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Abstract— Under the current EU legislation, Distribution Network 

Operators (DNOs) are expected to provide firm connections to new 

DG, whose penetration is set to increase worldwide creating the 

need for significant investments to enhance network capacity. 

However, the uncertainty around the magnitude, location and 

timing of future DG capacity renders planners unable to accurately 

determine in advance where network violations may occur. Hence, 

conventional network reinforcements run the risk of asset 

stranding, leading to increased integration costs. A novel stochastic 

planning model is proposed that includes generalized formulations 

for investment in conventional and smart grid assets such as 

Demand-Side Response (DSR), Coordinated Voltage Control (CVC) 

and Soft Open Point (SOP) allowing the quantification of their 

option value. We also show that deterministic planning approaches 

may underestimate or completely ignore smart technologies. 

Index Terms— Firm DG contracts, Option Value of smart 

technologies, Planning under uncertainty, Real Options 

I.  NOMENCLATURE 

Sets and indices 

Ω𝐸   Set of epochs, indexed 𝑒 

Ω𝐺   Set of generation units, indexed 𝑔 

Ω𝐿   Set of distribution lines, indexed 𝑙 
Ω𝐶   Set of normally-open points, indexed 𝑐 

Ω𝛭   Set of scenario-tree nodes, indexed 𝑚 

Ω𝑁  Set of system buses, indexed 𝑛 

Ω𝑇   Set of demand periods, indexed 𝑡 

ε𝑚  Epoch to which scenario-tree node 𝑚 belongs 

                       Φ𝑘(𝑚)  Time-ordered set of all parent nodes of scenario-tree 

node 𝑚, from the first epoch up to epoch ε𝑚 − 𝑘 

 

Input Parameters 

γ𝑥  Investment cost (£/year) for line reconductoring  

 (𝑥 = 𝐵), CVC (𝑥 = 𝐶), DSR (𝑥 = 𝐷), SOP(𝑥 = 𝑆)  

η𝑓 SOP efficiency factor  

π𝑚  Probability of scenario-tree node 𝑚 occurring 

Ψ𝑛,𝑡 Tangent of the load angle at bus 𝑛 at period 𝑡 

ζ𝑡,𝑔  Output of 𝑔 ∈ 𝛺𝐷𝐺 at 𝑡 expressed as % of its 

installed capacity. For 𝑔 ∈ 𝛺𝑇𝐻, ζ𝑡,𝑔 = 1, ∀𝑡 

𝑏𝑙
o  Line susceptance before reinforcement (pu) 

𝑏𝑙
N  Line susceptance after reinforcement (pu) 

𝑔𝑙
o  Line conductance before reinforcement (pu) 

𝑔𝑙
𝑁  Line conductance after reinforcement (pu) 

𝐹𝑙 Existing capacity of line 𝑙 (pu) 

𝐹𝑚𝑎𝑥  Extra capacity, obtained from reconductoring, 

relative to the existing capacity  (pu) 

�̅�𝑡,𝑛 Max load that can be shifted to 𝑡 at bus 𝑛 (pu) 

𝑓𝑡,𝑛 % of initial load at 𝑛 for shifting to a period 𝜏 ≠ 𝑡 

𝐼𝑛,𝑔  Signifies if generator 𝑔 is connected to bus 𝑛 

𝑑𝑡,𝑛 Real power demand at bus 𝑛, period 𝑡 (pu) 

𝑘𝑋   Build time (epochs) for reconductoring (𝑥 = 𝐿), 

 for CVC (𝑥 = 𝐶), DSR (𝑥 = 𝐷), SOP (𝑥 = 𝑆) 

𝑛𝑐
𝑥 Terminals (𝑥 = 𝑎, 𝑏) of SOP installed at c  

𝑃𝑚,𝑔
𝑚𝑎𝑥 Max real power stable generation of 𝑔 (pu) 

𝑄𝑚,𝑔
𝑚𝑎𝑥 Max reactive power stable generation of 𝑔 (pu) 

𝑟ε𝑚
𝐼  Cumulative discount factor for investment cost  

𝑆𝑐
𝑚𝑎𝑥  Capacity of SOP installed at 𝑐  (pu)  

𝑢𝑙 Sending bus of line 𝑙  
𝑣𝑙  Receiving bus of line 𝑙 
𝑉𝑠𝑒𝑡   Fixed voltage value at the substation  (pu) 

𝑉𝑚𝑖𝑛  Minimum voltage statutory limit (pu) 

𝑉𝑚𝑎𝑥  Maximum voltage statutory limit (pu) 

𝑉𝑚𝑖𝑛
𝑐𝑣𝑐   Minimum voltage attainable by CVC (pu) 

𝑉𝑚𝑎𝑥
𝑐𝑣𝑐   Maximum voltage attainable by CVC (pu) 

 

