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K Y B E R N E T I K A — V O L U M E 5 6 ( 2 0 2 0 ) , N U M B E R 5 , P A G E S 8 5 0 – 8 7 4

CONTRIBUTION OF FRANTIŠEK MATÚŠ TO THE
RESEARCH ON CONDITIONAL INDEPENDENCE

Milan Studený

An overview is given of results achieved by F. Matúš on probabilistic conditional inde-
pendence (CI). First, his axiomatic characterizations of stochastic functional dependence and
unconditional independence are recalled. Then his elegant proof of discrete probabilistic rep-
resentability of a matroid based on its linear representability over a finite field is recalled. It
is explained that this result was a basis of his methodology for constructing a probabilistic
representation of a given abstract CI structure. His embedding of matroids into (augmented)
abstract CI structures is recalled and his contribution to the theory of semigraphoids is men-
tioned as well. Finally, his results on the characterization of probabilistic CI structures induced
by four discrete random variables and by four regular Gaussian random variables are recalled.
Partial probabilistic representability by binary random variables is also mentioned.

Keywords: conditional independence, matroid, polymatroid, entropy function, semi-
graphoid, semimatroid

Classification: 62H05, 05B35, 68T30

1. INTRODUCTION

In the 1930s, matroid theory was introduced as an abstract theory of independence [41].
The classic matroid theory was inspired by the independence concepts appearing in
linear algebra and graph theory; but analogous abstract independence structures were
later recognized in other areas of mathematics, for example, in projective geometries,
abstract algebra, and lattice theory; see [33] for details.

The concept of independence of random variables is inherent in probability theory,
too. In fact, a more general concept of conditional independence (CI) has been studied
there for many years; see [12, § 25.3]. The first attempts to formulate abstract properties
of probabilistic CI occurred in the late 1970s [5, 36]. This abstract point of view was later
emphasized in connection with probabilistic graphical models [34, 11]. The idea was to
use graphs to depict mutual relationships among random variables and, in this context,
some analogy was recognized between abstract properties of probabilistic CI and those
of separation concept(s) in graphs. This led to introducing a concept of a semigraphoid
[34], which can be viewed as an abstract model of CI structure; the same is true for an
even more general concept of a separoid , introduced later [6].
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Several open mathematical problems related to that concept became a topic of re-
search for Frantǐsek (“Fero”) Matúš and the author of this paper in the 1990s. One
of those problems was whether probabilistic CI structures and certain substructures of
these can be described in an axiomatic way. It was shown that discrete probabilistic CI
structures cannot be described in this way [37] but some of their sensible substructures
can be [16, 19].

This paper offers an overview of some results from Fero’s papers on the topic of
probabilistic CI. They were written in the period from the 1990s to time of his death.
It is, of course, a limited choice from a variety of Fero’s results on this topic.

The structure of this paper is as follows. In Section 2, basic concepts and facts are
recalled. In Section 3, Fero’s early results on axiomatic characterizations of certain
substructures of probabilistic CI structures are reviewed. Section 4 deals with the re-
lationship between matroids and CI structures. An elegant proof of Fero’s basic result
about probabilistic representability of a linear matroid is a starting point. His embed-
ding of matroids into (augmented) abstract CI structures, as well as his methodology
for constructing probabilistic representations of abstract CI structures are then recalled.
Semigraphoids and Fero’s results on this topic are discussed in Section 5. Fero’s famous
complete characterization of probabilistic CI structures over four discrete random vari-
ables, which was a result of an enormous effort of his, is reported in Section 6; the regular
Gaussian case is also mentioned there. Finally, selected additional results concerning
graphical models of CI structure and the binary case are mentioned in Section 7.

2. BASIC CONCEPTS

In this section, basic concepts, some notation and terminology are introduced. Through-
out the paper, the abbreviation CI will stand for conditional independence.

2.1. Random vector over a basic set

By a (general) random variable will be meant any measurable function ξ from a prob-
ability space (Ω,A, P ) to a measurable space (X,B); the σ-algebra generated by ξ is
{ξ−1(Y) : Y ∈ B} ⊆ A. The random variable ξ is called real if X = R is the set of all
real numbers and B the σ-algebra of Borel subsets of R. It is called discrete if |X| <∞
and B = P(X) := {Y : Y ⊆ X} is the power set of X and binary, if, moreover, |X| = 2.

Random variables are indexed by elements of a finite non-empty index set N , called
the basic set (of variables). Shortened notation for some subsets of N will often be
used in the paper: union of two subsets I, J ⊆ N may alternatively be denoted by a
juxtaposition of respective symbols: IJ ≡ I∪J . Analogously, the symbol for an element
i ∈ N may also stand for the respective singleton subset of N : i ≡ {i}.

A random vector over N is an indexed collection ξ = [ξi]i∈N of random variables,
each ξi taking values in its individual measurable space Xi, being necessarily non-empty.
A random vector ξ is named real/discrete/binary if each random variable ξi in it is
real/discrete/binary. Its distribution Pξ is a multidimensional probability measure on
the joint sample space

∏
i∈N Xi, equipped with the respective product σ-algebra; it is

none other than the measure P transformed by ξ: Pξ(Y) := P ({ω ∈ Ω : ξ(ω) ∈ Y}) for
any product-measurable set Y ⊆

∏
i∈N Xi.
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A probabilistic CI structure induced by a random vector ξ is a discrete mathematical
structure describing certain stochastic (in)dependence relations among subvectors of ξ.
Specifically, given a non-empty set ∅ 6= I ⊆ N , the symbol ξI := [ξi]i∈I will denote
the respective random subvector of ξ; thus, ξN ≡ ξ and ξ{i} ≡ ξi for i ∈ N . All these
subvectors are random variables in the general sense mentioned above, ξI taking values
in XI :=

∏
i∈I Xi. Note that if one denotes by AI the σ-algebra generated by ξI then

∅ 6= J ⊆ I ⊆ N implies AJ ⊆ AI ⊆ AN ⊆ A.
It is convenient to introduce a random variable representing the empty set: we accept

a convention that ξ∅ is a constant function on Ω, representing a kind of trivial random
variable in the general sense (in fact, a “non-random” variable). Such a convention is
consistent with the above-described assignment ξI 7→ AI of generating σ-algebras to
random subvectors because A∅ = {∅,Ω} is a trivial algebra satisfying A∅ ⊆ AI for any
I ⊆ N .

From the point of view of our study, the particular values of ξ, that is, the labels
for elements in XN , play an unimportant role. The substantial structural information
is fully encoded in the mutual relationships among the σ-algebras AI , I ⊆ N , and, of
course, in the values of probability measure P on AN ⊆ A.

Another basic observation is that the joint sample space XN can always be considered
in place of Ω, the product σ-algebra BN in place of A and the joint distribution Pξ in
place of P . Under this arrangement, every random variable ξi, i ∈ N , turns into a
coordinate projection to Xi, and every σ-algebra AI , I ⊆ N , is none other than the
respective coordinate sub-σ-algebra BI of BN , with B∅ := {∅,XN}. The CI structure
induced by ξ is, therefore, defined solely in terms of the joint distribution Pξ.

2.2. Probabilistic conditional independence

In this paper, a general definition of probabilistic CI in terms of σ-algebras is omitted.
Such a definition requires a technical auxiliary concept of conditional probability given
a σ-algebra; the interested reader can find details in [40, Appendices A.6.4 and A.7].
For this paper, it is enough to recall the definition in the discrete case.

The distribution Pξ of a discrete random vector ξ over N can be fully described
by its joint density, which is a non-negative function on the joint sample space XN
whose values sum up to 1. Subvectors’ distributions are then described by marginal
densities obtainable from the joint density by summing. Formally, these are functions
on the marginal sample spaces XI , ∅ 6= I ⊆ N , but it appears to be convenient to
understand them as functions defined on the joint sample space XN and depending only
on components indexed by I.

