
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Predicting the Output From a Stochastic Computer
Model When a Deterministic Approximation is
Available

Evan Baker, Peter Challenor & Matt Eames

To cite this article: Evan Baker, Peter Challenor & Matt Eames (2020): Predicting the Output
From a Stochastic Computer Model When a Deterministic Approximation is Available, Journal of
Computational and Graphical Statistics, DOI: 10.1080/10618600.2020.1750416

To link to this article: https://doi.org/10.1080/10618600.2020.1750416

© 2020 The Author(s). Published with
license by Taylor and Francis Group, LLC

View supplementary material

Accepted author version posted online: 02
Apr 2020.
Published online: 07 May 2020.

Submit your article to this journal

Article views: 96

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2020.1750416
https://doi.org/10.1080/10618600.2020.1750416
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2020.1750416
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2020.1750416
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2020.1750416
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2020.1750416
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2020.1750416&domain=pdf&date_stamp=2020-04-02
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2020.1750416&domain=pdf&date_stamp=2020-04-02

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2020, VOL. 00, NO. 0, 1–12
https://doi.org/10.1080/10618600.2020.1750416

Predicting the Output From a Stochastic Computer Model When a Deterministic
Approximation is Available

Evan Bakera, Peter Challenora, and Matt Eamesb

aDepartment of Mathematics, University of Exeter, Exeter, UK; bDepartment of Engineering, University of Exeter, Exeter, UK

ABSTRACT
Statistically modeling the output of a stochastic computer model can be difficult to do accurately with-
out a large simulation budget. We alleviate this problem by exploiting readily available deterministic
approximations to efficiently learn about the respective stochastic computer models. This is done via the
summation of two Gaussian processes; one responsible for modeling the deterministic approximation, the
other responsible for using such approximation to better statistically model the stochastic computer model.
The developed method provides high predictive performance and increased confidence that complicated
features of a stochastic computer model are captured, even when the simulation budget is small. Several
synthetic computer models are used to outline the capabilities of this method, and two real-world examples
are used to display its practical utility. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received March 2019
Revised October 2019

KEYWORDS
Emulation; Gaussian process;
Heteroscedastic;
Multifidelity; Stochastic
kriging; Stochastic simulation

1. Introduction

Complex real world systems can be modeled using computer
models, also known as simulators, allowing experimentation to
be conducted where physical experiments may be too costly or
infeasible. Typically such simulators are deterministic, yielding
the same output every time the simulator is run if the same input
parameter values are used. Increasingly, however, simulators
are becoming stochastic, including some random component
in their code to account for perceived “randomness” in a sys-
tem. For example, we would often not want to model a given
animal population deterministically—whether, at a given time
step, an individual encounters a potential mate, or a potential
predator, cannot feasibly be represented without stochastic-
ity. Running such simulators with the same input parameter
values thus does not yield the same output value each time.
Instead there is some intrinsic variance in the computer model
output.

Simulators are often computationally expensive, and so to
facilitate analysis, a statistical approximation of these models is
used. Known as emulators, these use previously obtained values
from the simulator to obtain fast predictions for new outputs of
the simulator.

For deterministic models, the Gaussian process emulator is a
common choice of emulator (O’Hagan 2006). The principal idea
is that the outputs from the computer model η(·) are treated as a
realization from a Gaussian process with a prior mean function
m(·) and a prior covariance function K(·, ·). Predictions can
then be obtained by conditioning on data y = η(X) (Rasmussen
and Williams 2006).

This framework can be extended to model stochastic simu-
lators by the addition of independent noise with variance δ(·).

CONTACT Evan Baker e.baker@exeter.ac.uk Department of Mathematics, University of Exeter, Laver Building, Exeter, UK, EX4 4QE.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

If the simulator is believed to be homoscedastic, this can simply
be a constant. Alternatively, if the homoscedastic assumption is
too strong, one can also model the (log) variance with another
Gaussian process (Goldberg, Williams, and Bishop 1998; Bouk-
ouvalas and Cornford 2009; Binois, Gramacy, and Ludkovski
2018). The log variance is modeled rather than simply the vari-
ance to constrain predicted values of the variance to be greater
than zero.

Such a model is then very flexible, with a nonparametric form
for both the mean and variance, allowing for many different
stochastic simulators to be emulated. The downside to this
flexibility is that far more data is required to properly estimate
the form of the mean (and variance). A rule of thumb for
deterministic emulators is that at least 10 data points per input
dimensions are required to fit an emulator (Loeppky, Sacks,
and Welch 2009), whereas Binois et al. (2019) use 500 data
points when comparing different methods of choosing data
point locations for a one-dimensional toy stochastic simulator.

A larger amount of data is to be expected for more com-
plicated simulators (and stochastic simulators are certainty a
more complex class of simulator), but such a high number of
required runs can be prohibitive in practice. In this article,
we attempt to alleviate this problem by leveraging a unique
tool that computer simulators provide over physical experi-
ments: often deterministic approximations are available. Sec-
tion 2 will intuitively justify and formally present the devel-
oped method. Section 3 outlines guidelines required to ensure
the method works in practice. Section 4 then applies this
method to a simple agent based model and a stochastic build-
ing performance simulator. Concluding remarks are given in
Section 5.

© 2020 The Author(s). Published with license by Taylor and Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/10618600.2020.1750416
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2020.1750416&domain=pdf&date_stamp=2020-05-28
mailto:e.baker@exeter.ac.uk
http://www.tandfonline.com/r/JCGS
http://creativecommons.org/licenses/by/4.0/

2 E. BAKER, P. CHALLENOR, AND M. EAMES

2. Model

Consider the toy stochastic simulator given in Equation (1).