Decision Variables 

θ𝑚,𝑡,𝑛 Voltage angle corresponding to bus 𝑛 (rad) 

ξ𝑚,𝑡,𝑛 Re-scheduled flexible demand at bus 𝑛 (pu) 

𝐵𝑚,𝑙 Binary variable for deciding to reconductor 𝑙 

�̃�𝑚,𝑙 State variable of reconductoring line 𝑙  

𝐶𝑚 Binary variable for deciding to invest in CVC 

�̃�𝑚 State variable of CVC investment  

𝐷𝑚,𝑛 Binary variable for deciding to invest DSR at 𝑛 

�̃�𝑚,𝑛 State variable of DSR investment at bus 𝑛 

�̃�𝑚,𝑙  State variable representing the extra 

  capacity due to reconductoring of line  𝑙 (pu) 

𝐻𝑚,𝑡,𝑐 Power drawn by SOP at terminal  𝑛𝑐
𝑎 (pu) 

𝑅𝑚,𝑡,𝑐 Power drawn by SOP at terminal 𝑛𝑐
𝑏 (pu) 



𝑃𝑚,𝑡,𝑔 Real power output of unit 𝑔 (pu) 

𝑃𝑚,𝑡,𝑙
𝑠  Real power flow at sending bus of line 𝑙 (pu) 

𝑃𝑚,𝑡,𝑙
𝑟  Real power flow at receiving bus of line 𝑙 (pu) 

𝑄𝑚,𝑡,𝑔 Reactive power output of unit 𝑔 (pu) 

𝑄𝑚,𝑡,𝑙
𝑠  Reactive power flow at sending bus of 𝑙 (pu) 

𝑄𝑚,𝑡,𝑙
𝑟  Reactive power flow at receiving bus of 𝑙 (pu) 

𝑆𝑚,𝑐 Binary variable for deciding to invest in SOP 

�̃�𝑚,𝑐 State variable of SOP investment   

𝑉𝑚,𝑡,𝑛 Voltage magnitude at bus 𝑛 (pu) 

𝑉𝑚,𝑡
𝐶  Substation voltage as regulated by CVC (pu) 

𝑉𝑚,𝑡
𝑛𝑜𝐶 Substation voltage in absence of CVC (pu) 

II.  INTRODUCTION 

Distribution networks are facing multiple challenges due to 
the increasing penetration of renewables Distributed Generation 
(DG), which are currently expected to be integrated in the form of 
firm connections [1]. One such challenge relates to the 
development of the voltage rise effect which involves voltage 
magnitudes rising above statutory limits at times of low demand 
and high DG output. To face this challenge, one possible solution 
is for the Distribution Network Operators (DNOs) to resort to 
reinforcements of particular weak areas of the networks. 
However, since there is a lot of uncertainty around the location of 
future DG connections, given that they realize without prior 
coordination with the network planners, the DNOs cannot 
accurately determine in advance the location of occurrence of 
network violations and, therefore, some of the investment 
decisions may turn out stranded or underutilized. 

Smart technologies may be viewed as an alternative to 
conventional network reinforcements [2] for tackling the voltage 
rise effect. In addition, due to their inherent flexibility they can 
allow risk management by reducing the potential for stranded 
conventional assets as they can be included in strategies that allow 
investments on a conditional basis. From this perspective, smart 
technologies can be viewed as real options [3]. Examples of such 
technologies include the Coordinated Voltage Control (CVC) 
[4],[9]  Soft-Open Points (SOP) [5] and Demand-side Response 
(DSR) [6][7]. It is shown in this paper that since deterministic 
planning approaches cannot capture the managerial flexibility, 
these smart technologies are largely ignored; such an observation 
shows the importance of departing from current deterministic 
planning approaches in order to  reduce spending on conventional 
assets and increase the integration of smart technologies. 

According to the principles of connection of DG units to the 
network [8] curtailing the output of DG units, during network 
constraint situations, is possible for those DG units with non-firm 
rights. Although this practice is considered to be an active 
network management method [9], current EU legislation 
encourages the ‘traditional’ firm DG connections in order to fulfil 
the obligations from the EU 20-20-20 target [10]. The 
contributions of this paper are as follows: 

 Presentation of mathematical formulations for investing 
and operating SOP, DSR and CVC assets in distribution 
networks. 

 Development of a methodology that allows the 
quantification of the option value of smart technologies in 
distribution networks with firm DG connections. 

 Demonstration of the inadequacy of deterministic 
planning approaches to favour smart technologies (SOP, 
CVC, DSR) in place of conventional ones.  

The remaining sections of this paper are organized as follows: 
Section III.   reviews the existing literature and gives insights 
regarding methodologies on the quantification of real option 
value. Section IV.   presents the mathematical formulation and 
Section V.  shows the application of the proposed planning 
framework to an 11kV distribution network. Section VI.    offers 
conclusions and recommendations for future work. 