Specifically, given a random vector ξ over N and I ⊆ N , the respective marginal
density pI : XN → [0, 1] can be introduced by the formula

pI(x) := P ({ω ∈ Ω : ∀ i ∈ I ξi(ω) = xi }) for every x = [xi]i∈N ∈ XN .

Then p := pN is the joint density of ξ. Note that we have also introduced the marginal
density p∅ for the empty set: it is a constant function on XN taking the value 1.

Having three subsets I, J,K ⊆ N of the basic set, we say that ξI is conditionally
independent of ξJ given ξK and write ξI⊥⊥ξJ |ξK if

∀x ∈ XN pI∪J∪K(x) · pK(x) = pI∪K(x) · pJ∪K(x) . (1)
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An alternative notation is I⊥⊥J |K [ξ]. Note that the definition (1) works for any triplet
of sets I, J,K although these three sets are typically assumed to be pairwise disjoint.
The case K = ∅ then corresponds to the classic (unconditional) stochastic independence,
denoted by ξI⊥⊥ξJ , alternatively by I⊥⊥J [ξ].

A similar definition of CI works in the (marginally) continuous case, that is, in the case
of a real random vector ξ whose distribution Pξ on XN ≡ RN is absolutely continuous
with respect to a fixed product measure λ on RN , typically the |N |-dimensional Lebesgue
measure. This is, for example, the case of a regular Gaussian distribution. In this
continuous case, the density of Pξ is defined as the Radon-Nikodym derivative of Pξ

with respect to the dominating σ-finite measure λ. One can analogously introduce its
marginal densities fI , I ⊆ N , as functions on XN = RN depending on components
indexed by I; however, these marginal densities are only determined uniquely in the
λ-almost everywhere sense. The formula (1) with p∗ replaced by f∗ and with equality
understood in the λ-almost everywhere sense then defines the respective CI statement.

Nonetheless, a straightforward algebraic characterization of the CI statement is at
our disposal in the regular Gaussian case. This is the case of a real random vector ξ
where Pξ = N (µ,Σ) is the multivariate normal distribution with a mean vector µ ∈ RN
and a positive definite covariance matrix Σ ∈ RN×N ; see [11, Appendix C] for a formal
definition. Then, given pairwise disjoint I, J,K ⊆ N , the respective CI statement is
characterized solely in terms of the covariance matrix Σ. Specifically, one has ξI⊥⊥ξJ |ξK
iff the I×J-submatrix of the inverse matrix to the IJK× IJK-submatrix of Σ consists
of zeros; see [42, Corolary 6.3.4] or [11, Proposition 5.2] in a special case.

Formally, the CI structure induced by a random vector ξ over N is a certain ternary
relation on the power set P(N) := {A : A ⊆ N}. Specifically, the augmented CI
structure induced by a random vector ξ over N is

{ 〈I, J |K〉 ∈ P(N)× P(N)× P(N) : ξI⊥⊥ξJ |ξK } .

We use a vertical line to separate the third component, which is interpreted as the
conditioning variable set K. The standard CI structure induced by ξ is the above-
mentioned ternary relation on P(N) confined to the triplets of pairwise disjoint subsets
of N as traditionally required in [11, 34].

2.3. Matroids and polymatroids

A matroid over a basic set N is specified by a collection I ⊆ P(N) of independent sets
(in the matroid) satisfying the following axioms:

• ∅ ∈ I,

• I ∈ I and J ⊆ I implies J ∈ I,

• if I, J ∈ I with |J | < |I| then there exists i ∈ (I \ J) such that J ∪ {i} ∈ I.

Matroids are mathematical structures abstracting the concept of linear independence.
Specifically, the following example is a classic instance of a matroid. Given a finite
collection {xi : i ∈ N} of vectors in a linear space E over a field F the collection

I = { I ⊆ N : {xi}i∈I is a linearly independent set of vectors }
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satisfies the axioms above and defines a matroid over N . Every matroid of this form is
called linearly representable over the field F .

Several equivalent descriptions of a fixed matroid exists; see [33, Chapter 1]. One of
them is the so-called rank function (of the matroid specified by I) which is a function
rI : P(N)→ Z defined by the formula

rI(I) := max { |J | : J ⊆ I & J ∈ I } for any I ⊆ N .

Note that, in the case of a linearly representable matroid, the value rI(I) for I ⊆ N is
the dimension of the linear subspace of E generated by {xi : i ∈ I} [33, § 1.3].

It is a well-known fact that an integer-valued set function r : P(N) → Z is a rank
function of a matroid over N iff it satisfies the following conditions (see [33, Corol-
lary 1.3.4]):

• if I ⊆ N then 0 ≤ r(I) ≤ |I|,

• if J ⊆ I then r(J) ≤ r(I),

• if I, J ⊆ N then r(I) + r(J) ≥ r(I ∪ J) + r(I ∩ J).

The first condition means that r is non-negative and bounded from above by cardinality,
the second one that r is non-decreasing and the third one that r is submodular. Note
that the inverse relation is as follows: I = { I ⊆ N : rI(I) = |I| }.

The description of a matroid in terms of a rank function leads to the following gen-
eralization of that concept; see [7, § 2.2]. By a rank function of a polymatroid over N
we mean any real function r : P(N)→ R which satisfies r(∅) = 0, is non-decreasing and
submodular. Polymatroids can also be assigned abstract CI structures (see Section 4.2).

2.4. Entropy function

Given a discrete random variable ξ with a sample space X, whose distribution is given
by a density p : X→ [0, 1], its entropy H(ξ) is given by the formula

H(ξ) := −
∑

x∈X:p(x)>0

p(x) · ln(p(x)) .

It is clearly a non-negative real number. Thus, every discrete random vector ξ = [ξi]i∈N
can be assigned its entropy function hξ : P(N)→ [0,∞) defined by

hξ(I) := H(ξI) for every I ⊆ N .

It follows from the basic information-theoretical inequalities [43, Appendix 14.A] that
the entropy function hξ is a rank function of a polymatroid, that is, formally: hξ(∅) = 0,
hξ(J) ≤ hξ(I) whenever J ⊆ I ⊆ N , and

hξ(I) + hξ(J) ≥ hξ(I ∪ J) + hξ(I ∩ J) for any I, J ⊆ N.

Note that the polymatroidal inequalities for hξ can equivalently be formulated as the
condition that, for every I, J,K ⊆ N (possibly intersecting), the expression

∆hξ(I, J |K) := hξ(I ∪K) + hξ(J ∪K)− hξ(I ∪ J ∪K)− hξ(K)
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is non-negative. This expression is none other than the so-called conditional mutual
information between ξI and ξJ given ξK , which is known to vanish just in the case of
the validity of the respective CI statement; see [43, Theorem 2.34]. In particular, for
(possibly intersecting) sets I, J,K ⊆ N , one has

ξI⊥⊥ξJ |ξK ⇔ hξ(I ∪K) + hξ(J ∪K) = hξ(I ∪ J ∪K) + hξ(K) ,

see [43, § 13.5] for further details.

2.5. Lattices

A partially ordered set (Z,�), abbreviated as a poset in this paper, is called a lattice
[1, § I.4] if every two-element subset of Z has both the least upper bound, also called
the supremum or the join, and the greatest lower bound, also called the infimum or
the meet. A finite lattice is necessarily complete, which means that the requirement
given above holds for any subset of Z. A lattice (Z,�) is anti-isomorphic to a lattice
(Z ′,�′) if there is a one-to-one mapping ι from Z onto Z ′ which reverses the ordering:
for x, y ∈ Z, one has x � y iff ι(y) �′ ι(x).

An element e of a lattice Z is called meet-irreducible if it cannot be written as the
infimum of two elements from Z that would both be different from e. In a finite lattice,
every element can be written as the infimum of a set of meet-irreducible elements.
Analogously join-irreducible elements are defined, with supremum instead of infimum;
of course, an anti-isomorphism maps meet-irreducible elements to join-irreducible ones
and conversely.