η(x) = (1 − x) sin(π + 6πx) + log(0.2 + x) + (1.2 − x)ε,
ε ∼ N(0, 1). (1)

Evaluating this toy simulator on 50 points sampled from
[0, 1] using a maximin Latin hypercube (McKay, Beckman,
and Conover 2000), and standardizing the data, we obtain the
plot on the left of Figure 1. The plot on the right of Figure 1
shows predictions for the mean and the 95% predictive inter-
vals for the simulator output using a heteroscedastic Gaussian
process emulator, as well as the true mean and 95% predictive
intervals.

With only the plot on the left of Figure 1, the challenge
of flexibly modeling a heteroscedastic process becomes clearer.
Perceived trends can be “true,” or they can also just be artifacts
of the stochasticity. This makes it difficult to discern the correct
shapes for the mean and variance functions of a simulator with-
out a large number of data points. The plot on the right shows
a heteroscedastic Gaussian process emulator indeed struggling
to identify the true mean, with the true mean being much more
detailed than the estimated mean. This could be considered a
similar issue to the problem of choosing the degrees of freedom
for smoothing splines (Cantoni and Hastie 2002).

To properly use an emulator as a surrogate for the simulator,
this issue should be resolved, but using an excessive number
of data points can be computationally expensive. In situations
where additional prior knowledge of the simulator is available,
a more descriptive prior mean function m(·) can be used, pro-
viding information that can assist in the prediction of the true
mean.

In practice, sufficient knowledge of the mean function can
often be lacking, which is one reason why computer experiments
are conducted in the first place. However, because stochastic
computer models are completely artificial, based on theoretical
understanding of a real world system, modifications to the
computer model are possible, and thus sometimes deterministic
versions are available. This can be because a deterministic ver-
sion has intentionally been made; a different model of the same
process exists but is deterministic; the computer model was
once deterministic in its development history and stochasticity
was added to the computer model after its initial creation; or
because the underlying simulator is actually deterministic but
some inputs are typically taken as random. Ultimately, both the
deterministic approximation and the stochastic simulator are
supposed to be modeling the same real world process, and so
there is reason to believe that the deterministic approximation
can contain key information about the stochastic simulator.
Additionally, it can be easier to extract important information
from deterministic systems than it can for stochastic systems,
and so it logically follows that spending some of a simulation
budget on a deterministic approximation can be worthwhile.

For our toy model, we obtain a hypothetical deterministic
approximation by replacing the random component ε with a
fixed number (in this case ε is replaced with 1; 0 has intentionally
not been chosen to avoid an overly perfect approximation).
The plot on the left of Figure 2 shows 12 runs of this toy
deterministic approximation simulator (chosen via a maximin
Latin hypercube design).

Because these runs are now samples from a deterministic
simulator, a deterministic emulator can be fit to them, and the
predictions in the right of Figure 2 are obtained.

The shape of the emulator produced from this appears visu-
ally similar in shape to the true mean of the stochastic simulator
from Figure 1. This is to be expected, as the true mean of

Figure 1. Fifty evaluations of the toy simulator from Equation (1) (left), and the respective heteroscedastic emulator predictions (right). The more periodic true mean and
95% interval are superimposed in black/dark gray, and the more linear emulator mean and 95% predictive interval are in blue (light gray in gray scale).

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 3

Figure 2. Ten evaluations of the toy deterministic approximation simulator from Equation (1), and the respective deterministic emulator predictions (right).

the deterministic emulator is the true mean of the stochastic
simulator, offset by (1.2 − x).

Visually observing the predictions from this deterministic
emulator would suggest, even without knowledge of the truth,
that the stochastic emulator’s mean should not be (approxi-
mately) linear as it is in Figure 1. And so, we aim to formally
incorporate this evidence.

We model the stochastic simulator as the sum of a determin-
istic Gaussian process DetGP and a heteroscedastic Gaussian
process HetGP. Equations are given by Equation (2).

η(·) = HetGP(·) + DetGP(·),
where HetGP(·) ∼ GP(m(·), K(·, ·) + δ2(·)I),

log(δ2(·)) ∼ GP(mδ(·), Kδ(·, ·) + σ 2I),
and DetGP(·) ∼ GP(mdet(·), Kdet(·, ·)).

(2)

m(·), mdet(·), and mδ(·) are prior mean functions, K(·, ·),
Kdet(·, ·), and Kδ(·, ·) are covariance functions, I is the identity
matrix, δ2(·) is the heteroscedastic intrinsic simulator variance,
and σ 2 is an additional variance term for the latent log variance
Gaussian process. Although the methods described are com-
pletely general, in examples in this article, the mean functions
are taken to be linear and the covariance functions are taken to
be squared exponentials (e.g., for the HetGP Gaussian process,
m(x) = β0 + xTβ and K(x, x′) = α2 ∏d

i=1 exp(− (xi−x′
i)

2

li),
where d is the dimension of x, α is a standard deviation param-
eter, and li are length scale parameters). Specific choices for
a Gaussian process are often based on personal preference;
some authors prefer more complicated mean functions (Vernon,
Goldstein, and Bower 2010), others choose a zero mean function
(Binois, Gramacy, and Ludkovski 2018), and then there are
many choices for the covariance function with various justifi-
cations (Rasmussen and Williams 2006). These choices, while
important, are outside the scope of this article.

The DetGP component models the deterministic approxima-
tion and is conditioned on observed deterministic approxima-
tion runs ydet (with input values Xdet). The HetGP component
models the difference between the stochastic simulator’s mean
and the deterministic approximation’s mean, and is thus con-
ditioned on values of η(·) − DetGP(·) for observed stochastic
computer model runs y (with input values X), that is, y −
DetGP(X)| ydet. HetGP also incorporates the intrinsic variance
modeled by δ2(·).