III.  REAL OPTION VALUATION FRAMEWORKS 
 

Real Options Analysis has been utilized as a tool for the 
evaluation of flexibility in various decision-making problems with 
the option value of making a certain decision being traditionally 
defined as the benefit that the decision maker accrues from 
making the decision under uncertainty [11]. Uncertainty and 
irreversibility have long been recognized as principal factors 
driving the option value up [12]. Thus, distribution network 
planning undoubtedly incorporates option value, with various 
techniques being applied for its quantification. In [13], the option 
value of investment strategies is obtained through the Least 
Squares Monte Carlo approach, an approach that is also used in 
[14][11]. In [15], the use of the Binomial Lattice Model allows the 
computation of the real option to expand in generation planning, 
while in [16] the Black - Scholes option pricing formula is applied 
to the valuation of a power generation construction project.  

The drawback of using valuation frameworks as the 
aforementioned is that they can evaluate only a small number of 
candidate investment strategies, which are defined in advance in 
terms of the technologies that they consist of and in terms of the 
order at which these technologies are invested. In order to 
compare and evaluate the numerous combinations of asset types, 
candidate locations and possible investment timings, the use of 
multistage stochastic optimization is imperative.    

IV.  MATHEMATICAL FORMULATION 

The model is formulated as a stochastic mixed integer non-
linear problem using a multi-stage scenario tree of |ΩM| nodes 
over |ΩE| epochs to represent uncertainty around DG penetration. 

𝑧 =  
min

𝐵, 𝐶, 𝐷, 𝑆
{ ∑ π𝑚

𝑚∈Ω𝑀

𝑟ε𝑚

𝐼 ω𝑚
𝐼 }                                                              (1) 

ω𝑚
𝐼 = 𝐶𝑚γ𝐶 + ∑ 𝐵𝑚,𝑙γ𝐵 + ∑ 𝐷𝑚,𝑛γ𝐷 + ∑ 𝑆𝑚,𝑐γ𝑆

𝑐∈Ω𝐶𝑛∈Ω𝑁

                   (2)

𝑙∈ Ω𝐿

 



�̃�𝑚,𝑙 = ∑ 𝐵φ,𝑙

φ∈Φ𝑘𝐿
(𝑚)

                                                                      ∀ 𝑚, 𝑙     (3) 

�̃�𝑚,𝑙 = ∑ 𝐵φ,𝑙𝐹𝑚𝑎𝑥

φ∈Φ𝑘𝐿
(𝑚)

                                                              ∀ 𝑚, 𝑙     (4) 

�̃�𝑚 = ∑ 𝐶φ

φ∈Φ𝑘𝐶
(𝑚)

                                                                           ∀ 𝑚        (5) 

�̃�𝑚,𝑛 = ∑ 𝐷φ,𝑛

φ∈Φ𝑘𝐷
(𝑚)

                                                                    ∀ 𝑚, 𝑛    (6) 

�̃�𝑚,𝑐 = ∑ 𝑆φ,𝑐

φ∈Φ𝑘𝑠
(𝑚)

                                                                      ∀ 𝑚, 𝑐     (7) 

𝑃𝑚,𝑡,1 ≤  𝑃𝑚,1
𝑚𝑎𝑥                                                                                   ∀ 𝑚, 𝑡    (8) 

𝑄𝑚,𝑡,1 ≤ 𝑄𝑚,1
𝑚𝑎𝑥                                                                                   ∀ 𝑚, 𝑡    (9) 

𝑃𝑚,𝑡,𝑔 =  𝑃𝑚,𝑔
𝑚𝑎𝑥 ∙ ζ𝑡,𝑔                                                        ∀ 𝑚, 𝑡, 𝑔 − {1}   (10) 

𝑄𝑚,𝑡,𝑔 =  𝑄𝑚,𝑔
𝑚𝑎𝑥 ∙ ζ𝑡,𝑔                                                       ∀ 𝑚, 𝑡, 𝑔 − {1}   (11) 

 

𝑃𝑚,𝑡,𝑙
𝑠 = (1 − �̃�𝑚,𝑙)[𝑉𝑚,𝑡,𝑢𝑙

2 𝑔𝑙
𝑜 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑜 ∙ 

cos(𝜃𝑚,𝑡,𝑢𝑙
− 𝜃𝑚,𝑡,𝑣𝑙

) −𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑜 sin(𝜃𝑚,𝑡,𝑢𝑙

− 𝜃𝑚,𝑡,𝑣𝑙
)] 

+�̃�𝑚,𝑙[𝑉𝑚,𝑡,𝑢𝑙

2 𝑔𝑙
𝑁 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑁 cos(𝜃𝑚,𝑡,𝑢𝑙
− 𝜃𝑚,𝑡,𝑣𝑙

)  

−𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑁 ∙ sin(𝜃𝑚,𝑡,𝑢𝑙

− 𝜃𝑚,𝑡,𝑣𝑙
)]                               ∀ 𝑚, 𝑡, 𝑙   (12) 