Examples of join-irreducible elements are the least element 0 in the lattice and its
atoms, which are elements a ∈ Z distinct from 0 such that the only elements e ∈ Z
satisfying e � a are e = a and e = 0. A (complete) lattice is called atomic [1, §VIII.9]
if the only join-irreducible elements are the least element and the atoms. An equivalent
definition is that every element e ∈ Z is the supremum of a set of atoms in Z. An example
of an atomic lattice is the face-lattice of a polyhedral cone [45, Theorem 2.7(v)].

3. AXIOMATIC CHARACTERIZATIONS IN SPECIAL CASES

In this section we discuss two elegant results of F. Matúš about axiomatic characteriza-
tion of certain substructures of probabilistic CI structures.

3.1. Axiomatic characterization of functional dependence

The first journal paper by Fero touching on a topic related to probabilistic CI was his
1991 paper about abstract functional dependence [16]. In that paper, he gave, among
other things, an axiomatic characterization of stochastic functional dependence; this
concept can be viewed as a special case of the concept of probabilistic CI.

More specifically, given a random vector ξ = [ξi]i∈N and subsets I, J ⊆ N , we
say that ξJ functionally depends on (or, equivalently, is a function of) ξI and write
I → J [ξ] if there exists a (correspondingly measurable) function g : XI → XJ such that
ξJ(ω) = g(ξI(ω)) holds for any ω ∈ Ω. Verification of the following fact is left to the
reader as an easy exercise.
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Observation 3.1. Given a discrete random vector ξ over N ,

I → J [ξ] ⇔ ξJ⊥⊥ξJ |ξI

holds for any I, J ⊆ N .

Recall that an alternative notation for ξJ⊥⊥ξJ |ξI is J⊥⊥J | I [ξ]. The functional de-
pendence of J on I can thus be interpreted as self-independence of J conditioned by I.
Every random vector ξ over N then induces a binary relation ∗ → ∗ [ξ] on the power set
P(N), which can be interpreted as a substructure of the augmented CI structure (de-
fined in Section 2.2). It follows from the results of [16], specifically see [16, Remark 4],
that a binary relation → on P(N) is induced by a discrete random vector ξ over N iff
it satisfies the following implications, interpreted as “axioms” (for any I, J,K ⊆ N):

• J ⊆ I implies I → J ,

• I → J , J → K implies I → K,

• I → J , I → K implies I → (J ∪K).

The term an FD-relation on N was used in [16] to name any binary relation→ on P(N)
satisfying the three implications listed above (FD abbreviates functional dependency).
Every FD-relation on N can be associated with a closure system on N , which is a
collection C ⊆ P(N) of subsets of N closed under intersection and containing N . Closure
systems over N , sometimes called Moore families, are known to encode abstract closure
operators on N ; see [1, §V.1]. Recall that these are operators c : P(N) → P(N)
satisfying I ⊆ c(I), c(I) = c(c(I)) and I ⊆ J ⇒ c(I) ⊆ c(J) for any I, J ⊆ N .

Specifically, every FD-relation ∗ → ∗ on N defines a closure operator on N by

c→(I) :=
⋃
{J ⊆ N : I → J } for any I ⊆ N ,

and a closure system by C→ := {C ⊆ N : C = c→(C)}. Conversely, any closure system
C ⊆ P(N) defines a closure operator on N by

cC(I) :=
⋂
{C ∈ C : I ⊆ C} for any I ⊆ N ,

and an FD-relation on N by I →C J iff J ⊆ cC(I) for any I, J ⊆ N .
The above-mentioned (one-to-one) correspondence between FD-relations → and clo-

sure systems C, defined through a shared closure operator c→ = cC , was shown in
[16] to be a special case of the Galois connections (see [1, Sections V.7,V.8]) between
lattices (P(N) × P(N),⊆) and (P(N),⊆) induced by the following binary relation
◦ ⊆ [P(N)× P(N)]× P(N):

given I, J, C ⊆ N , [I, J ] ◦ C ⇔ { I \ C 6= ∅ or J ⊆ C } .

The term FD-relation was justified in [16] by additional examples of such abstract
relations arising in other contexts: lattice theory, theory of relational databases, poly-
matroids and logical dependency of Boolean variables. A generic example is as follows:
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consider a poset (Z,�) that has the greatest element and in which every pair of elements
has the infimum ∧ (= the so-called meet semilattice). Having a finite indexed collection
{zi : i ∈ N} of elements in Z one can define, for any I, J ⊆ N ,

I → J [Z] :=
∧
i∈I

zi �
∧
j∈J

zj .

The representation theorem was proved in [16] first for the above-specified generic case
and then extended to other cases. In addition to the above stochastic functional depen-
dence ∗ → ∗ [ξ], we mention the case of an FD-relation induced by a rank function r of
a polymatroid (see Section 2.3): we write I → J [r] for I, J ⊆ N if r(I) = r(I ∪ J).

3.2. Axiomatic characterization of unconditional independence

Fero characterized stochastic independence structures in his thesis [15] and later pub-
lished that result in a journal paper, [19]. Nevertheless, an analogous result was indepen-
dently achieved in [8], where, however, possible self-independence of random variables
has not been considered.

As explained in Section 2.2, every (discrete) random vector ξ over N induces a binary
(unconditional independence) relation ∗⊥⊥∗ [ξ] on P(N), which is clearly a substructure
of the augmented CI structure. It follows from [19, Theorem 2] that a binary relation
⊥⊥ on P(N) is induced by a discrete random vector ξ over N in this way iff it is a
non-empty relation and satisfies the following implications (for any I, J,K ⊆ N):

• I⊥⊥I implies I⊥⊥N ,

• I⊥⊥J , K ⊆ J implies I⊥⊥K,

• (I ∪ J)⊥⊥K, I⊥⊥J implies (J ∪K)⊥⊥I.

Note that the triviality (I⊥⊥∅ for any I ⊆ N) and the symmetry (I⊥⊥J implies J⊥⊥I)
properties follow from the above-mentioned conditions. The term an I-relation on N
was used in [19] to name any non-empty binary relation ⊥⊥ on P(N) satisfying those
three implications (I stands for independence).

Every I-relation on N can be defined by means of its associated (abstract) class of
connected sets, which is a non-empty collection C ⊆ P(N) of subsets of N such that

• C ∈ C, C ′ ⊆ C, |C ′| ≤ 1 implies C ′ ∈ C,

• C,C ′ ∈ C, C ∩ C ′ 6= ∅ implies (C ∪ C ′) ∈ C.

The correspondence between I-relations ⊥⊥ and such set systems C was introduced in
[19] in terms of Galois connections [1, §V.7-8] induced by the following binary relation
• ⊆ [P(N)× P(N)]× P(N):

for I, J, C ⊆ N , [I, J ]•C ⇔ { I∩J∩C = ∅ and [C\(I∪J) 6= ∅ or C ⊆ I or C ⊆ J ] } .

In [19], Fero gave two proofs of the representation theorem. The first one, following the
idea from his thesis [15], used the tool of Fourier-Stieltjes transformation. The second
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proof, similar to the one from [8], was based on the Galois connections and utilized
the observations discussed in the next Section 4. Moreover, it was shown in [19] that
I-relations also arise in the context of lattice theory through the concept of algebraic
independence and an analogous representation theorem was proved as [19, Theorem 3].

4. MATROIDS AND ABSTRACT CI STRUCTURES

This section is devoted to the relation of matroids and probabilistic CI structures, which
was Fero’s favorite research topic.

4.1. Probabilistically representable matroids

The following concept was already introduced in [18, § 3]; nonetheless, we use here a
later terminology by Fero from [20, § 6]. We say that a matroid over N with a rank
function r : P(N)→ Z is strongly probabilistically representable if there exists a discrete
random vector ξ = [ξ]i∈N over N and a constant k > 0 such that

r(I) = k · hξ(I) for every I ⊆ N.