Using a sum of Gaussian processes to model a system
is a common tool in deterministic emulation, having been
used to include the discrepancy between the simulator and
the real world (Kennedy and O’Hagan 2001; Brynjarsdòttir
and O’Hagan 2014); modeling nonstationary simulators (Ba
and Joseph 2012); modeling large-scale computer experiments
(Haaland and Qian 2011); and modeling slow determinis-
tic simulators when fast deterministic simulators are available
(Kennedy and O’Hagan 2000).

In this article, parameters are taken fixed as their posterior
modes, estimated via the optimizing function in Stan (Stan
Development Team 2016). A full MCMC scheme could be used
to incorporate parameter uncertainty, but this is prohibitively
slow as for the base heteroscedastic Gaussian process (Kersting
et al. 2007).

The priors for the linear mean function coefficients (β0
and β for HetGP, βδ0 and βδ for the log(δ2) Gaussian
process, and βdet0 and βdet for DetGP) will be N(0, 10);
the standard deviation parameters (α, αδ and αdet for the
HetGP, log(δ2), and DetGP Gaussian process, respectively)
will have Inverse-Gamma(2, 1) priors; and the length scales
(li, lδi , and ldeti) will have Gamma(4, 4) priors. σ 2 will have
a standard half-normal prior. Such choices can also change
depending on personal preference. Our choices we argue
are “semi-informative,” providing a good range of sensible
values for the various parameters, based on an understanding

4 E. BAKER, P. CHALLENOR, AND M. EAMES

of what each parameter controls (Rasmussen and Williams
2006).

Predictions from this model are (comparatively) complex,
requiring predictions from the latent log variance Gaussian
process and the DetGP Gaussian process to be made before
predictions from the HetGP Gaussian process, and thus the full
model, can be made.

For the deterministic Gaussian process, predictions
conditional on known deterministic runs ydet are standard
(Rasmussen and Williams 2006) and are given in Equation (3)

DetGP(X∗)| ydet ∼ N(Mdet(X∗), Vdet(X∗)), (3)

where Mdet(X∗) = mdet(X∗)
+ Kdet(X∗, Xdet)(Kdet(Xdet, Xdet)

−1

(ydet − mdet(Xdet))

and Vdet(X∗) = Kdet(X∗, X∗)
− Kdet(X∗, Xdet)(Kdet(Xdet, Xdet)

−1Kdet(Xdet, X∗).
Predictions for the intrinsic (log) variance, conditional on

(estimated) values at the input points δ2(X) are also standard,
and given by Equation (4)

log(δ2(X∗))| log(δ2(X)) ∼ N(Mδ(X∗), Vδ(X∗)), (4)

where Mδ(X∗) = mδ(X∗)
+ Kδ(X∗, X)(Kδ(X, X) + σ 2I)−1

(log(δ2(X)) − mδ(X))

and Vδ(X∗) = Kδ(X∗, X∗) + σ 2I
− Kδ(X∗, X)(Kδ(X, X) + σ 2)−1Kδ(X, X∗).

Predictions for the HetGP(·) component are the standard
heteroscedastic predictions (Binois, Gramacy, and Ludkovski
2018) conditioned on values for y − DetGP(X)| ydet rather than
just y. This leads to predictions for the heteroscedastic Gaussian
process HetGP(·) having the form in Equation (5)

HetGP(X∗)| y, δ2(X), ydet ∼ N(Mhet(X∗), Vhet(X∗)), (5)

where Mhet(X∗) = mhet(X∗)
+ Khet(X∗, X)((Khet(X, X) + δ2(X)I)−1

(y − DetGP(X)| ydet − mhet(X))

and Vhet(X∗) = Khet(X∗, X∗) + δ2(X∗)I
−Khet(X∗, X)((Khet(X, X)+δ2(X)I)−1Khet(X, X∗).

Predictions for the stochastic simulator output then become

η(X∗)| y, δ2(X), ydet =
DetGP(X∗)| ydet + HetGP(X∗)| y, δ2(X), ydet. (6)

Applying this model to the toy simulator from before, using
the previously obtained stochastic and deterministic data points,
we obtain the predictions in Figure 3.

The overall shape of this emulator is closer to the truth, with
the periodic feature now represented in the emulator.

The deterministic approximation yields outputs that are
overall too large compared to the stochastic simulator’s mean,
and thus the same is true for the DetGP Gaussian process, the
mean predictions of which are represented by the higher, orange,
line. This DetGP Gaussian process does however contain useful
information about the shape of the stochastic simulator’s mean,

Figure 3. Emulator predictions for the toy simulator, using both stochastic and deterministic runs. The black interval and respective line are the true 95% interval and
mean, and the blue interval and line are the emulator 95% predictive interval and mean. The stochastic data points are circles, and the deterministic data points are plus
symbols. The mean of the DetGP component is in orange and interpolates the deterministic data points.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 5

Figure 4. Sixty-two evaluations of the toy simulator from Equation (1) (left), and the respective heteroscedastic emulator predictions (right). The more periodic true mean
and 95% interval are superimposed in black, and the more linear emulator mean and 95% predictive interval are in blue.

and thus it can be adjusted by the HetGP Gaussian process to
ensure the emulator’s mean and the stochastic simulator’s mean
match. The complexity of this adjustment Gaussian process
HetGP is related to how good an approximation the deter-
ministic simulator is. In this toy example, the deterministic
approximation differs from the true mean of the stochastic
simulator linearly, and thus the HetGP Gaussian process needs
to be approximately linear for the full emulator to have good fit.

This “DetHetGP” emulator is evidently a better surrogate for
the simulator than the previous heteroscedastic emulator, but
it has used an additional 12 simulator runs to be so. To show
that using deterministic runs was an efficient use of a simulator
budget, Figure 4 shows the base heteroscedastic emulator fitted
to the original 50 stochastic data points, plus an additional 12
stochastic data points generated from the same input values as
the deterministic runs.