 

𝑃𝑚,𝑡,𝑙
𝑟 = (1 − �̃�𝑚,𝑙)[𝑉𝑚,𝑡,𝑣𝑙

2 𝑔𝑙
𝑜 − 𝑉𝑚,𝑡,𝑣𝑙

𝑉𝑚,𝑡,𝑢𝑙
𝑔𝑙

𝑜 ∙ 

cos(𝜃𝑚,𝑡,𝑣𝑙
− 𝜃𝑚,𝑡,𝑢𝑙

) −𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑜 sin(𝜃𝑚,𝑡,𝑣𝑙

− 𝜃𝑚,𝑡,𝑢𝑙
)] 

+�̃�𝑚,𝑙[𝑉𝑚,𝑡,𝑣𝑙

2 𝑔𝑙
𝑁 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑁 cos(𝜃𝑚,𝑡,𝑣𝑙
− 𝜃𝑚,𝑡,𝑢𝑙

)  

−𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑁 ∙ sin(𝜃𝑚,𝑡,𝑣𝑙

− 𝜃𝑚,𝑡,𝑢𝑙
)]                               ∀ 𝑚, 𝑡, 𝑙   (13) 

 

𝑄𝑚,𝑡,𝑙
𝑠 = (1 − �̃�𝑚,𝑙)[−𝑉𝑚,𝑡,𝑢𝑙

2 𝑏𝑙
𝑜 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑜 ∙ 

sin(𝜃𝑚,𝑡,𝑢𝑙
− 𝜃𝑚,𝑡,𝑣𝑙

) +𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑜 cos(𝜃𝑚,𝑡,𝑢𝑙

− 𝜃𝑚,𝑡,𝑣𝑙
)] 

+�̃�𝑚,𝑙[−𝑉𝑚,𝑡,𝑢𝑙

2 𝑏𝑙
𝑁 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑁 sin(𝜃𝑚,𝑡,𝑢𝑙
− 𝜃𝑚,𝑡,𝑣𝑙

)  

+𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑁 cos(𝜃𝑚,𝑡,𝑢𝑙

− 𝜃𝑚,𝑡,𝑣𝑙
)]                                 ∀ 𝑚, 𝑡, 𝑙   (14) 

 

𝑄𝑚,𝑡,𝑙
𝑟 = (1 − �̃�𝑚,𝑙)[−𝑉𝑚,𝑡,𝑣𝑙

2 𝑏𝑙
𝑜 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑜 ∙ 

sin(𝜃𝑚,𝑡,𝑣𝑙
− 𝜃𝑚,𝑡,𝑢𝑙

) +𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑜 cos(𝜃𝑚,𝑡,𝑣𝑙

− 𝜃𝑚,𝑡,𝑢𝑙
)] 

+�̃�𝑚,𝑙[−𝑉𝑚,𝑡,𝑣𝑙

2 𝑏𝑙
𝑁 − 𝑉𝑚,𝑡,𝑢𝑙

𝑉𝑚,𝑡,𝑣𝑙
𝑔𝑙

𝑁 sin(𝜃𝑚,𝑡,𝑣𝑙
− 𝜃𝑚,𝑡,𝑢𝑙

)  

+𝑉𝑚,𝑡,𝑢𝑙
𝑉𝑚,𝑡,𝑣𝑙

𝑏𝑙
𝑁 cos(𝜃𝑚,𝑡,𝑣𝑙

− 𝜃𝑚,𝑡,𝑢𝑙
)]                                 ∀ 𝑚, 𝑡, 𝑙   (15) 

 

(𝑃𝑚,𝑡,𝑙
𝑠,𝑟 )

2
+ (𝑄𝑚,𝑡,𝑙

𝑠,𝑟 )
2

≤ [𝐹𝑙  + �̃�𝑚,𝑙] 
2

                                    ∀ 𝑚, 𝑡, 𝑙    (16) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑚,𝑡,𝑛 ≤ 𝑉𝑚𝑎𝑥                                                    ∀ 𝑚, 𝑡, 𝑛 − {1}    (17)  

𝑉𝑚,𝑡,1 = 𝑉𝑚,𝑡
𝑐𝑣𝑐 + 𝑉𝑚,𝑡

𝑛𝑜𝑐                                                                     ∀ 𝑚, 𝑡    (18)  

𝑉𝑚𝑖𝑛
𝑐𝑣𝑐 ∙ �̃�𝑚 ≤ 𝑉𝑚,𝑡

𝑐𝑣𝑐 ≤ 𝑉𝑚𝑎𝑥
𝑐𝑣𝑐 ∙ �̃�𝑚                                                    ∀ 𝑚, 𝑡    (19) 

𝑉𝑚,𝑡
𝑛𝑜𝑐 = 𝑉𝑠𝑒𝑡 ∙ (1 − �̃�𝑚)                                                                 ∀ 𝑚, 𝑡    (20)  

