kinetic curves (solid lines) for a 
competitive lysozyme adsorption assay. The concentration of labelled lysozyme was constant in 
well (62 nM) and assay responses for various unlabelled lysozyme concentrations are presented 
as kinetic curves. 
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6	 Discussion

Computational model-based methods and simulation tools were developed for 
bioaffinity assays. These methods and tools were compared and verified with 
experimental bioaffinity assay data. The benefits and possibilities of the simulation 
methods in bioaffinity assays are demonstrated in assay reliability studies (I), calibration 
(II) and modelling of complex multi-component reaction kinetics (III, IV). This thesis 
emphasizes the importance of providing rapid and quantitative results concerning all 
the binding components present in an assay environment over the incubation time. The 
modelling approach was deterministic-mechanistic and the error factors and fluctuations 
in parameters are considered to be Gaussian-distributed. The kinetic measurement 
data obtained by sensitive TPX technology were an asset in developing the simulation 
methods in compliance with experimental data. This work can be considered as a 
continuation research of modelling reaction kinetics done by Rodbard, a pioneer who 
used the conventional separation assay data in the 1970s (Rodbard and Catt, 1972; 
Rodbard and Weiss, 1973; Rodbard and Feldman, 1978; Rodbard et al., 1978), and 
also by Zuber, who used real-time, time-resolved fluorescence-detection-based TRACE
R -technology in the 1990s (Zuber et al., 1997b) and by Hänninen in the 2000s, who 
carried out the first modelling studies using data from real-time two-photon excitation 
fluorometry (Hänninen et al., 2003). In the future, applications considering patient care 
and on-line monitoring systems can benefit from the further developments and results of 
mathematical biology and modelling methods.

6.1	 Theoretical assessment of errors in rapid immunoassays – how 
critical is the exact timing and reagent concentrations?

Simulation methods based on a mechanistic assay model were used as a theoretical tool to 
study the effects of inaccuracies in incubation timing and errors in initial concentrations 
in rapid immunoassays (I). In rapid immunoassays, predicting the assay response result 
from the non-equilibrium state is proposed to be susceptible to error factors causing 
variance (Soukka, 2003).

For theoretical assessment an error of 10 % was introduced into initial antibody 
concentrations. The relative error is more critical in the early phase of the incubation in 
both antibody concentrations: the solid phase antibody [Ab] (antibody immobilized in 
microparticle) and the labelled antibody [Ab’]. The solid phase antibody concentration 
Ab was seen to be more detrimental to the assay response during the whole incubation 
time. However, this result shows that using an excess concentration of labelled antibody 
in sandwich assays does not add a significant error in assay response. An excess of 
labelled antibody is sometimes used in order to speed up the binding reaction. One 
element is that the use of this excess amount of labelled antibody should be considered, 
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since it may reduce the signal-to-noise ratio, if the background signal is not suppressed 
in detection.

Theoretical assessments of errors in timing were studied by introducing an absolute error 
of six seconds (6 s) and randomized variation. The result revealed that for the early phase 
of the incubation timing is the most critical issue, and even more critical for low reagent 
concentrations. In the most critical case (incubation time 60 s and variance 6 s), the assay 
response approaches the limit of functional sensitivity (20 % CV). However, the absolute 
error and variance in timing decreased significantly during the first hundred seconds of 
incubation. In practice, the timing errors in a laboratory environment are usually caused by 
the users. With careful work, this error can be estimated to be 1 second. Considering this, the 
error caused by timing is small compared to the other error factors in assay measurement.

6.2	 A calibration method for bioaffinity assay using kinetic data

Bioaffinity assays are usually calibrated in conventionally; fitting a set of standard 
measurement results to an empirical dose-response curve without concerning the reaction 
mechanisms. This newly invented calibration method carries out the calibration of an assay 
system using binding reaction kinetics and only one standard concentration measurement 
in a non-equilibrium phase. Thus, the method provides a fast calibration approach.

The reaction scheme in the calibration model presented a three-component binding 
reaction, which corresponds to the binding scheme of an hTSH sandwich assay The 
calibration method developed was confirmed with experimental data from practice, and 
simulated dose-response curves compared well with the signals measured from standards. 
The model also seemed to predict pentameric protein binding CRP well, though the 
complexity of the model does not correctly represent the actual reaction scheme of a 
sandwich assay of the pentameric protein binding

This calibration methodology is applicable for assay systems, for which the reaction 
mechanism, rate constants and instrument scaling are known, and for technologies which 
provide a real-time monitoring system. In the calibration process, the critical factor 
for refining the kinetic reaction rate constants was timing. In order to yield adequate 
rate constants, the kinetic measurement must be accurately timed. The benefits of this 
calibration method are rapid response time, low cost materials and decreased labour 
intensity, which are also key issues in POC diagnostics. Thus, the calibration method 
enables rapid diagnostics when accompanied by automated bioaffinity analyzer.