Here, the emulator remains substantially inferior to the emu-
lator that uses some of the simulator budget to incorporate
deterministic runs, failing to capture the periodic component,
despite using the same total number of simulator runs. This
example suggests that deterministic runs can indeed be a useful
tool for modeling a stochastic simulator.

3. Guidelines

This section provides three criteria that must be satisfied for the
outlined method to perform well, and advice on how to ensure
they are satisfied. Also shown will be examples of what outcomes
can occur if a criterion is not met. This section is not intended
to downplay the outlined method; instead it serves to provide
an intuitive understanding and actionable advice such that the
method will work in practice.

The three criteria that we identify, in descending order of
perceived importance are

1. The deterministic approximation must be informative in
some way

2. There must be a sufficient number of deterministic simula-
tion runs

3. There must be a sufficient number of stochastic simulation
runs

3.1. Criterion 1

The first criterion is fairly straight forward: an assumption is
made that the deterministic approximation provides some value
with regard to the shape of the stochastic simulator. This cri-
terion demands some degree of expert prior knowledge. One
should hope that if the deterministic approximation and the
stochastic simulator are both models of the same process, that
common attributes should be present in both. It would be con-
cerning if one model of a process, and a different model of the
same process, would bear no similarities.

There is an additional way of obtaining a deterministic
approximation that has not been mentioned up until now, which
is most likely to fail this criterion: one can create a deterministic
simulator by fixing the random seed. In many contexts, this does
not create a deterministic approximation, but instead simply a
deterministic code with no relation to the overall trends of the
real world process.

To show what can occur should this criterion fail, we return
to the toy simulator in Section 2, but this time use the following
deterministic approximation:

η(x) = log(0.1 + 4x). (7)

This bears no resemblance to the stochastic simulator, and
is ultimately just a different deterministic simulator, and not an
approximation. Fitting the statistical model, using 50 stochastic

6 E. BAKER, P. CHALLENOR, AND M. EAMES

Figure 5. Emulator predictions for the toy simulator, using both stochastic and deterministic runs. The deterministic simulator here bears no resemblance to the stochastic
simulator. The black interval and respective line are the true 95% interval and mean, and the blue interval and line are the emulator 95% predictive interval and mean. The
stochastic data points are circles, and the deterministic data points are plus symbols. The mean of the DetGP component is in orange and interpolates the deterministic
data points.

points and 12 deterministic points, provides the predictions in
Figure 5.

One can see from this plot, that the deterministic points
appear in an “r” shaped curve, and so the DetGP component
tracks this. The resulting emulator uses this as a baseline for
what the overall stochastic trend is; the outcome being that
the emulator incorrectly believes the mean of the stochastic
simulator is also an “r” shaped curve. It is in this way, that a
deterministic code which does not approximate the stochastic
simulator can misinform the emulator into believing something
which is untrue. This does not appear to be too problematic
in Figure 5, but were the standard heteroscedastic Gaussian
process emulator able to capture the correct trend, a poor deter-
ministic “approximation” might instead bias it into no longer
learning said trend.

Our advice is to only use a deterministic approximation if
there is a real reason to expect some similarity between the
deterministic approximation and the stochastic simulator, such
as with the four example situations suggested in Section 2.

3.2. Criterion 2

Failing the second criterion yields similar effects as failing the
first criterion. Should there be too few deterministic simula-
tions, DetGP can fail to capture the information contained
within the deterministic approximation, and instead learn a
different relationship. This different relationship may not be
particularly informative to the shape of the stochastic simulator,
but is nonetheless used to form predictions of the stochastic
simulator.

Fitting the statistical model, using the exact same toy stochas-
tic simulator and deterministic approximation from Section 2,

but now with only 4 deterministic points (and 58 stochastic
points), provides the predictions in Figure 6.

In this plot, DetGP obtains a relationship which is not par-
ticularly informative to the overall mean of the stochastic simu-
lator. The relationship that DetGP obtains still acts as a baseline
for the overall mean, and there is not enough stochastic data to
unlearn this relationship. This is effectively the same problem as
when Criterion 1 fails; there is little difference between having
a bad deterministic “approximation,” and having a good deter-
ministic approximation but obtaining a bad representation of it.

Our advice here is based on the rule of thumb from Loeppky,
Sacks, and Welch (2009). Because satisfying Criterion 2 is essen-
tial, we recommend a more conservative 20 simulation runs
per dimension, if possible, to capture the relationship of the
deterministic approximation. We recommend this more con-
servative rule as the potential missed opportunity from failing
to capture the deterministic approximation is large. This rule
is followed in Section 4. A more thorough practice, which we
recommend more strongly, is to fit a separate standard deter-
ministic emulator to the deterministic simulator; and ensure
enough deterministic data is obtained such that the determin-
istic emulator passes certain validation checks [such as those
outlined in Bastos and O’Hagan (2009), or simpler leave-one-
out cross-validation checks (see, e.g., Williamson, Blaker, and
Sinha 2017)]; after this is done, one can feel confident that
enough deterministic data has been obtained.

3.3. Criterion 3

The final criterion deals with the opposite problem to Criterion
2. Stochastic runs are essential to modify the deterministic
approximation such that it agrees with the stochastic simulator.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

Figure 6. Emulator predictions for the toy simulator, using both stochastic and deterministic runs. Only four deterministic runs were used. The black interval and respective
line are the true 95% interval and mean, and the blue interval and line are the emulator 95% predictive interval and mean. The stochastic data points are circles, and the
deterministic data points are plus symbols. The mean of the DetGP component is in orange and interpolates the deterministic data points.