−�̃�𝑚,𝑛 ∙ 𝑓𝑡,𝑛 ∙ 𝑑𝑡,𝑛 ≤ 𝜉𝑚,𝑡,𝑛 ≤ �̃�𝑚,𝑛�̅�𝑡,𝑛                                   ∀ 𝑚, 𝑡, 𝑛   (21) 

∑ 𝜉𝑚,𝑡,𝑛 =

𝑡∈𝛺𝑇

0                                                                                  ∀ 𝑚, 𝑛  (22) 

𝑅𝑚,𝑡,𝑐 ≤  𝑆𝑐
𝑚𝑎𝑥 ∙ �̃�𝑚,𝑐                                                                   ∀ 𝑚, 𝑡, 𝑐  (23) 

𝐻𝑚,𝑡,𝑐 ≤  𝑆𝑐
𝑚𝑎𝑥 ∙ �̃�𝑚,𝑐                                                                    ∀ 𝑚, 𝑡, 𝑐  (24) 

∑ 𝑃𝑚,𝑡,𝑔𝐼𝑛,𝑔 − ∑ 𝑃𝑚,𝑡,𝑙
𝑟

𝑙∈{Ω𝐿|𝑣𝑙 = 𝑛}

− ∑ 𝑃𝑚,𝑡,𝑙
𝑠

𝑙∈{Ω𝐿|𝑢𝑙 = 𝑛}

=

𝑔∈Ω𝑔 

 

+𝑑𝑡,𝑛 + 𝜉𝑚,𝑡,𝑛 + ∑ (𝐻𝑚,𝑡,𝑐 − 𝑅𝑚,𝑡,𝑐𝜂𝑓)

𝑐∈{𝛺𝐶|𝑛 = 𝑛𝑐
𝑎}

 

+ ∑ (𝑅𝑚,𝑡,𝑐

𝑐 ∈{𝛺𝐶|𝑛 = 𝑛𝑐
𝑏}

− 𝐻𝑚,𝑡,𝑐𝜂𝑓)                                              ∀𝑚, 𝑡, 𝑛  (25) 
 

∑ 𝑄𝑚,𝑡,𝑔𝐼𝑛,𝑔 − ∑ 𝑄𝑚,𝑡,𝑙
𝑟

𝑙∈{Ω𝐿|𝑣𝑙 = 𝑛}

− ∑ 𝑄𝑚,𝑡,𝑙
𝑠

𝑙∈{Ω𝐿|𝑢𝑙 = 𝑛}

=

𝑔∈Ω𝑔 

 

+𝛹𝑛,𝑡(𝑑𝑡,𝑛 + 𝜉𝑚,𝑡,𝑛)                                                               ∀𝑚, 𝑡, 𝑛  (26) 

 

The planner’s objective (1) involves the minimization of the 
expected investment cost (2) across all scenario-tree nodes and 
technologies. This stochastic problem formulation is known as 
node-variable (see [17] for more information) and has been shown 
to be computationally effective. The binary variables 
𝐵𝑚,𝑙 , 𝐷𝑚,𝑛, 𝑆𝑚,𝑐   , 𝐶𝑚  represent the decisions to invest in 

conventional reinforcement, DSR, SOP, and CVC respectively at 
node 𝑚 of the scenario tree, where 𝑙, 𝑛, 𝑐 characterize the line, bus 
and normally open point respectively. Each binary investment 
decision is multiplied by the corresponding annualized investment 
cost. Note that a different investment decision corresponds to each 
scenario tree node 𝑚, indicating the possibility for strategy 
differentiation between scenario realisations.  The state variables 
that aggregate investment decisions that have been made are 
defined in (3)-(7). The primary transformer (g = 1) thermal limits 
are stated in (8)-(9), while (10) and (11) determine the renewable 
DG output where intermittency of the resource is considered by 
 ζt,g. The polar form of the power flows is given in (12)-(15) using 

a disjunction to model the effect that reconductoring has on a 
line’s characteristics bl and 𝑔𝑙 . Line thermal limitation is defined 
in (16) while (17) sets the limits on voltage magnitudes for all 
buses, except for the substation which is fixed to a pre-determined 
value Vset (18). Constraints (19) and (20) model the CVC 
deployment, after which the substation voltage is no longer fixed, 
but can be controlled to take values in the domain  [Vmin

cvc , Vmax
cvc ]. 

