8,928 research outputs found

    Characterizing Spatial Patterns of Base Stations in Cellular Networks

    Full text link
    The topology of base stations (BSs) in cellular networks, serving as a basis of networking performance analysis, is considered to be obviously distinctive with the traditional hexagonal grid or square lattice model, thus stimulating a fundamental rethinking. Recently, stochastic geometry based models, especially the Poisson point process (PPP), attracts an ever-increasing popularity in modeling BS deployment of cellular networks due to its merits of tractability and capability for capturing nonuniformity. In this study, a detailed comparison between common stochastic models and real BS locations is performed. Results indicate that the PPP fails to precisely characterize either urban or rural BS deployment. Furthermore, the topology of real data in both regions are examined and distinguished by statistical methods according to the point interaction trends they exhibit. By comparing the corresponding real data with aggregative point process models as well as repulsive point process models, we verify that the capacity-centric deployment in urban areas can be modeled by typical aggregative processes such as the Matern cluster process, while the coverage-centric deployment in rural areas can be modeled by representativ

    Large-scale Spatial Distribution Identification of Base Stations in Cellular Networks

    Full text link
    The performance of cellular system significantly depends on its network topology, where the spatial deployment of base stations (BSs) plays a key role in the downlink scenario. Moreover, cellular networks are undergoing a heterogeneous evolution, which introduces unplanned deployment of smaller BSs, thus complicating the performance evaluation even further. In this paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial modeling of cellular network structure. Unlike the related works, we divide the BSs into different subsets according to geographical factor (e.g. urban or rural) and functional type (e.g. macrocells or microcells), and perform detailed spatial analysis to each subset. After examining the accuracy of Poisson point process (PPP) in BS locations modeling, we take into account the Gibbs point processes as well as Neyman-Scott point processes and compare their accuracy in view of large-scale modeling test. Finally, we declare the inaccuracy of the PPP model, and reveal the general clustering nature of BSs deployment, which distinctly violates the traditional assumption. This paper carries out a first large-scale identification regarding available literatures, and provides more realistic and more general results to contribute to the performance analysis for the forthcoming heterogeneous cellular networks

    Stochastic Geometry Modeling of Cellular Networks: Analysis, Simulation and Experimental Validation

    Full text link
    Due to the increasing heterogeneity and deployment density of emerging cellular networks, new flexible and scalable approaches for their modeling, simulation, analysis and optimization are needed. Recently, a new approach has been proposed: it is based on the theory of point processes and it leverages tools from stochastic geometry for tractable system-level modeling, performance evaluation and optimization. In this paper, we investigate the accuracy of this emerging abstraction for modeling cellular networks, by explicitly taking realistic base station locations, building footprints, spatial blockages and antenna radiation patterns into account. More specifically, the base station locations and the building footprints are taken from two publicly available databases from the United Kingdom. Our study confirms that the abstraction model based on stochastic geometry is capable of accurately modeling the communication performance of cellular networks in dense urban environments.Comment: submitted for publicatio

    What is the best spatial distribution to model base station density? A deep dive into two european mobile networks

    Get PDF
    This paper studies the base station (BS) spatial distributions across different scenarios in urban, rural, and coastal zones, based on real BS deployment data sets obtained from two European countries (i.e., Italy and Croatia). Basically, this paper takes into account different representative statistical distributions to characterize the probability density function of the BS spatial density, including Poisson, generalized Pareto, Weibull, lognormal, and \alpha -Stable. Based on a thorough comparison with real data sets, our results clearly assess that the \alpha -Stable distribution is the most accurate one among the other candidates in urban scenarios. This finding is confirmed across different sample area sizes, operators, and cellular technologies (GSM/UMTS/LTE). On the other hand, the lognormal and Weibull distributions tend to fit better the real ones in rural and coastal scenarios. We believe that the results of this paper can be exploited to derive fruitful guidelines for BS deployment in a cellular network design, providing various network performance metrics, such as coverage probability, transmission success probability, throughput, and delay

    Two-tier Spatial Modeling of Base Stations in Cellular Networks

    Full text link
    Poisson Point Process (PPP) has been widely adopted as an efficient model for the spatial distribution of base stations (BSs) in cellular networks. However, real BSs deployment are rarely completely random, due to environmental impact on actual site planning. Particularly, for multi-tier heterogeneous cellular networks, operators have to place different BSs according to local coverage and capacity requirement, and the diversity of BSs' functions may result in different spatial patterns on each networking tier. In this paper, we consider a two-tier scenario that consists of macrocell and microcell BSs in cellular networks. By analyzing these two tiers separately and applying both classical statistics and network performance as evaluation metrics, we obtain accurate spatial model of BSs deployment for each tier. Basically, we verify the inaccuracy of using PPP in BS locations modeling for either macrocells or microcells. Specifically, we find that the first tier with macrocell BSs is dispersed and can be precisely modelled by Strauss point process, while Matern cluster process captures the second tier's aggregation nature very well. These statistical models coincide with the inherent properties of macrocell and microcell BSs respectively, thus providing a new perspective in understanding the relationship between spatial structure and operational functions of BSs

    Underlay Drone Cell for Temporary Events: Impact of Drone Height and Aerial Channel Environments

    Full text link
    Providing seamless connection to a large number of devices is one of the biggest challenges for the Internet of Things (IoT) networks. Using a drone as an aerial base station (ABS) to provide coverage to devices or users on ground is envisaged as a promising solution for IoT networks. In this paper, we consider a communication network with an underlay ABS to provide coverage for a temporary event, such as a sporting event or a concert in a stadium. Using stochastic geometry, we propose a general analytical framework to compute the uplink and downlink coverage probabilities for both the aerial and the terrestrial cellular system. Our framework is valid for any aerial channel model for which the probabilistic functions of line-of-sight (LOS) and non-line-of-sight (NLOS) links are specified. The accuracy of the analytical results is verified by Monte Carlo simulations considering two commonly adopted aerial channel models. Our results show the non-trivial impact of the different aerial channel environments (i.e., suburban, urban, dense urban and high-rise urban) on the uplink and downlink coverage probabilities and provide design guidelines for best ABS deployment height.Comment: This work is accepted to appear in IEEE Internet of Things Journal Special Issue on UAV over IoT. Copyright may be transferred without notice, after which this version may no longer be accessible. arXiv admin note: text overlap with arXiv:1801.0594

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios
    corecore