Figure 7. Emulator predictions for the toy simulator, using both stochastic and deterministic runs. Only six stochastic runs were used. The black interval and respective
line are the true 95% interval and mean, and the blue interval and line are the emulator 95% predictive interval and mean. The stochastic data points are circles, and the
deterministic data points are plus symbols. The mean of the DetGP component is in orange and interpolates the deterministic data points.

Stochastic runs are also needed to estimate the variance of the
stochastic simulator.

Figure 7 presents the predictions obtained from fitting the
emulator to the toy simulator and deterministic approximation
when only 6 runs were stochastic (and 56 were deterministic).

This plot shows the emulator failing to adjust the location
and shape of the deterministic approximation correctly—it has
been decreased too little for small values of x and too much for

large values of x. Additionally, the variance is estimated poorly—
especially for large values of x where it is estimated far too
small. This serves as an extreme example, where such a huge
percentage of the simulation budget is assigned as deterministic
points, but it clearly establishes that having a sufficiently large
number of stochastic runs is still important.

Our advice here is that, after the required number of deter-
ministic runs for Criterion 2 to be satisfied is obtained, the

8 E. BAKER, P. CHALLENOR, AND M. EAMES

remainder of the simulation budget should be assigned as
stochastic points, and no more assigned as deterministic points.

Since Criteria 2 and 3 can act against each other, the advice
given should ensure the developed model performs acceptably
well. In some circumstances, especially when the total simu-
lation budget is larger, and thus the standard heteroscedastic
Gaussian process model will perform less abysmally, a trade
off can emerge; where using deterministic points leads to a
better mean function estimate, but instead simply using more
stochastic points leads to a better variance function estimate.

Decisions based on such a trade-off depend on subjective
preferences, and hence the developed methodology lends itself
more to situations where the mean is of greater interest. On the
other hand, it is incredibly difficult to know when the simulation
budget is large enough for the trade-off to arise; it depends on
the complexity of the unknown true mean function and the
unknown true variance function. Given that it is difficult to
know a-priori when a simulation budget is large enough for the
trade-off to arise, it remains a safer choice to use a deterministic
approximation, regardless of whether the mean or the variance
is of greater interest.

Additionally, when the simulation budget is very large, or
the simulator is overly simplistic; it is also possible for the
information provided by the deterministic approximation to be
entirely learnt using only stochastic points; and so running any
deterministic points can be wasteful. This makes determinis-
tic approximations most useful when the simulation budget is
limited

4. Examples

In this section, the method will be applied to two examples that
are more realistic.

To compare the performance of the standard heteroscedas-
tic Gaussian process (HetGP) and the developed method
(DetHetGP), we will use two metrics: the mean squared error
(MSE) and a “score” that scores predictions according to both
their mean and variance. Both of these metrics use out-of-
sample simulations runs to assess the predictions of a statistical
model. The mean squared error is the mean squared difference
between the observed out-of-sample simulator runs and the pre-
dictive mean of the emulator; and the score is from Gneiting and
Raftery (2007, eq. 27), which is also used in Binois, Gramacy,
and Ludkovski (2018).

Smaller values for the MSE indicate an improved mean
function, and larger values for the score indicate better overall
predictions.

All simulation datasets will be obtained with input points
chosen by a maximin Latin hypercube design.

4.1. Susceptible-Infected-Recovered Simulator

The first simulator we investigate is a basic susceptible-infected-
recovered (SIR) model using the individual contact model
(ICM) from the EpiModel package (Jenness, Goodreau, and
Morris 2018). This stochastically models a population, where
individuals can be: susceptible to some disease; currently
infected with the disease; or recovered from (and now immune
to) the disease. This is a fast simulator, but it serves as a more

authentic example than the toy simulator in the previous sec-
tions. The two parameters we shall vary and use as our inputs
for the emulators are: the probability of infection which will
be allowed to vary between 0.5 and 1, and the recovery rate
which will vary between 0 and 0.01. Other parameters exist in
the model, such as the rate of interactions between individuals,
the initial number of infected, the total population, and the
time step to count the number of infected (all taken as fixed,
respectively, as 0.01, 5, 1000, and 300). The package also includes
a deterministic compartmental model (DCM), which is a dif-
ferent simulator, but takes the same inputs and provides the
same outputs as the stochastic simulator, and thus shall be our
deterministic approximation. Note that this is the case where a
deterministic approximation is available because an alternative
deterministic model of the same real world process exists.

HetGP is fit using 120 stochastic simulations, and DetHetGP
is fit using 80 stochastic simulations and 40 deterministic sim-
ulations (i.e., 20 deterministic points per input dimension, with
the rest of the budget assigned as stochastic runs). To compare
the two emulators, we obtain 200 more simulation runs, and
then calculate the MSE and score. Because this simulator is
relatively cheap, we can repeat this entire procedure 100 times;
smoothing out natural variation from specific Latin hypercube
realizations and specific simulation runs. We can then present
summary statistics of the MSE and score.

Table 1 gives these values.
Here, we can see that the score is marginally improved

for DetHetGP, and the MSE is substantially improved, with
the upper quartile for DetHetGP smaller than the median for
HetGP. Not only does DetHetGP appear to be the preferred
emulator here, but the deterministic approximation is much
faster than the stochastic version. The stochastic simulator
takes approximately 0.18 sec to run, whereas the deterministic
approximation takes approximately 0.05 sec to run. It is not
uncommon for a deterministic approximation to be cheaper,
such simulators are likely to be simpler, and thus faster. This
would imply that more simulation runs could be afforded if
more deterministic runs were chosen; in this case one stochastic
run costs more than three deterministic runs. To provide more
conservative results, we ignore this advantage in these compar-
isons, despite the potential improvement it provides DetHetGP.