In more detail, the voltage magnitude at the substation is defined 
in (18) as follows: when the CVC scheme has not been deployed 

(�̃�𝑚=0) a fixed voltage-target policy is assumed, where 𝑉𝑚,𝑡,1 =
𝑉𝑚,𝑡

𝑛𝑜𝑐 = 𝑉𝑠𝑒𝑡  , 𝑉𝑚,𝑡
𝑐𝑣𝑐 = 0 according to (18-20). If a CVC scheme 

has been deployed (�̃�𝑚=1), then the substation voltage target no 
longer follows a fixed voltage-target policy. Rather, it can be 
controlled optimally based on real-time information about system 
voltages; in this case it is 𝑉𝑚,𝑡,1=𝑉𝑚,𝑡

𝑐𝑣𝑐, with 𝑉𝑚𝑖𝑛
𝑐𝑣𝑐 ≤ 𝑉𝑚,𝑡

𝑐𝑣𝑐 ≤ 𝑉𝑚𝑎𝑥
𝑐𝑣𝑐  

according to (18)-(19). 

The DSR operation is modeled in (21) and (22) where positive 
values of ξm,t,n reflect that flexible demand has been re-scheduled 

from another period to the current period t, whereas negative 
values signify that flexible demand has been shifted away from t 
to another period. In particular, in (21) the load that is 
disconnected at period 𝑡 from bus 𝑛 at node 𝑚 is zero if no DSR 
has been deployed at bus n i.e. if �̃�𝑚,𝑛=0. Otherwise, it can attain 

values within 𝑓𝑡,𝑛 ∙ 𝑑𝑡,𝑛 and �̅�𝑡,𝑛 i.e. between the total amount of 

flexible load available at time period t, and the total amount of 
load that can connect to bus n at period t, respectively. Load 
shifting operation is performed so that all flexible load is 



eventually served within the period of a typical day as shown by 
(22). Also (23) - (24) refer to SOP, installed at normally-open 
point 𝑐. This SOP enables bi-directional transfer of active power 

between its two buses  nc
a  and nc

b with efficiency  ηf. This transfer 
has to respect the SOP active power transfer limits according to 
constraints (23) - (24). According to these constraints, if the SOP 
has not been deployed at c then the corresponding controlled 
power flows must be zero i.e. 𝑅𝑚,𝑡,𝑐 = 𝐻𝑚,𝑡,𝑐 = 0. Note that 

reactive power capability of SOPs has not been modelled in this 
paper. Finally, (25) - (26) define the power balance equations. 

V.  CASE STUDY 

The case study displays the methodology of obtaining the 
option value of smart technologies such as DSR, CVC and SOP 
under uncertain renewable DG deployment and under the 
constraint that curtailment of DG output has to be avoided (firm 
DG connection). It is also shown that these technologies are 
ignored by deterministic planning frameworks, which favor risky 
conventional investment. 

A.  Description 

The 11kV overhead distribution network used in the case 
study is shown in Figure 1. , where initially all system demand is 
satisfied through imports from the main grid via bus 1, which is 
the primary substation. The statutory voltage limits at all buses are 
assumed to be ±0.1 pu. An uncertain amount of distributed PV 
generation (see Figure 3) will be connected over the planning 
horizon, which consists of four epochs each of 2-year duration. 
However, the planner does possess a probabilistic description of 
this uncertain evolution, as expressed in the scenario tree shown 
in Figure 3. This scenario tree consists of a total of six scenarios; 
there are six possible paths from the first ‘root’ node to a terminal 
‘leaf’ node. For example, scenario 2 (S2) consists of the transition 
across the scenario tree nodes 1 → 2 → 4 → 9, representing PV 
deployment in buses 5,6 and 7. As can be seen, the uncertainty is 
not only around the magnitude of the DG penetration, but also 
around the location of these connections.   

We assume that the tree shown in Figure 3 has been 
constructed following suitable consultation with developers and 
system experts. The logic followed in the scenario tree generation 
is as follows. In the first stage i.e. root node, there is no PV 
deployed in the system. However, in the subsequent stages there 
will be PV deployment in either feeder F-1 or F-2. The 
uncertainty of which one of these two feeders will be fitted with 
PV is resolved in transition to the second stage. In the case of a 1 
→ 2 transition, buses 6 and 7 on F-1 are fitted with PV. 
Subsequent transitions in stages 3 and 4 will determine whether 
this will remain unchanged (as described by scenario 4) or 
additional PV capacity will be added. Note that the general 
philosophy is that PV is first built in the most distant buses and 
may eventually be deployed at buses closer to the substation.  

As the voltage rise effect is the only driver for investment, the 
focus of the analysis is placed on the day that leads to the most 
severe voltage rise. Identifying a scheme that resolves this issue 
guarantees the ability for unconstrained operation at all other 

operating points. This is a typical approach taken to alleviate the 
computational load of planning studies without compromising 
solution integrity (e.g. see [9]). The day that leads to the most 
severe voltage rise is assumed to be a summer day with very high 
solar insolation (hence, output of the PV units) and very low 
demand levels; these conditions are appropriate for the creation of 
the voltage rise effect. Regarding the demand pattern, it is 
assumed to stay unchanged across the horizon (i.e. no load growth 
in subsequent epochs). Also, all buses have an identical electricity 
consumption profile and magnitude as shown in Figure 2 with the 
exception of the buses 8-11 on F-2 that have significantly lower 
electricity demand and their load is assumed to be zero. 
Furthermore, it has been assumed that the substation voltage 
setpoint is at 1.01 pu; this value is traditionally selected above 1 
pu to prevent voltage drop at remote buses.  

