5 research outputs found

    The role of supersymmetry in the black hole/qubit correspondence

    No full text
    This thesis explores the numerous relationships between the entropy of black hole solutions in supergravity and the entanglement of multipartite systems in quantum information theory: the so-called black hole/qubit correspondence. We examine how, through the correspondence, the dyonic charges in the entropy of supersymmetric black hole solutions are directly matched to the state vector coefficients in the entanglement measures of their quantum information analogues. Moreover the Uduality invariance of the black hole entropy translates to the stochastic local operations and classical communication (SLOCC) invariance of the entanglement measures. Several examples are discussed, with the correspondence broadening when the supersymmetric classification of black holes is shown to match the entanglement classification of the qubit/qutrit analogues. On the microscopic front, we study the interpretation of D-brane wrapping configurations as real qubits/qutrits, including the matching of generating solutions on black hole and qubit sides. Tentative generalisations to other dimensions and qubit systems are considered. This is almost eclipsed by more recent developments linking the nilpotent U-duality orbit classi cation of black holes to the nilpotent classi cation of complex qubits. We provide preliminary results on the corresponding covariant classi cation. We explore the interesting parallel development of supersymmetric generalisations of qubits and entanglement, complete with two- and three-superqubit entanglement measures. Lastly, we briefly mention the supergravity technology of cubic Jordan algebras and Freudenthal triple systems (FTS), which are used to: 1) Relate FTS ranks to threequbit entanglement and compute SLOCC orbits. 2) Define new black hole dualities distinct from U-duality and related by a 4D/5D lift. 3) Clarify the state of knowledge of integral U-duality orbits in maximally extended supergravity in four, five, and six dimensions

    Black Holes, Qubits and Octonions

    Full text link
    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits, known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)]^3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. There are further relationships between the attractor mechanism and local distillation protocols. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T^6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC> (A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E_7 supset [SL(2)]^7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E_7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7 x 8 charges of N=8: the 24=3 x 8 NS-NS charges correspond to the three imaginary quaternions and the 32=4 x 8 R-R to the four complementary imaginary octonions. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems), where the analogous measure is Cartan's E_6 supset [SL(3)]^3 invariant.Comment: Version to appear in Physics Reports, including previously omitted new results on small STU black hole charge orbits and expanded bibliography. 145 pages, 15 figures, 41 table

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size
    corecore