The following result by Fero, published as [18, Theorem 2], is highly important because
it is a theoretical basis of his later methodology for constructing probabilistic represen-
tations of CI structures (see Sections 4.3 and 6.1). For this reason, its modified proof is
given, which avoids an unexplained dual space interpretation from the original proof of
[18, Theorem 2].

Theorem 4.1. Every matroid which is linearly representable over a finite field is also
strongly probabilistically representable.

P r o o f . As explained in Section 2.3, the assumption means that there exist a linear
space E over a finite field F and vectors xi ∈ E , i ∈ N , in it such that

r(I) = dim ( Lin({xi}i∈I) ) for every I ⊆ N,

where Lin(∗) denotes the linear hull. One can, without loss of generality, assume that
E = Lin({xi}i∈N ) holds; otherwise, E would be replaced by its subspace. In such a case,
one has r(N) = dim(E) =: d. Since E is finite-dimensional, one can interpret it as F d

and equip it with a non-degenerate symmetric bilinear form which maps E × E to F .
Specifically, choose and fix a linear basis L ⊆ E , |L| = d; then every element of x ∈ E
can uniquely be written as x =

∑
l∈L α

x
l · l with αxl ∈ F , l ∈ L. Given x, ω ∈ E , we put

〈x, ω〉 :=
∑
l∈L α

x
l · αωl ∈ F .

To verify the probabilistic representability of the matroid we define Ω := E , which
is a finite set, and equip it with uniformly distributed probability measure P . Then we
define random variables by ξi(ω) := 〈xi, ω〉 for every ω ∈ Ω = E and i ∈ N . One can
show (we skip the proof; see [18]) that hξ(I) = r(I) · ln(|F |) for every I ⊆ N . �
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4.2. Embedding of matroids into abstract CI structures

Any ternary relation on P(N) can be interpreted as an abstract CI structure over N .
GivenM⊆ P(N)×P(N)×P(N), the record I⊥⊥J |K [M] for sets I, J,K ⊆ N is read
as “I is conditionally independent of J given (= under the condition) K with respect to
(an abstract CI structure) M”. It means both 〈I, J |K〉 ∈ M and that the triplets in
M are interpreted as (conditional) independence statements. The record I 6⊥⊥J |K [M]
then means that 〈I, J |K〉 6∈ M holds, and that the triples outside M are interpreted
as (conditional) dependence statements. If there is a mathematical object o over N
inducing (= defining) the ternary relation M then we can write I⊥⊥J |K [o] instead
and say that the CI statement is with respect to o, analogously with I 6⊥⊥J |K [o].

Thus, we say that an abstract CI structureM over N is probabilistically representable
if it is induced by a discrete random vector ξ over N in the sense of Section 2.2, that is,

M = { 〈I, J |K〉 ∈ P(N)× P(N)× P(N) : ξI⊥⊥ξJ |ξK } .

An alternative record I⊥⊥J |K [ξ] for ξI⊥⊥ξJ |ξK then follows our general notational
convention. Our terminology here is, in fact, an unsubstantial modification of the one
from [20, § 2]; see Section 5.1 for the description of the difference.

We will recognize two parts of any abstract CI structure M. By the functional
dependence part of M we will mean its intersection with the collection of triplets of
the form 〈J, J |K〉, where J,K ⊆ N are disjoint; these correspond to self-independence
CI statements. Indeed, in the case of a probabilistic CI structure, this object is none
other than the respective stochastic FD-relation; see Observation 3.1 in Section 3.1. The
(pure) conditional independence part of M will be understood as the intersection of M
with the collection of triplets of pairwise disjoint subsets of N . Indeed, in the case of a
probabilistic CI structure, this is just the standard probabilistic CI structure.

The basic idea presented in [20, § 3] was that any matroid over N can be identified
with an abstract CI structure over N , and this embedding is an injective mapping.
Specifically, given a rank function r of a matroid over N and I, J,K ⊆ N , we put

∆r(I, J |K) := r(I ∪K) + r(J ∪K)− r(I ∪ J ∪K)− r(K).

Note that one always has ∆r(I, J |K) ≥ 0 (see Sections 2.3 and 2.4). Put

Mr := { 〈I, J |K〉 ∈ P(N)× P(N)× P(N) : ∆r(I, J |K) = 0 } (2)

and interpret it as an abstract CI structure over N induced by r; thus, the symbol
I⊥⊥J |K [r] for I, J,K ⊆ N will mean ∆r(I, J |K) = 0. It follows from the arguments
in [20, § 3] that the mapping r 7→ Mr is injective. More specifically, the collection I
of independent sets in a matroid can be reconstructed from the functional dependence
part of Mr with r = rI as follows:

I = { I ⊆ N : ∀ J,K ⊆ I, J ∩K = ∅ 6= J J 6⊥⊥J |K [r] } .

This observation justifies Fero’s terminology from [20], where he used the word “matroid”
to name any abstract CI structure obtained from a rank function of a matroid in this
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way; more precisely, he used the word “matroid” to name the so-called local version of
an abstract CI structure, see Section 5.1 for an explanation.

It is clear that the definition cited above also works in the case of a rank function of
polymatroid. Thus, following Fero [20], one can say that an abstract CI structure is a
semimatroid if it is induced by a rank function r of a polymatroid through (2).

Remark 4.2. A loop in a matroid over N is a singleton which is not an independent
set in that matroid, that is, {i} 6∈ I for i ∈ N [33, § 1.1.8]. In terms of the matroid
rank function r it means r({i}) = 0 and this definition can be extended to (the rank
functions of) polymatroids. In terms of the induced abstract CI structure M =Mr it
hence means i⊥⊥i | ∅ [M]; this condition can be used as the definition of a loop within
an abstract CI structure M. Thus, any loopless matroid (= a matroid without loops)
is assigned a loopless abstract CI structure. The point here is that a loopless matroid
is uniquely determined by the pure conditional independence part of its induced CI
structure; specifically, one can reconstruct the collection I of independent sets as follows:

I = {L ⊆ N : ∀ pairwise disjoint I, J,K ⊆ L I⊥⊥J |K [rI ] } .

Therefore, one can interpret the mapping r 7→ Mr as an injective embedding of the
class of loopless matroids into the class of standard CI structures.

Remark 4.3. The conditional independence parts of semimatroids over N appear to
coincide with structural semigraphoids over N , which were introduced in [38] and later
identified in [40, § 4.4.1] with standard abstract CI structures induced by the so-called
structural imsets. Nonetheless, this observation is not immediate; it follows from a
dual description of these structures in the terms of supermodular functions; see [40,
Corollary 5.3].

The above embedding of matroids (and polymatroids) into abstract CI structures
allowed Fero in [20] to extend the term of probabilistic representability to poly/matroids.
Specifically, one can say that a polymatroid given by a rank function r is probabilistically
representable if the respective semimatroid Mr is a probabilistic CI structure; that is,
if there exists a discrete random vector ξ = [ξi]i∈N over N such that

∀ I, J,K ⊆ N I⊥⊥J |K [r] ⇔ ξI⊥⊥ξJ | ξK .

This terminology, applied to matroids, suggests that the following observation is true.

Observation 4.4. Any strongly probabilistically representable matroid over N is also
probabilistically representable.

P r o o f . Recall that we assume r = k · hξ with k > 0. As explained in Section 2.4, for
I, J,K ⊆ N , one has ξI⊥⊥ξJ | ξK iff 0 = ∆hξ(I, J |K) = k−1 ·∆r(I, J |K). �

Let us recall two more results from [20]. Fero gave in [20, § 7] an example of a
semimatroid over four variables that is not probabilistically representable. It leads to
an example of a matroid over N , |N | = 8, which is not probabilistically representable;
this is none other than the so-called Vamos cube, see [33, § 2.1.22]. The main result [20,
Theorem in § 5] says that any probabilistic representation ξ of a connected matroid is
special: it has to be a uniform probability measure on a particular subset of XN .
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4.3. Methodology for constructing probabilistic representations

Theorem 4.1, combined with Observation 4.4 was a basis of Fero’s methodology for
constructing probabilistic representations of abstract CI structures. He utilized his ap-
proach in [18] to extend the results reported in Section 3 and later in a series of papers
[22, 23, 25] devoted to the case of four discrete variables (see Section 6.1).