Because the score is only marginally improved (and poten-
tially within the margin of natural variability from only repeat-
ing the comparison 100 times), but the mean squared error is
substantially improved, this example is potentially a case where
the trade-off between improved mean and improved variance
occurs.

To visually show the improvements DetHetGP yields, Fig-
ure 8 shows predictions from both emulators with the infection

Table 1. The summary statistics of the MSE and score for both HetGP and DetHetGP
from the simulation experiment conducted for the SIR simulator.

Lower quartile Median Upper quartile

MSE HetGP 0.326 0.418 0.495
DetHetGP 0.292 0.341 0.399

Score HetGP 116.4 145.1 172.4
DetHetGP 117.0 146.9 180.0

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

Figure 8. Emulator predictions for both HetGP (top) and DetHetGP (bottom). The predictions are for simulator runs where the infection rate is constant at 1, and only the
recovery rate varies. Also superimposed are 100 additional simulator runs where the infection rate is kept constant at 1.

rate x1 kept constant at 1, and only the recovery rate is varied.
Superimposed on this plot are 100 out of sample simulator runs
where the infection rate was also kept fixed at 1.

The mean predictions from HetGP are approximately linear,
missing the sharper increase for lower values of the recovery
rate, and instead a larger variance is predicted for these values—
large observed simulator runs were probably interpreted by the
emulator as existing because of a larger variance rather than
because of a larger mean. DetHetGP on the other hand does
estimate the sharp increase in the mean function, and does not
feature an overly large variance estimate for low values of the
recovery rate.

Other cross-sections of the emulator’s prediction surface
could have been presented, and a similar pattern exists for when
the recovery rate is fixed at 0 and the infection rate is allowed to
vary. The given plots clearly show that DetHetGP can provide a
significant advantage over HetGP.

4.2. Building Performance Simulator

The second, real-world, example we investigate is a simulator
for modeling the energy usage of a building (Crawley et al.
2001). Various attributes of a building must be input, such as
the buildings shape, properties of the building, and the weather.
The specific modeled building in question is a hospital, taken
from a reference hospital file (Deru et al. 2011), and the input
variables considered are: wall concrete thickness, wall insulation
thickness, roof insulation thickness, floor concrete thickness,
and window size (as a percentage of the total wall height).

Often, a single year of weather data is input, and the simulator
outputs the energy usage or the building if that year of weather
were observed; efforts are then spent on creating typical weather
files to use (Eames, Ramallo-Gonzalez, and Wood 2016). This is
an odd way of treating weather, as the weather often does not

behave “typically.” We modify this process by sampling a new
year of weather every time the simulator is run, converting the
deterministic simulator into a stochastic simulator. Every time
the building simulator is run, a new weather file is randomly
generated by combining sampled weeks from historical records,
stratified according to season. A deterministic approximation
of this stochastic simulator is then easily available as the same
simulator but with the weather fixed again. Note that this is
simultaneously the case where a deterministic approximation is
available because an old version of the simulator was determin-
istic, and because one of the inputs is actually random.

Two hundred data points are used to fit the two emulators,
with each run taking roughly 65 sec. For DetHetGP 100 of
the data points will be deterministic runs (20 per dimension),
and 100 will be stochastic. For HetGP the same stochastic runs
will be used, as well as an additional 100 stochastic points with
input values the same as those for the deterministic points. The
datasets will be standardized according to the sample mean and
standard deviation of the shared 100 stochastic data points.

This simulator is more expensive than the SIR simulator, and
so only one set of 500 out-of-sample simulation runs will be
generated. DetHetGP receives a score of −189.0 and an MSE
of 0.527, whereas HetGP receives a score of −287.5 and an MSE
of 0.809. DetHetGP seems to perform better than HetGP on the
building model in this case.

To further investigate this difference, Figure 9 shows the
emulator predictive distribution for wall insulation thickness,
keeping all other inputs fixed (at 0.5). 100 additional out-of-
sample simulator runs are also shown, where all other input
points are also fixed at 0.5.

The predictions from DetHetGP are characterized by a
decrease in energy usage for very low values of wall insulation,
after which improvements in energy efficiency seem to stabilize.
This is consistent with our experience of the building model.

10 E. BAKER, P. CHALLENOR, AND M. EAMES

Figure 9. Emulator predictions for second input of the building model (wall insulation thickness), when all other inputs are kept fixed at 0.5. HetGP predictions are plotted
above, and DetHetGP predictions are below. Also superimposed are 100 additional simulator runs where the remaining 4 inputs were kept constant at 0.5.

HetGP does not yield this characteristic, instead it is more
defined by a decrease in the variability of the energy usage as
wall insulation thickness increases. If we were to assume that the
trend discovered by DetHetGP is more accurate, it is likely that
extremely large observed values of energy usage were instead
assumed by HetGP to be the result of an increased variance,
rather than a sharp increase in the mean. The superimposed
out-of-sample data points agree more with the predictions from
DetHetGP, suggesting this emulator is better. The data implies
the sharp increase for low values of wall insulation thickness,
predicted by DetHetGP but not by HetGP, is correct and possibly
even sharper than predicted by DetHetGP.

DetHetGP does not appear perfect from these plots, however,
as around x = 0.75 there is a small, but sharp, decrease in the
mean. This decrease does not seem sensible from the data, nor
from prior understanding. Perhaps the deterministic approxi-
mation was modeled poorly due to a lack of deterministic data,
or perhaps a limited amount of stochastic data caused this error.
Using the more thorough advice from Section 3, wherein a
deterministic emulator is fit and validated beforehand, would
have been more informative, and perhaps would have avoided
this issue.