 

Figure 1.  Schematic diagram of the 11kV distribution network, showing 
possible locations for the connection of the distributed PV units and their 

installed capacities. Dotted lines depict the Normally-Open Points (NOPs), 

which are candidate locations for SOPs. The F-1, F-2 and F-3 are the three 
feeders comprising the network. 

Since the PV units reach their maximum output at midday 

(see Figure 2), the voltage rise effect is especially likely to occur 

around midday hours. In order to prevent its occurrence, the 

planner has a range of potential solutions shown in TABLE I. 

The investment cost of the different technologies has been 

estimated according to relevant sources (see [18] and [19][19]), 

while the difference in build-time between the smart and 

conventional assets can be attributed to the fact that the latter 

involve greater network intervention in the form of necessary 

public works, which can be subject to lengthy permissioning 

processes.  

The DSR technology allows the optimal intraday time-

shifting of the flexible load, which amounts to 20% of the hourly 

load of each bus. It is modelled by the constraints (21), (22), (25) 

and (26) in the previous section. The CVC technology can 

measure the actual voltage values at all buses in the network, 

enabling the optimal regulation of the substation voltage by ±5% 

of the nominal voltage setpoint (set at 1.01 pu). This technology is 

modelled by (18), (19), and (20) in the previous section. The SOP 



technology allows optimal control of active power flow through 

its two terminals; 95% efficiency and 50 kW capacity are used in 

this case study. It is modelled by (23), (24) and (25) in the 

previous section. The reconductoring of a distribution line 

involves the replacement of the existing conductor (reactance X= 

0.075 Ω/km, resistance R=0.250 Ω/km) with a new one (X= 

0.0725 Ω/km and R=0.0736 Ω/km) as modelled by constraints 

(12)-(15). These characteristics are based on the specifications 

included in the E.ON‘s Network Design Manual v7.7, Dec. 2006 

[19] and are in line with the technical characteristics of 

conductors available on the market. Note that the PV units do not 

perform reactive management due to unity power factor 

operation. 

 

Figure 2.  Generation pattern per PV unit (right axis) and demand profile per bus 
(left axis). 

 

 

Figure 3.  Scenario tree capturing the uncertainty of total PV capacity. Transition 

probabilities (above each arc) and event probabilities (𝜋𝑚 ,where 𝑚 is the 
number of the node) are shown. The aggregate PV capacity installed and the  

buses to which the PV units connect, are shown inside each node. 

TABLE I. AVAILABLE TECHNOLOGIES FOR INVESTMENT 
Technology Build Time  (epochs) Investment Cost (£) 

DSR 0 14k / bus 

CVC 0 180k / whole system 

SOP 0 200k / NOP 
Reconductoring 1 210k / km 

 

A number of deterministic and stochastic studies are 
performed using the model presented in Section IV.  . All models 
were developed using FICO Xpress 7.8 and carried out on a Xeon 
3.46GHz computer.  

B.  Deterministic planning 

A deterministic planner traditionally obtains the investment 
schedule by solving separately each of the six scenarios (S1 – S6) 
depicted in Figure 3 by applying the model described in Section 
IV and setting the πm probabilities equal to 1 (no uncertainty 
exists, i.e. perfect information). Note that the planner can invest in 
all technologies shown in TABLE I. The resulting investment 
plans for each scenario are displayed in Figure 4. Note that no 
averaging over the scenario tree takes place (as is usually the case 
in a deterministic-equivalent approach); instead a separate study is 
carried out for each scenario. The [a-b] represents the decision to 
invest in reconductoring of the line that connects buses a and  b, 
while D(n) represents the decision to invest in DSR at bus n. 
Entries of the form SOP(a-b)  represent the decision to invest in a 
SOP at the normally-open point between buses a and  b, while 
CVC denotes installation of a CVC scheme in the substation.  

 

Figure 4.  Investment plans for the deterministic planner. Each text box displays 

the investment decisions. The conventional investments (in the form [a-b]) 

become operational one epoch after the investment decision has been made, 
while the smart investments (in the form D(n)) become operational at the 

same epoch when the corresponding decisions are made. 