4.3.1. Operations preserving probabilistic representability

Further ingredients of Fero’s method were operations with abstract CI structures pre-
serving probabilistic representability. The most important one among them is the (set)
intersection: if structuresM1,M2 ⊆ P(N)×P(N)×P(N) are represented by discrete
random vectors ξ1 = [ξ1i ]i∈N , ξ

2 = [ξ2i ]i∈N then M1 ∩M2 is represented by a “com-
posed” random vector. Specifically, it is represented by ξ = [ξi]i∈N where, for each
i ∈ N , ξi = [ξ1i , ξ

2
i ] denotes a random vector composed of ξ1i and ξ2i : it takes values in

X1
i × X2

i when ξ1i takes values in X1
i and ξ2i in X2

i .
The second operation is a kind of coarsening. If φ : N ′ → N is a mapping from a

basic set N ′ onto N andM′ ⊆ P(N ′)×P(N ′)×P(N ′) is probabilistically representable
then its “coarsened” structure M over N defined by

M := { 〈I, J |K〉 ∈ P(N)× P(N)× P(N) : 〈φ−1(I), φ−1(J)|φ−1(K)〉 ∈ M′ }

is probabilistically representable, too. Indeed, if a random vector ξ′ = [ξ′j ]j∈N ′ induces
M′ then ξ = [ξi]i∈N with ξi = [ξ′j ]j∈φ−1(i) for each i ∈ N , induces M. Note that Fero,
however, used his special terminology in this context, motivated by [32], and said that
M′ is an expansion ofM. He also said (in [27, § 7]) thatM is a factor ofM′, with the
meaning that it is determined by an equivalence on N ′ defined by j ∼ j′ iff φ(j) = φ(j′).

4.3.2. Ascending conditional independence structures

Using the above-described methodology, Fero succeeded at characterizing those standard
probabilistic CI structures that are monotone in the conditioning set, [18]. His result
concerning the superset-monotonicity can be re-phrased as follows: a ternary relation
∗ ⊥⊥ ∗ | ∗ on P(N) confined to pairwise disjoint triplets is induced by a discrete ran-
dom vector ξ over N and closed under enlarging the conditioning set iff it satisfies the
following conditions (for pairwise disjoint subsets I, J,K,L,M ⊆ N):

• I⊥⊥∅ |K,

• { I⊥⊥J |KM and I⊥⊥K |M } is equivalent to JK⊥⊥I |M ,

• I⊥⊥J |K implies I⊥⊥J |KL,

• I⊥⊥J |KM , I⊥⊥J |LM , K⊥⊥L |M implies I⊥⊥J |M .

Following the terminology used in [18, § 6], we call any ternary relation satisfying these
four conditions an ACI-relation (where ACI stands for “ascending conditional indepen-
dence”). One can modify Fero’s method to construct a probabilistic representation of a
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given ACI-relation as described below. Introduce the following binary relation � between
pairwise disjoint triplets from P(N)× P(N)× P(N) and elements of P(N):

∀ I, J,K,C ⊆ N 〈I, J |K〉 � C ⇔ {C ∩K 6= ∅ or C ∩ I = ∅ or C ∩ J = ∅ } .

This relation allows us to introduce the Galois connections [1, §V.7-8] between the
two respective posets (ordered by the set-theoretical inclusion ⊆) and to observe that
ACI-relations form a complete lattice. This procedure is analogous to those presented
in Sections 3.1 and 3.2. Any ACI-relation can be defined in terms of its associated class
C ⊆ P(N) of sets where C contains all subsets of N of cardinality at most 1 and satisfies

• ∀C ⊆ N if [∀ i, j ∈ C ∃C ′ij ∈ C such that i, j ∈ C ′ij ⊆ C ] then C ∈ C.

This allows one to observe that any ACI-relation is the intersection of special ACI-
relations, namely of those induced by matroids with rank functions

rC(I) := min { 1, |I ∩ C| } for I ⊆ N, where C ⊆ N.

These matroids are linearly representable over finite fields and, by Theorem 4.1 (and
Observation 4.4), they are probabilistically representable. Finally, one realizes that
probabilistic CI structures are closed under (set) intersection.

Note that Fero’s technical presentation of his results about ACI-relations in [18] was
slightly different from our presentation here. He introduced and treated ACI-relations
in their local versions (see Section 5.1 for details), while our definition in this text is
equivalent to his later global versions (of ACI-relations) from [18, § 6].

4.3.3. Descending conditional independence structures

Here comes a re-formulation of Fero’s result concerning subset-monotone CI structures.
A ternary relation ∗⊥⊥ ∗ | ∗ on P(N) confined to pairwise disjoint triplets is induced by
a discrete random vector ξ over N and closed under reduction of the conditioning set iff
it satisfies the following conditions (for pairwise disjoint subsets I, J,K,L,M ⊆ N):

• I⊥⊥∅ |K,

• { I⊥⊥J |KM and I⊥⊥K |M } is equivalent to JK⊥⊥I |M ,

• I⊥⊥J |KL implies I⊥⊥J |K,

• I⊥⊥J |KM , I⊥⊥J |LM , K⊥⊥L | IJM implies I⊥⊥J |KLM .

Analogously, we call any ternary relation satisfying these conditions a DCI-relation
(where DCI stands for “descending conditional independence”). The proof in [18] was
based on duality considerations. Specifically, every matroid over N with a rank function
r can be ascribed a dual matroid [33, § 2.1] whose rank function r∗ is given by

r∗(I) = |I|+ r(N \ I)− r(N) for I ⊆ N.

A well-known fact is that the dual of a matroid that is linearly representable over a
field F is linearly representable over the same field [33, Corollary 2.2.9]. Given pairwise
disjoint subsets I, J,K ⊆ N , the formula

∆r∗(I, J |K) = ∆r(I, J |L) with L := N \ IJK
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implies that the structure Mr∗ is obtained from Mr by (self-inverse) duality transfor-
mation between (standard) abstract CI structures: I⊥⊥J |K ↔ I⊥⊥J |L. This transfor-
mation maps an ACI-relation to a DCI-relation and vice versa. This fact, together with
what has already been observed about ACI-relations, allows us to conclude that any
DCI-relation is an intersection of special DCI-relations, namely those induced by rank
functions r∗C , C ⊆ N . Since these relations are linearly representable over finite fields,
an analogous consideration allows us to prove that any DCI-relation is probabilistically
representable.

The aim of concluding remarks in [18, § 9] was to note that the derived observations
about ACI/DCI-relations could be used to give alternative proofs of results from [8, 9, 14]
about axiomatic characterizations of other substructures of probabilistic CI structures.

5. SEMIGRAPHOIDS

The augmented probabilistic CI structures, as defined in Section 2.2, are known to satisfy
the following basic formal properties (for possibly intersecting subsets I, J,K,M ⊆ N):

• J ⊆ K implies I⊥⊥J |K,

• I⊥⊥J |K is equivalent to J⊥⊥I |K,

• { I⊥⊥J |KM and I⊥⊥K |M } is equivalent to I⊥⊥JK |M .

Indeed, the reader can easily verify those properties using (1) in the discrete case. Every
augmented abstract CI structure satisfying those properties will be called a general
semigraphoid. If we restrict our attention to pairwise disjoint triplets of subsets of N
then the first property above can be replaced by a simpler one, namely, by

• I⊥⊥∅ |K,

and we get what is regarded as a standard definition of a semigraphoid [11, 34]. Semi-
graphoids became one of Fero’s research topics.