Although not definitive, the evidence suggests that
DetHetGP performs better than HetGP. Including deterministic
runs leads to a more accurately shaped mean function, and
because the two emulators disagree with the mean function
shape, it is probable that HetGP has estimated the mean
function poorly.

5. Conclusions

We have presented a method for including deterministic runs
in the emulation of stochastic simulation experiments. By using
a deterministic approximation of the stochastic simulator, a

less noisy view into the general shape of the mean function
can be learnt. Including deterministic runs can produce better
emulators, especially when the mean function is complex and
sufficient prior knowledge of the mean function is lacking, or
the simulation budget is insufficiently large.

HetGP is not the only method for modeling a stochastic
simulator with a Gaussian process. The variance could instead
be modeled with a simple parametric form, as by Boukouvalas
et al. (2014). Similarly, homoscedasticity may be an assumption
a practitioner is willing to make, and thus a fixed variance, as
in basic Gaussian process regression (Rasmussen and Williams
2006), may be viable. It would be interesting to see if DetHetGP
remains useful in these cases, and whether it performs better in
such scenarios. Similarly, other methods apart from Gaussian
processes exist for flexibly modeling heteroscedastic systems,
such as the method by Pratola et al. (2019). It would also be
interesting to see if deterministic approximations can be incor-
porated into other such methods.

An interesting design question has been posed regarding how
many deterministic points should be included: too few and the
deterministic approximation will not be modeled well; too many
and not enough stochastic data points will be generated, yielding
a poor estimate of the variance and potentially the overall mean.
The advice given in Section 3 provides a good starting point for
this.

Another modification would be the inclusion of replicated
simulator runs in the fitting of the emulator. Replicates are often
used in the fitting of heteroscedastic emulators (Ankenman,
Nelson, and Staum 2010; Boukouvalas, Cornford, and Stehlík
2014; Binois et al. 2019), with the goal of obtaining a better
understanding of the simulator’s mean and variance for the
observed input points. With DetHetGP substantially improving
the mean of stochastic emulator predictions, at the expense of
fewer stochastic simulator runs, and sometimes at the expense

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 11

Figure A.1. Emulator predictions for the toy simulator from Binois et al. (2019), using the newly developed model that incorporates both stochastic and deterministic runs.
The true mean and 95% interval are superimposed in black, and the emulator mean and 95% interval are in blue. The stochastic data points are circles, and the deterministic
data points are plus symbols. The mean of the DetGP component is in orange.

of a worse variance prediction, it would be interesting to see
whether combining replicates with incorporating deterministic
approximations would yield an improved emulator overall.

Perhaps related, is the computational benefits that could be
achieved by restricting stochastic runs to only be at locations
where deterministic runs have been made (see Kennedy and
O’Hagan 2000, for a similar implementation restriction). Such
a restriction becomes more feasible when replicates are used,
allowing the restriction to be obeyed, while also not forcing
the number of stochastic runs to be less than the number of
deterministic runs.

To conclude, we find that runs from a deterministic approx-
imation can be used to help predict the output from a stochas-
tic simulator. This can be done by modeling the stochastic
simulator as a sum of two Gaussian processes, one of which
is conditioned on deterministic approximation runs, and the
other on runs from the stochastic simulator. The model proves
powerful, yielding more accurate predictions of the output for
multiple toy and real simulators explored in this article.

Appendix A. DetHetGP Prior

All the emulators fit in this article have had an additional “nugget
variance” added for computational reasons (Neal 1997), including the
deterministic Gaussian processes. A value of 1e−4 was required for
this nugget variance to prevent computational issues in inverting the
covariance matrices.

For the stochastic emulator that incorporates deterministic runs, the
ldeti prior has been modified slightly. In practice ldeti = 0.05+l∗deti

, and
l∗deti

has a Gamma(4, 4) prior. This constrains ldeti to be greater than
0.05. Figure A.1 gives an example of what can happen in practice if ldeti
is not explicitly constrained to be larger than zero.

ldeti has an estimated value of 0.00150 here, which is very small. This
results in the deterministic Gaussian process (plotted in orange) being

approximately a straight line, with steep jumps toward the observed
deterministic points (which is an established problem discussed by
Andrianakis and Challenor (2012), caused by the inclusion of a nugget
variance). This leads to the final stochastic emulator also having steep
unnecessary jumps because there is not enough stochastic data for the
HetGP to smooth them out. Additionally, the deterministic emulator
being approximately linear also leads to extraneous variance in the
deterministic emulator predictions. This additional variance then also
mostly accounts for the intrinsic variance of the stochastic simulator,
leading to smaller estimates for δ2(X∗), and a less flexible estimated
variance process.

This issue could be prevented by decreasing the value of the nugget
variance for the deterministic Gaussian process, but can lead to compu-
tational errors. An alternative solution is the one implemented, fixing
ldeti to be sufficiently larger than zero.

Supplementary Materials

R code: R scripts (and a Stan file) which contain functions to fit the
developed model and make predictions from the model. Also contained
are similar scripts for a deterministic GP and a heteroscedastic GP;
which are then used in two R Markdown files to recreate the results in
Sections 2 and 3. (.zip file)

Funding

The authors gratefully acknowledge funding provided by the Engineering
and Physical Sciences Research Council.

