20,992 research outputs found

    Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models

    Full text link
    Global sensitivity analysis aims at quantifying the impact of input variability onto the variation of the response of a computational model. It has been widely applied to deterministic simulators, for which a set of input parameters has a unique corresponding output value. Stochastic simulators, however, have intrinsic randomness due to their use of (pseudo)random numbers, so they give different results when run twice with the same input parameters but non-common random numbers. Due to this random nature, conventional Sobol' indices, used in global sensitivity analysis, can be extended to stochastic simulators in different ways. In this paper, we discuss three possible extensions and focus on those that depend only on the statistical dependence between input and output. This choice ignores the detailed data generating process involving the internal randomness, and can thus be applied to a wider class of problems. We propose to use the generalized lambda model to emulate the response distribution of stochastic simulators. Such a surrogate can be constructed without the need for replications. The proposed method is applied to three examples including two case studies in finance and epidemiology. The results confirm the convergence of the approach for estimating the sensitivity indices even with the presence of strong heteroskedasticity and small signal-to-noise ratio

    Stochastic Testing Simulator for Integrated Circuits and MEMS: Hierarchical and Sparse Techniques

    Get PDF
    Process variations are a major concern in today's chip design since they can significantly degrade chip performance. To predict such degradation, existing circuit and MEMS simulators rely on Monte Carlo algorithms, which are typically too slow. Therefore, novel fast stochastic simulators are highly desired. This paper first reviews our recently developed stochastic testing simulator that can achieve speedup factors of hundreds to thousands over Monte Carlo. Then, we develop a fast hierarchical stochastic spectral simulator to simulate a complex circuit or system consisting of several blocks. We further present a fast simulation approach based on anchored ANOVA (analysis of variance) for some design problems with many process variations. This approach can reduce the simulation cost and can identify which variation sources have strong impacts on the circuit's performance. The simulation results of some circuit and MEMS examples are reported to show the effectiveness of our simulatorComment: Accepted to IEEE Custom Integrated Circuits Conference in June 2014. arXiv admin note: text overlap with arXiv:1407.302

    Predicting the Output From a Stochastic Computer Model When a Deterministic Approximation is Available

    Get PDF
    The analysis of computer models can be aided by the construction of surrogate models, or emulators, that statistically model the numerical computer model. Increasingly, computer models are becoming stochastic, yielding different outputs each time they are run, even if the same input values are used. Stochastic computer models are more difficult to analyse and more difficult to emulate - often requiring substantially more computer model runs to fit. We present a method of using deterministic approximations of the computer model to better construct an emulator. The method is applied to numerous toy examples, as well as an idealistic epidemiology model, and a model from the building performance field

    A practical, unitary simulator for non-Markovian complex processes

    Full text link
    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this letter we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.Comment: 12 pages, 5 figure

    Modelling the Dynamics of an Aedes albopictus Population

    Full text link
    We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito) and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS) are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls) to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Nano-Sim: A Step Wise Equivalent Conductance based Statistical Simulator for Nanotechnology Circuit Design

    Full text link
    New nanotechnology based devices are replacing CMOS devices to overcome CMOS technology's scaling limitations. However, many such devices exhibit non-monotonic I-V characteristics and uncertain properties which lead to the negative differential resistance (NDR) problem and the chaotic performance. This paper proposes a new circuit simulation approach that can effectively simulate nanotechnology devices with uncertain input sources and negative differential resistance (NDR) problem. The experimental results show a 20-30 times speedup comparing with existing simulators.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    A practical, unitary simulator for non-Markovian complex processes

    Full text link
    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this letter we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.Comment: 12 pages, 5 figure
    corecore