6.3	 A node-based method for modelling multi-component binding 
reactions and the kinetic behaviour of protein adsorption

A new node-based method was developed to model multi-component binding reaction 
kinetics in bioaffinity assays. This method was compared with the mechanistic assay 
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model using the same initial parameters (III). The method was later applied to modelling 
nonspecific binding kinetics due to protein adsorption and compared with experimental 
data (IV). This method provides an easy and a quick way to study complex binding 
reactions utilising a simulation network structure which is simple to construct and 
modify by extension or shrinkage of the network. 

The NODE-method developed (III) resulted in congruent kinetic curves when compared 
with the mechanistic assay model. The difference between these two methods is in the 
time-step defined in the calculation: dynamic (used by the solver for ordinary differential 
equations in a mechanistic assay model) or fixed (NODE-method). The comparison of the 
different time-step size in the results of the NODE-method (1s, 0.1s, 0.01s) revealed that 
the deviation between the results from the two methods (the conventional mechanistic 
assay model and the NODE-method) decreased as the incubation proceeded and using 
a shorter time-step resulted in more rapid convergence. The relative error between these 
two methods decreased to 1 % in 30 seconds with a step size of 0.1 second and in 20 
seconds with a step size of 0.01 seconds. This error in results is insignificant compared to 
other errors in bioaffinity assay measurements. The error in the early phase of incubation 
was studied carefully given the results from article (I), which stated that the early state 
of incubation is sensitive to error factors.

The modelling of protein adsorption behaviour was studied as a case of nonspecific 
binding. The NODE-method presented above was utilized in modelling a competitive 
assay of labelled and unlabelled lysozyme adsorption onto the surface of microparticles. 
A simple single-layer model did not meet the complexity of the protein adsorption 
when compared with experimental data, and the model was reconstructed by adding 
the second layer structure, considering also the reaction pathways in the model. The 
purpose of this study was not to find the exact kinetic parameters for the model, but to 
identify the possibilities of the NODE-method compared to the conventional numerical 
methods. The NODE-method was seen as a valuable tool in studying the behaviour of 
bioaffinity assays and reaction mechanisms. The complexity of the reaction was easy to 
enlarge with the model scheme. The number of parameters was increased in this study 
with several intermediate components and the most effective way to benefit from the 
NODE-method is when some of the kinetic parameters are already known and only a 
few variables are studied.
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7	 Summary

Mathematical modelling and simulations were shown to be valuable tools in studying the 
behaviour of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a 
biological substance in biological research, development and in routine clinical in vitro 
diagnostics. The development of single step bioaffinity assays and real-time monitoring 
detection technologies provide bioaffinity-based binding kinetic data. Experimental 
methods together with the valuable tools of computational model-based methods can 
be developed for studying the binding behaviour of bioaffinity assays and predicting 
quantitative assay results. This thesis demonstrates the possibilities and benefits of 
mathematical models and simulation methods in the field of bioaffinity assay and 
reaction kinetics. The research studies combine the theoretical modelling approaches 
and measurement data practices performed. This emphasizes the value of the results.

The mathematical models and simulation methods developed were based on mechanistic 
models, which rely on binding reaction kinetics and the law of mass action. Two different 
simulation methods were developed and confirmed by experimental data: the calibration 
method and node-based modelling method. The calibration method was developed to 
calibrate a bioaffinity assay system by utilizing non-equilibrium kinetic measurement 
data from only one standard concentration. This method can also be used to predict an 
unknown sample concentration from the non-equilibrium kinetic phase. The NODE method 
was developed to model complex multi-component binding reactions, which have been 
a challenge for traditional numerical methods. The NODE method provides an easy-to-
use, network-based modelling approach, which decomposes the binding reactions present 
in multi-component assays into smaller partial problems. This method has been compared 
with the conventional mechanistic model and proved to result in a congruent assay response. 
These methods were shown to be applicable to bioaffinity assays in, for example, point-
of-care and drug discovery in order to hasten the processes. Separate simulation studies 
were carried out in order to discover the most critical error factor in rapid immunoassays, 
concentrating on the incubation timing and initial reagent concentrations. These simulations 
revealed that the early phase of the assay is critical. However, they also showed that the assay 
recovers from the initial errors after a few hundredths of seconds of incubation. The NODE-
method was applied to modelling the behaviour of protein adsorption, proving useful for 
complex reactions that require several intermediates and end-products be considered. 

The simulations and simulation methods in this thesis demonstrate the excellence of 
single-step technologies and the possibilities they are able to provide. In this study, the 
kinetic binding reaction data, obtained by sensitive, single-step two-photon excitation 
fluorescence based technology, played an important role. Thus, mathematical models and 
simulations provide important information on the binding reaction kinetics in bioaffinity 
assays, but together with new inventions in high-sensitive detection methods and assays, 
novel developments can be achieved in practice.
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