Remark 5.1. Dawid introduced an even more general concept of a separoid in [6];
this concept can equivalently be defined as follows: it is a poset (Z,�) that has the
least element and in which every two-element set has the join ∨ (= the so-called join
semilattice) equipped with a ternary relation ∗⊥⊥∗ | ∗ over elements of Z satisfying (for
I, J,K,M ∈ Z)

• if J � K then I⊥⊥J |K,

• I⊥⊥J |K iff J⊥⊥I |K,

• { I⊥⊥J | (K ∨M) and I⊥⊥K |M } iff I⊥⊥(J ∨K) |M ,

where J ∨K denotes the join of elements J and K in Z.
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5.1. Global and local representations of a semigraphoid

To represent a semigraphoid over N in the memory of a computer, one need not record
all involved triplets of subsets of N . One can limit one’s attention to certain elementary
CI statements. These elementary CI statements are encoded by triplets of the form
〈i, j|K〉, where i, j ∈ N , i 6= j, K ⊆ N \ ij, and by triplets 〈i, i|N \ i〉, where i ∈ N . The
next observation was made by Fero in [17, Lemma 3] for standard semigraphoids but it
can be extended to the case of general semigraphoids.

Observation 5.2. If M is a general semigraphoid over N and I, J,K ⊆ N then

I⊥⊥J |K [M] ⇔ ∀ i ∈ I \K, j ∈ J \K, L : K ⊆ L ⊆ IJK \ ij i⊥⊥j |L [M] .

Moreover, i⊥⊥i |K [M] iff { i⊥⊥i |Kj [M] and i⊥⊥j |K [M] } for disjoint i, j,K.

P r o o f . The first claim can easily be verified using the induction by |IJ \ K| and is
left to the reader. As concerns the additional claim, let us realize that

{ i⊥⊥i |Kj [M] & i⊥⊥j |K [M] } ⇔ i⊥⊥ij |K [M]

⇔ { i⊥⊥j |Ki [M] & i⊥⊥i |K [M] } ⇔ i⊥⊥i |K [M]

because i⊥⊥j |Ki [M] always holds in a general semigraphoid M. �

In particular, every semigraphoid is uniquely determined by its trace, which is its
intersection with the collection of all elementary CI statements. Fero characterized
those sets of elementary CI statements which are traces of standard semigraphoids. The
following is our re-phrasing of his result; we skip the proof and refer to [18, Proposition 1].

Observation 5.3. A set E of elementary CI statements over N is the intersection a
standard semigraphoid over N with the collection of all elementary CI statements over
N iff it satisfies (for distinct i, j and L ⊆ N \ ij, respectively for k ∈ N \ ijL):

• i⊥⊥j |L [E ] is equivalent to j⊥⊥i |L [E ],

• { i⊥⊥j | kL [E ] and i⊥⊥k |L [E ] } is equivalent to { i⊥⊥k | jL [E ] and i⊥⊥j |L [E ] } .

One can distinguish between two ways of dealing with semigraphoids and CI struc-
tures. A traditional approach of [11, 34], described in Section 2.2, is to define and
understand them as ternary relations on P(N). The lists of triplets of subsets of N
can be viewed as global versions of semigraphoids. Fero, however, preferred to work
with semigraphoids represented by their local versions. These are lists of symmetrized
elementary CI statements: indeed, there is no reason to distinguish between i⊥⊥j |L and
j⊥⊥i |L and they can both be represented by a pair ({i, j}, L) of disjoint sets. In the
case of a general semigraphoid, one can additionally consider pairs ({i}, L) of disjoint
sets representing i⊥⊥i |L.

During his career, Fero insisted on the local representation of CI structures. In his
papers about semigraphoids and CI, he considered the local versions of CI structures to
be the primary ones. He thus formally defined CI structures in their local modes and
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formulated abstract properties of CI in the form of implications between elementary CI
statements. This approach allowed him to represent semigraphoids over a small variable
set N by special diagrams; these were undirected graphs having N as the set of nodes
whose edges were annotated by respective conditioning sets, see [24, § 2]. He and his
student practically used such diagrams later in [13].

5.2. Semigraphoid inference

A related concept is that of the semigraphoid closure of a set S of CI statements (over
N), which is the smallest semigraphoid (over N) containing S. A natural question
from the point of view of computer science is what the complexity is of obtaining the
semigraphoid closure of S by consecutive applications of semigraphoid implications.
The implementation of semigraphoid inference depends on the way of internal computer
representation of semigraphoids.

The main topic of the paper [26] was the length of semigraphoidal inference sequences
for the semigraphoids encoded by their local versions. The main result of [26] was that
the length of such derivation sequence can be exponential in the cardinality of N . To
prove that result, Fero used an auxiliary mathematical construction of an undirected
graph with colored edges whose set of nodes is the set of elementary CI statements
i⊥⊥j |K where i, j ∈ N , i 6= j, K ⊆ N \ ij.

Remark 5.4. Note that, in this context, an alternative internal computer representa-
tion of semigraphoids comes from a dominance ordering between CI statements intro-
duced in [39]: I⊥⊥J |K dominates I ′⊥⊥J ′ |K ′ if

I ′ ⊆ I, J ′ ⊆ J, K ⊆ K ′, and I ′J ′K ′ ⊆ IJK .

One can encode any semigraphoid over N in the memory of a computer by the list of its
dominant triplets and implement semigraphoid inference under this alternative mode of
representation.

5.3. Matroidal approach to CI structures

Matroid theory has always been a source of inspiration for Fero in his research on CI.
The idea of interpreting abstract CI structures as generalized matroids (see Section 4.2)
led him to extending several traditional operations with matroids to the context of CI.

A basic operation of this type is that of a minor [33, Chapter 3]; it can be viewed as a
combination of two separate shrinking operations. Given a rank function r′ of a matroid
over N ′ and a subset N ⊆ N ′, let us assume that N ′ \N = D∪E is partitioned into two
disjoint sets. The respective minor is a matroid over N whose rank function r is given
by r(I) := r′(I ∪E) for any I ⊆ N . This can be interpreted as “extracting” information
from E combined with “deletion” of D. The minor operation may naturally be extended
to polymatroids, leading to the following operation with abstract CI structures. Given
M′ ⊆ P(N ′)× P(N ′)× P(N ′), the respective minor is defined by

M := { 〈I, J |K〉 ∈ P(N)× P(N)× P(N) : 〈I, J |K ∪ E〉 ∈ M′ } .
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Note that, in the context of graphical models, this operation with abstract CI structures
is interpreted as the conditioning on E combined with the marginalization to N . Fero
already showed in [20, Lemma 2] that every minor of a probabilistically representable
semimatroid is probabilistically representable.

Minors were used in [24] as tools to classify abstract CI structures. Fero characterized
several classes of abstract CI structures in terms of finitely many forbidden minors; in
particular, this concerns the class of semigraphoids and the class of structures induced by
undirected graphs through a separation concept. On the other hand, it was shown in [24]
that some classes cannot be characterized in terms of (finitely many) forbidden minors,
for example, the class of semimatroids and probabilistically representable CI structures.
The result that the class of discrete probabilistic CI structures has an infinite number
of forbidden minors was interpreted by Fero in [24, § 6] as an analog of the result about
the non-existence of a finite axiomatic characterization from [37].

The longest paper that was written by Fero as a sole author was his 2004 paper [27]
devoted to the classification of semigraphoids. Being inspired by matroid theory, he
introduced and discussed various operations with semigraphoids there. Besides minors
and operations mentioned in Section 4.3 (intersection, coarsening, and duality transfor-
mation) he considered four types of extension operations. More specifically, he defined
in a direct sum of semigraphoids, the operation called a major (being a special inverse
to the minor mapping) and the so-called parallel extension [27, § 4]; moreover, he defined
in [27, § 7] the operation of expansion (being a special inverse to the coarsening). The
relationship of the local mode of semigraphoid representation to the concept of domi-
nance from [39] (see Remark 5.4 in Section 5.2) was established in [27, § 8-9]. Fero also
introduced a kind of canonical representation of a semigraphoid in [27, § 10]. In [27,
§ 11], the concept of linear representability for a semigraphoid was introduced, which is
stronger than its probabilistic representability (see Section 4.2); the above-introduced
operations with semigraphoids were shown to preserve linear representability. The main
result ([27, Theorem 2]) says that any semigraphoid with two generators, that is, a semi-
graphoid which is the semigraphoid closure of a pair of (global) CI statements, is linearly
representable; the result from [39] is thus strengthened.

