23,377 research outputs found

    Stochastic approach for active and reactive power management in distribution networks

    Get PDF
    YesIn this paper, a stochastic method is proposed to assess the amount of active and reactive power that can be injected/absorbed to/from grid within a distribution market environment. Also, the impact of wind power penetration on the reactive and active distribution-locational marginal prices is investigated. Market-based active and reactive optimal power flow is used to maximize the social welfare considering uncertainties related to wind speed and load demand. The uncertainties are modeled by Scenario-based approach. The proposed model is examined with 16-bus UK generic distribution system.Supported by the Higher Education Ministry of Iraqi government

    Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution

    Full text link
    With the increasing share of renewable and distributed generation in electrical distribution systems, Active Network Management (ANM) becomes a valuable option for a distribution system operator to operate his system in a secure and cost-effective way without relying solely on network reinforcement. ANM strategies are short-term policies that control the power injected by generators and/or taken off by loads in order to avoid congestion or voltage issues. Advanced ANM strategies imply that the system operator has to solve large-scale optimal sequential decision-making problems under uncertainty. For example, decisions taken at a given moment constrain the future decisions that can be taken and uncertainty must be explicitly accounted for because neither demand nor generation can be accurately forecasted. We first formulate the ANM problem, which in addition to be sequential and uncertain, has a nonlinear nature stemming from the power flow equations and a discrete nature arising from the activation of power modulation signals. This ANM problem is then cast as a stochastic mixed-integer nonlinear program, as well as second-order cone and linear counterparts, for which we provide quantitative results using state of the art solvers and perform a sensitivity analysis over the size of the system, the amount of available flexibility, and the number of scenarios considered in the deterministic equivalent of the stochastic program. To foster further research on this problem, we make available at http://www.montefiore.ulg.ac.be/~anm/ three test beds based on distribution networks of 5, 33, and 77 buses. These test beds contain a simulator of the distribution system, with stochastic models for the generation and consumption devices, and callbacks to implement and test various ANM strategies

    Stochastic optimisation-based valuation of smart grid options under firm DG contracts

    Get PDF
    Under the current EU legislation, Distribution Network Operators (DNOs) are expected to provide firm connections to new DG, whose penetration is set to increase worldwide creating the need for significant investments to enhance network capacity. However, the uncertainty around the magnitude, location and timing of future DG capacity renders planners unable to accurately determine in advance where network violations may occur. Hence, conventional network reinforcements run the risk of asset stranding, leading to increased integration costs. A novel stochastic planning model is proposed that includes generalized formulations for investment in conventional and smart grid assets such as Demand-Side Response (DSR), Coordinated Voltage Control (CVC) and Soft Open Point (SOP) allowing the quantification of their option value. We also show that deterministic planning approaches may underestimate or completely ignore smart technologies

    Optimizing Service Restoration in Distribution Systems with Uncertain Repair Time and Demand

    Get PDF
    This paper proposes a novel method to co-optimize distribution system operation and repair crew routing for outage restoration after extreme weather events. A two-stage stochastic mixed integer linear program is developed. The first stage is to dispatch the repair crews to the damaged components. The second stage is distribution system restoration using distributed generators, and reconfiguration. We consider demand uncertainty in terms of a truncated normal forecast error distribution, and model the uncertainty of the repair time using a lognormal distribution. A new decomposition approach, combined with the Progressive Hedging algorithm, is developed for solving large-scale outage management problems in an effective and timely manner. The proposed method is validated on modified IEEE 34- and 8500-bus distribution test systems.Comment: Under review in IEEE Transactions on Power System

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    corecore