The resulting investment plans are dominated by decisions to 
undertake conventional investments. Four out of the six scenarios 
involve conventional commitments made in the first epoch. This 
is particularly problematic because making the decision to invest 
in conventional reinforcements ‘here and now’, and assuming that 
there is no uncertainty, may lead a significant portion of these 
investments to become stranded assets.  
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In addition, it is remarkable that SOP and CVC technologies 
are fully ignored - despite their availability to the planner- while 
DSR is deployed to a limited extent. This is unattractive because 
of the desire to make the grid smarter, something that can only be 
achieved through fewer conventional investments and more smart 
ones. However, given that initially the cost of smart technologies 
may be particularly high and that the planner cannot capture their 
option value (because no opportunity for conditional investments 
exists), they are not considered attractive. 

C.  Stochastic planning 

As part of the stochastic planning two studies are carried out. 
In the first, line reconductoring is the only available investment 
technology. In the second study the planner can consider both the 
conventional and the smart technologies. The resulting investment 
strategies are shown in Figure 5 and Figure 6 respectively. It can 
be observed that the latter includes far fewer conventional 
investment decisions with no first-stage decisions because the 
presence of smart technologies enables the planner to commit 
only after the locational uncertainty of future PV development is 
resolved (e.g. separate strategies for the node 1 → node 2 and 
node 1 → node 3 branches), reducing the scope for asset 
stranding.  

 

Figure 5.  Investment strategy for the stochastic planner when only the 
conventional technology is available for investment. 

 

Figure 6.  Investment strategy for the stochastic planner when conventional and 

smart technologies(CVC, SOP, DSR) are available for investment. 

Figure 7 illustrates the operation of DSR in bus 7; flexible 
load of bus 7 is shifted from periods of small (or zero) PV 
generation to periods of higher PV generation, thereby reducing 
net power injections in the network. Figure 8 illustrates the 
management of voltage profiles during operation of node 6, 

enabled by the installed CVC scheme. As shown, the voltage 
magnitude at bus 11 is kept within limits by reducing the 
substation voltage during hours of high PV output. 

The basic operating principle of SOP technology for tackling 
the voltage rise effect is depicted in Figure 9, where the voltage 
magnitude at bus 7 is kept within limits as follows: at times of 
high PV generation, the SOP draws power from bus 7 and 
releases it to bus 13. This increases the total demand at all buses 
of F-1 while simultaneously reducing that of F-3.  

 

 

Figure 7.  Impact of DSR operation of bus 7 on the load pattern (node 2) 

 

Figure 8.  Impact of CVC operation on the voltage profile of bus 11 (node 6) 

 

Figure 9.  Impact of SOP operation on voltage profile of bus 7 and on the load 
profile of feeder-1 & feeder-3, referring to scenario-tree node 2 

By comparing the total expected cost of the strategies shown 
in Figure 5 and Figure 6, we can quantify the option value of the 
portfolio of all smart technologies being £256k – £156k = £100k 
and represents the net benefit accrued from the ability to invest in 
smart assets. Three further stochastic studies are carried out, each 
considering the ability to invest in conventional assets and one of 
the three smart technologies. This way, we obtain the option value 
of DSR, CVC and SOP to be equal to £24k, £33k and £68k. The 
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sum of option values of individual technologies is greater than the 
option value of the combined portfolio, as the latter accounts for 
complementary interactions between individual assets.   

In the proposed methodology the option being valued is the 
ability to invest in smart technologies. The value of this option is 
calculated to be £100k for the particular network under study. 
This option value is defined as the probability-weighted sum of 
capital savings made possible by being able to invest in a 
particular technology.  

Finally, all models were developed in FICO Xpress 7.8. For 
the solution of the Mixed-Integer Non-Linear Programming 
(MINLP) that arises, the “mmxnlp” module of the Xpress-NLP 
engine has been used. This solution strategy involves a 
combination of Sequential Linear Programing to approximate 
non-linear elements and a traditional Branch and Bound technique 
to identify optimal value of binary variables. All studies were 
carried out on a Xeon 3.46GHz computer. In general, the 
computational time depends on whether we carry out a 
deterministic or stochastic study and whether we include smart 
technologies or not. In particular, the six deterministic case 
studies took, on average, thirty minutes each. The stochastic 
planning case study took one hour when considering only 
conventional technologies. The computational burden is more 
pronounced in the stochastic study that considers both 
conventional and smart technologies; convergence was achieved 
in 22 hours. 

VI.  CONCLUSION AND FUTURE WORK 

This paper proposes a stochastic model for identifying the 
optimal investment strategy that will eradicate the voltage rise 
effect caused by increased DG penetration. In addition, the 
inadequacy of deterministic approaches is shown to incorporate 
smart technologies in their investment plans and their preference 
for immediate investments in conventional assets. Note that 
Heuristic rules based on deterministic decisions, such as 
identifying common elements across scenarios, also 
underperform; this fact that has been demonstrated in the context 
of congestion-driven transmission investment in [20]. 

Future work focuses on the application of decomposition 
techniques for achieving more efficient solution times in the same 
problem. Another future goal involves the investigation of risk-
averse decision criteria for the detailed modelling of a planner’s 
attitude towards the risk of stranded assets. 
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