35 research outputs found

    Bayes Nets and Rationality

    Get PDF
    Bayes nets are a powerful tool for researchers in statistics and artificial intelligence. This chapter demonstrates that they are also of much use for philosophers and psychologists interested in (Bayesian) rationality. To do so, we outline the general methodology of Bayes nets modeling in rationality research and illustrate it with several examples from the philosophy and psychology of reasoning and argumentation. Along the way, we discuss the normative foundations of Bayes nets modeling and address some of the methodological problems it raises

    Equilibria und weiteres Heiteres

    Full text link
    We investigate several technical and conceptual questions

    Contribution of František Matúš to the research on conditional independence

    Get PDF
    summary:An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned

    A Weaker Faithfulness Assumption based on Triple Interactions

    Get PDF
    One of the core assumptions in causal discovery is the faithfulness assumption---i.e. assuming that independencies found in the data are due to separations in the true causal graph. This assumption can, however, be violated in many ways, including xor connections, deterministic functions or cancelling paths. In this work, we propose a weaker assumption that we call 2-adjacency faithfulness. In contrast to adjacency faithfulness, which assumes that there is no conditional independence between each pair of variables that are connected in the causal graph, we only require no conditional independence between a node and a subset of its Markov blanket that can contain up to two nodes. Equivalently, we adapt orientation faithfulness to this setting. We further propose a sound orientation rule for causal discovery that applies under weaker assumptions. As a proof of concept, we derive a modified Grow and Shrink algorithm that recovers the Markov blanket of a target node and prove its correctness under strictly weaker assumptions than the standard faithfulness assumption

    Trust and the Value of Overconfidence: A Bayesian Perspective on Social Network Communication

    Get PDF
    corecore