6. THE CASE OF FOUR RANDOM VARIABLES

This section is devoted to Fero’s results on CI structures over four random variables.
Both the discrete case and the regular Gaussian case are discussed here.

6.1. Discrete CI structures

In a series of papers [22, 23, 25], Fero succeeded in characterizing all augmented discrete
CI structures (defined in Section 2.2) over four variables. In this section, his method-
ological approach to this task is described in more detail.

First of all, let us recall that probabilistically representable CI structures are closed
under permutations of variables. More specifically, let π be a one-to-one mapping from
N onto N (= a permutation of N). It can be applied to components of a random vector
as follows: ξ = [ξi]i∈N is assigned a vector ξ′ := [ξπ−1(i)]i∈N . The entropy function
of ξ is then transformed analogously: hξ′(I) = hξ(π−1(I)) for any I ⊆ N . The facts
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mentioned in Section 2.4 imply that I⊥⊥J |K [ξ] iff π(I)⊥⊥π(J) |π(K) [ξ′] for all subsets
I, J,K ⊆ N . In particular, if M is the CI structure induced by ξ then its permuted
abstract CI structure M′ := { 〈π(I), π(J)|π(K)〉 : 〈I, J |K〉 ∈ M} is induced by ξ′.

The way in which a permutation π of N is applied to an entropy function hξ can
naturally be extended to an arbitrary set function: a function r : P(N)→ R is assigned
r′ : P(N)→ R given by r′(I) = r(π−1(I)) for I ⊆ N . In particular, the space RP(N) of
set functions disintegrates into equivalence classes of permutational equivalence, which
are named permutational types below. Since a rank function r of a polymatroid is
transformed by a permutation π to a rank function r′ of polymatroid, one can confine
the permutational equivalence to polymatroids. The permutational equivalence can also
be introduced for induced abstract CI structures, called semimatroids in Section 4.2.
In particular, the permutational types can be recognized both in the context of (rank
functions of) polymatroids and in the context of their induced abstract CI structures.

6.1.1. The starting geometrical analysis

The first paper [22] in the series was a joint paper by Fero and myself. A starting point
there was a conjecture that the class of augmented discrete CI structures over N with
|N | = 4 coincides with the class of semimatroids over N (defined in Section 4.2). Our
methodological approach was similar to that described in Section 4.3; specifically, we
planned to find a small collection C of semimatroids over N such that

• every semimatroid over N would be the intersection of semimatroids from C, and

• to verify that any semimatroid from C would be probabilistically representable.

The smallest possible collection C satisfying the first condition is the class of meet-
irreducible elements (see Section 2.5) in the poset of semimatroids over N (ordered by
⊆). We first found in [22, Lemma 3.1] that the lattice of semimatroids is anti-isomorphic
to the face-lattice of a pointed convex cone of (the rank functions of) polymatroids. Since
that cone is known to be a complete atomic lattice (cf. Section 2.5), the first step was to
characterize the extreme rays of that cone. The collection C is then none other than the
set of semimatroids induced by generators of these extreme rays and by the zero rank
function. Fero found the extreme rays of the polymatroidal cone in the case |N | = 4
in a previous paper of his [21, § 5]. Specifically, one has 41 such extreme rays and they
are divided into 11 permutational types. Thus, C has 42 elements (because one has to
include the largest semimatroid induced by the zero rank function).

6.1.2. Probabilistic representability confirmation in the majority of cases

The next step was to realize that 27 extreme rays of the above polymatroidal cone
are generated by rank functions of matroids. The zero function on P(N) is also a rank
function of a matroid. Since matroids over N with |N | ≤ 7 are linearly representable over
finite fields [33, Proposition 6.4.10], one can apply Theorem 4.1 (and Observation 4.4)
to show that the induced abstract CI structures are probabilistically representable.

The remaining 14 non-matroidal extreme rays of the cone fall into three permutational
types and two of these three types are obtained by coarsening of the matroidal types
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over N ′ with |N ′| = 5 (see Section 4.3.1). As the coarsening preserves the probabilistic
representability, the respective semimatroids are probabilistically representable for the
same reason.

6.1.3. Ingleton inequality and a modified conjecture

The last permutational type involves six extreme rays of the polymatroidal cone: any
two-element subset {i, j} of N := {i, j, k, l} gives a ray generated by the function

rij(∅) = 0, rij(N) = rij(ij) = 4 and rij(S) = |S|+ 1 for other S ⊆ N.

The semimatroid induced by rij was found in [20, § 7] not to be probabilistically rep-
resentable. In fact, there is a special Ingleton inequality [10] known to be valid for any
rank function of a linearly representable matroid; it has the form � r(ij) ≥ 0 where

� r(ij) := −r(ij) + r(ik) + r(il) + r(jk) + r(jl) + r(kl)− r(k)− r(l)− r(ikl)− r(jkl).

Clearly, rij does not satisfy this inequality. Further observation, made in [22, § 4], was
that the subcone of the polymatroidal cone specified by the Ingleton inequalities has 35
extreme rays: these are just the above-mentioned probabilistically representable extreme
rays of the polymatroidal cone. Nonetheless, a conjecture that this subcone determines
all probabilistically representable semimatroids over four variables appeared not to be
true.

6.1.4. Additional geometrical analysis and representability disproval techniques

A more detailed geometrical analysis of the polymatroidal cone was, therefore, done in
[22, § 6]: it was shown there that the cone is a disjoint union of its subcone specified by
the Ingleton inequalities and six pieces specified by � r(ij) < 0. For a fixed pair ij, the
topological closure Hij of the respective piece is the subcone of the polymatroidal cone
given by � r(ij) ≤ 0. The 15 extreme rays of Hij were found in [22, Lemma 6.1], which
helped us to characterize the non-Ingleton semimatroids, that is, the semimatroids which
are induced by rank functions from Hij but not by rank functions from the subcone given
by the Ingleton inequalities.

The analysis of the non-Ingleton semimatroids was the topic of the second paper
[23] in the series: the goal was to determine which of them were probabilistically rep-
resentable and which were not. Several techniques to disprove their probabilistic repre-
sentability were used there. The main such technique from [23, § 2] was based on finer
properties of probabilistic CI applicable only within a wider framework of σ-algebras; see
[31] for details. The other techniques, reported in [23, § 3-4], were more specific, based
either on the interpretation of CI statements in terms of factorization or on the construc-
tion of special probability distributions and the application of information-theoretical
inequalities to them.

6.1.5. Application of conditional information inequalities

A novel technique was applied in the third paper [25] in the series, published four years
after the second one [23]. The disproval of probabilistic representability of some non-
Ingleton semimatroids in [25, § 3] was based on conditional information inequalities for
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the entropy function; note that this new method was inspired by a breakthrough made
by Yeung and Zhang in 1997 [44].

The probabilistic representability for a few remaining non-Ingleton semimatroids was
confirmed by four direct constructions in [23, § 5] and [25, § 3]. The last section [25, § 4] of
the third paper gathered all the observations, with a conclusion that every (augmented)
discrete probabilistic CI structure over four variables is the intersection of some of 120
meet-irreducible elements in the lattice of probabilistically representable semimatroids,
which fall into 16 permutational types.

