10,331 research outputs found

    DILAND: An Algorithm for Distributed Sensor Localization with Noisy Distance Measurements

    Full text link
    In this correspondence, we present an algorithm for distributed sensor localization with noisy distance measurements (DILAND) that extends and makes the DLRE more robust. DLRE is a distributed sensor localization algorithm in Rm\mathbb{R}^m (m≥1)(m\geq1) introduced in \cite{usman_loctsp:08}. DILAND operates when (i) the communication among the sensors is noisy; (ii) the communication links in the network may fail with a non-zero probability; and (iii) the measurements performed to compute distances among the sensors are corrupted with noise. The sensors (which do not know their locations) lie in the convex hull of at least m+1m+1 anchors (nodes that know their own locations.) Under minimal assumptions on the connectivity and triangulation of each sensor in the network, this correspondence shows that, under the broad random phenomena described above, DILAND converges almost surely (a.s.) to the exact sensor locations.Comment: Submitted to the IEEE Transactions on Signal Processing. Initial submission on May 2009. 12 page

    Highly efficient Localisation utilising Weightless neural systems

    Get PDF
    Efficient localisation is a highly desirable property for an autonomous navigation system. Weightless neural networks offer a real-time approach to robotics applications by reducing hardware and software requirements for pattern recognition techniques. Such networks offer the potential for objects, structures, routes and locations to be easily identified and maps constructed from fused limited sensor data as information becomes available. We show that in the absence of concise and complex information, localisation can be obtained using simple algorithms from data with inherent uncertainties using a combination of Genetic Algorithm techniques applied to a Weightless Neural Architecture

    Distributed Algorithms for Stochastic Source Seeking With Mobile Robot Networks

    Get PDF
    Autonomous robot networks are an effective tool for monitoring large-scale environmental fields. This paper proposes distributed control strategies for localizing the source of a noisy signal, which could represent a physical quantity of interest such as magnetic force, heat, radio signal, or chemical concentration. We develop algorithms specific to two scenarios: one in which the sensors have a precise model of the signal formation process and one in which a signal model is not available. In the model-free scenario, a team of sensors is used to follow a stochastic gradient of the signal field. Our approach is distributed, robust to deformations in the group geometry, does not necessitate global localization, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the field. In the model-based scenario, the sensors follow a stochastic gradient of the mutual information (MI) between their expected measurements and the expected source location in a distributed manner. The performance is demonstrated in simulation using a robot sensor network to localize the source of a wireless radio signal

    Probably Unknown: Deep Inverse Sensor Modelling In Radar

    Full text link
    Radar presents a promising alternative to lidar and vision in autonomous vehicle applications, able to detect objects at long range under a variety of weather conditions. However, distinguishing between occupied and free space from raw radar power returns is challenging due to complex interactions between sensor noise and occlusion. To counter this we propose to learn an Inverse Sensor Model (ISM) converting a raw radar scan to a grid map of occupancy probabilities using a deep neural network. Our network is self-supervised using partial occupancy labels generated by lidar, allowing a robot to learn about world occupancy from past experience without human supervision. We evaluate our approach on five hours of data recorded in a dynamic urban environment. By accounting for the scene context of each grid cell our model is able to successfully segment the world into occupied and free space, outperforming standard CFAR filtering approaches. Additionally by incorporating heteroscedastic uncertainty into our model formulation, we are able to quantify the variance in the uncertainty throughout the sensor observation. Through this mechanism we are able to successfully identify regions of space that are likely to be occluded.Comment: 6 full pages, 1 page of reference
    • …
    corecore