6.2. Gaussian CI structures

Fero was also interested in characterizing standard CI structures induced by regular
Gaussian distributions. In a conference contribution [28] he introduced methods of
algebraic statistics in the research on CI structures. In [28, § 1], an elegant criterion was
given for the validity of an elementary CI statement with respect to a regular Gaussian
distribution. Specifically, if i, j ∈ N are distinct, K ⊆ N \ ij and ξ has a multivariate
normal distribution with a covariance matrix Σ ∈ RN×N then i⊥⊥j |K [ξ] holds iff the
the determinant of the iK × jK-submatrix of Σ vanishes. Note that the advantage of
this criterion in comparison with the traditional criterion recalled in Section 2.2 is that
one avoids computing the inverse of a sub-matrix of Σ.

6.2.1. Methods of algebraic statistics

The source of motivation for the paper [28] was the question of testing the validity of
implications among elementary CI statements in a regular Gaussian case. An example
of such specifically Gaussian implication is the property called weak transitivity in [34]:

{ i⊥⊥j | kL and i⊥⊥j |L } ⇒ { i⊥⊥k |L or j⊥⊥k |L } .

One can consider many analogous implication tasks: given disjoint sets of (elementary)
CI statements A and C, decide whether, for any (regular) Gaussian distribution P , the
simultaneous validity of the CI statements from A with respect to P implies that at
least one of the CI statements from C is valid with respect to P .

Using Fero’s simple Gaussian CI criterion, one can reformulate any such implication
task as the problem of recognizing whether a certain semi-algebraic set (= a set in a
Euclidean space specified by finitely many polynomial inequalities) is empty or not. More
specifically, the space is RN×N , the CI statements turn into polynomial equations on
entries in Σ and the assumption that Σ is positive definite can be formulated in the form
of polynomial inequalities. Fero suggested approximating this problem by relaxing the
constraints so that the relaxed problem can be treated easily by tools of computational
algebra [4], such as the Gröbner basis computation. For example, one can consider the
space of symmetric matrices with complex entries whose main square sub-matrices are
regular.

The main result, [28, Proposition 1], gives a necessary and sufficient condition for
the emptiness of the relaxed semi-algebraic set, which is formulated in terms of rings
of polynomials. This sufficient condition for the validity of the respective Gaussian
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CI implication can then be tested by tools of computational algebra and allows one
to confirm all valid Gaussian CI implications in the case of three variables. On the
other hand, an example was given ([28, Example 3]) that not every valid Gaussian CI
implication over four variables can be verified by this particular relaxation technique.

6.2.2. Gaussoids

In a later journal paper [13] Fero and his student Radim Lněnička introduced an abstract
concept of a gaussoid : it is defined as a (standard) semigraphoid satisfying basic (regular)
Gaussian CI implications. Every regular Gaussian CI structure is a gaussoid and the
converse holds in the case of at most three variables. Both regular Gaussian CI structures
and gaussoids were observed in [13, § 2] to be closed under the duality transformation
mentioned in Section 4.3.3: the dual of a Gaussian CI structure corresponding to Σ
corresponds to the inverse Σ−1.

It was shown in [13, § 3] that every semigraphoid induced by a simple undirected
graph over N through a natural separation test is probabilistically representable by a
regular Gaussian distribution. This result implies that the same is true for the duals of
these semigraphoids. In [13, § 4], all gaussoids over N with |N | = 4 were characterized:
there are 679 such gaussoids falling into 58 permutational types, while the number of
types of “separational” graphical semigraphoids is only 11. The characterization of
those of them which are representable by regular Gaussian distributions was given in
[13, § 5]: there are 629 regular Gaussian CI structures over four variables falling into 53
permutational types. All standard regular Gaussian CI structures over four variables
had thus been characterized.

7. GRAPHICAL AND BINARY CI STRUCTURES

Three remaining papers on CI by Fero are mentioned in this last section.

7.1. Graphical models of CI structure

The first paper by Fero devoted specifically to graphical modeling of CI structures was
his 1992 note [17]. It was about CI structures over N ascribed to undirected graphs
over N which are simple, that is, without multiple edges and loops. Various ways to
relate the (standard) CI structure of a random vector over N and an undirected graph
G over N were proposed in [34]: one can specifically mention pairwise Markov property,
local Markov property, and the global Markov property (defined through a separation
test) with respect to G. Fero gave a graphical condition on G in [17, Proposition 1],
characterizing situations when the local and global Markov properties with respect to G
coincide; it is formulated in terms of forbidden induced subgraphs of G. Analogously, [17,
Proposition 2] characterizes the coincidence of the local and pairwise Markov properties.

Statistical models assigned to undirected graphs were considered in Fero’s 2012 paper
[29]. These models are formally defined as classes of probability distributions on a fixed
joint sample space XN which satisfy the global Markov property with respect to graphs.
One can distinguish the discrete case and the regular Gaussian case and, typically,
restricts the attention to probability distributions with strictly positive densities. By
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the well-known Hammersley-Clifford theorem [11, § 3.2], globally Markovian probability
distributions with respect to an undirected graph G coincide with those whose densities
factorize according to G.

Any such a class of distributions P (= a statistical model ascribed to an undirected
graph) is known to be log-convex, which means that, whenever P,Q ∈ P are determined
by densities p and q on XN and α ∈ (0, 1), then the probability distribution whose density
is proportional to the function x ∈ XN 7→ p(x)α · q(x)1−α belongs to P. The main result
[29, Theorem 1] says that, whenever a class P of (positive) discrete distributions on XN
is log-convex and defined in terms of CI restrictions (over N), then it has to coincide
with the statistical model assigned to an undirected graph G over N . An analogous
result [29, Theorem 2] for a regular Gaussian case claims that the same implication is
true for a class P of regular Gaussian distributions on RN ≡ XN .

7.2. Binary CI structures

The task of characterizing CI structures induced by binary random vectors is touched
upon in Fero’s last paper among those devoted to CI, [30]. The main result [30, Theo-
rem 1] can be interpreted as an extension of an algorithmic characterization of partial
binary representability. Specifically, the representability is partial in the sense that it
concerns special CI statements i⊥⊥j and i⊥⊥j | k, where the elements i, j, k ∈ N are
distinct. One has a prescribed set L of such special triplets over N and is interested
in the existence of a binary random vector ξ over N such that a triplet belongs to L
iff it represents a valid CI statement with respect of ξ. The problem is extended by
prescribing a pattern σ of signs of covariances between variables ξi and ξj for i 6= j,
where an additional neutral sign is allowed to cover the case of independence ξi⊥⊥ξj .

A necessary and sufficient condition for the existence of a binary vector ξ over N
having the prescribed L and σ is given, involving the solvability of a certain simple
system of linear equalities and inequalities. The point here is that the existence of a
solution to such a system of linear constraints can be tested by linear programming
tools; from an algorithmic point of view, it is a problem of polynomial complexity. An
additional observation says that the condition is also equivalent to (a seemingly stronger
requirement of) the existence of a positive binary random vector ξ′ representing L and
σ. An interesting fact is that the main mathematical tool used in the proof was Fourier-
Stieltjes transformation, which had already been used by Fero in his thesis [15].

The main result of [30] was formulated for standard CI structures that do not involve
functional dependencies among random variables. It was then modified in [30, § 4] to
cover the case of augmented CI structures that involve functional dependencies. A
source of motivation for the results in [30, § 6], extending those from [3], was to offer
methods to recognize abstract ternary relations of causal betweenness discussed in [2];
these relations have philosophical motivation dating back to Reichenbach [35].
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[13] R. Lněnička and F. Matúš: On Gaussian conditional independence structures. Kyber-
netika 43 (2007), 3, 327–342. CORPUS:16748330

[14] F. M. Malvestuto: A unique formal system for binary decompositions of database
relations, probability distributions and graphs. Inform. Sci. 59 (1992), 21–52.
DOI:10.1016/0020-0255(92)90042-7
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[37] M. Studený: Conditional independence relations have no finite complete characterization.
In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions
and Random Processes, volume B, Academia, Prague 1992, pp. 377–396.
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