References

Andrianakis, I., and Challenor, P. G. (2012), “The Effect of the Nugget
on Gaussian Process Emulators of Computer Models,” Computational
Statistics & Data Analysis, 56, 4215–4228. [11]

Ankenman, B., Nelson, B. L., and Staum, J. (2010), “Stochastic Kriging for
Simulation Metamodeling,” Operations Research, 58, 371–382. [10]

12 E. BAKER, P. CHALLENOR, AND M. EAMES

Ba, S., and Joseph, V. R. (2012), “Composite Gaussian Process Models
for Emulating Expensive Functions,” The Annals of Applied Statistics, 6,
1838–1860. [3]

Bastos, L. S., and O’Hagan, A. (2009), “Diagnostics for Gaussian Process
Emulators,” Technometrics, 51, 425–438. [6]

Binois, M., Gramacy, R. B., and Ludkovski, M. (2018), “Practical Het-
eroscedastic Gaussian Process Modeling for Large Simulation Experi-
ments,” Journal of Computational and Graphical Statistics, 27, 808–821.
[1,3,4,8]

Binois, M., Huang, J., Gramacy, R. B., and Ludkovski, M. (2019), “Replica-
tion or Exploration? Sequential Design for Stochastic Simulation Exper-
iments,” Technometrics, 61, 7–23. [1,10,11]

Boukouvalas, A., and Cornford, D. (2009), “Learning Heteroscedastic
Gaussian Processes for Complex Datasets,” Technical Report. [1]

Boukouvalas, A., Cornford, D., and Stehlík, M. (2014), “Optimal Design
for Correlated Processes With Input-Dependent Noise,” Computational
Statistics & Data Analysis, 71, 1088–1102. [10]

Boukouvalas, A., Sykes, P., Cornford, D., and Maruri-Aguilar, H. (2014),
“Bayesian Precalibration of a Large Stochastic Microsimulation Model,”
IEEE Transactions on Intelligent Transportation Systems, 15, 1337–1347.
[10]

Brynjarsdòttir, J., and O’Hagan, A. (2014), “Learning About Physical
Parameters: The Importance of Model Discrepancy,” Inverse Problems,
30, 114007. [3]

Cantoni, E., and Hastie, T. (2002), “Degrees-of-Freedom Tests for Smooth-
ing Splines,” Biometrika, 89, 251–263. [2]

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J.,
Pedersen, C. O., Strand, R. K., Liesen, R. J., Fisher, D. E., Witte, M. J.,
and Glazer, J. (2001), “EnergyPlus: Creating a New-Generation Build-
ing Energy Simulation Program,” Energy and Buildings, 33, 319–331.
[9]

Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Liu, B.,
Halverson, M., Winiarski, D., Rosenberg, M., and Yazdanian, M. (2011),
“US Department of Energy Commercial Reference Building Models of
the National Building Stock.” [9]

Eames, M. E., Ramallo-Gonzalez, A. P., and Wood, M. (2016), “An Update of
the UK’s Test Reference Year: The Implications of a Revised Climate on
Building Design,” Building Services Engineering Research and Technology,
37, 316–333. [9]

Gneiting, T., and Raftery, A. E. (2007), “Strictly Proper Scoring Rules, Pre-
diction, and Estimation,” Journal of the American Statistical Association,
102, 359–378. [8]

Goldberg, P. W., Williams, C. K., and Bishop, C. M. (1998), “Regres-
sion With Input-Dependent Noise: A Gaussian Process Treatment,” in
Advances in Neural Information Processing Systems, pp. 493–499. [1]

Haaland, B., and Qian, P. Z. (2011), “Accurate Emulators for Large-Scale
Computer Experiments,” The Annals of Statistics, 39, 2974–3002. [3]

Jenness, S. M., Goodreau, S. M., and Morris, M. (2018), “EpiModel: An
R Package for Mathematical Modeling of Infectious Disease Over Net-
works,” Journal of Statistical Software, 84, 8. [8]

Kennedy, M. C., and O’Hagan, A. (2000), “Predicting the Output From a
Complex Computer Code When Fast Approximations Are Available,”
Biometrika, 87, 1–13. [3,11]

(2001), “Bayesian Calibration of Computer Models,” Journal of the
Royal Statistical Society, Series B, 63, 425–464. [3]

Kersting, K., Plagemann, C., Pfaff, P., and Burgard, W. (2007), “Most Likely
Heteroscedastic Gaussian Process Regression,” in Proceedings of the
24th International Conference on Machine Learning, ACM, pp. 393–400.
[3]

Loeppky, J. L., Sacks, J., and Welch, W. J. (2009), “Choosing the Sample Size
of a Computer Experiment: A Practical Guide,” Technometrics, 51, 366–
376. [1,6]

McKay, M. D., Beckman, R. J., and Conover, W. J. (2000), “A Comparison
of Three Methods for Selecting Values of Input Variables in the Analysis
of Output From a Computer Code,” Technometrics, 42, 55–61. [2]

Neal, R. M. (1997), “Monte Carlo Implementation of Gaussian Pro-
cess Models for Bayesian Regression and Classification,” arXiv no.
physics/9701026. [11]

O’Hagan, A. (2006), “Bayesian Analysis of Computer Code Outputs: A
Tutorial,” Reliability Engineering & System Safety, 91, 1290–1300. [1]

Pratola, M., Chipman, H., George, E., and McCulloch, R. (2019), “Het-
eroscedastic BART via Multiplicative Regression Trees,” Journal of Com-
putational and Graphical Statistics, 1–13. doi: 10.1080/10618600.2019.
1677243 [10]

Rasmussen, C. E., and Williams, C. K. I. (2006), Gaussian Processes for
Machine Learning, Cambridge, MA: MIT Press. [1,3,4,10]

Stan Development Team (2016), “Stan Modeling Language Users Guide and
Reference Manual,” Technical Report. [3]

Vernon, I., Goldstein, M., and Bower, R. G. (2010), “Galaxy Formation: A
Bayesian Uncertainty Analysis,” Bayesian Analysis, 5, 619–669. [3]

Williamson, D. B., Blaker, A. T., and Sinha, B. (2017), “Tuning With-
out Over-Tuning: Parametric Uncertainty Quantification for the
NEMO Ocean Model,” Geoscientific Model Development, 10, 1789–1816.
[6]

	Abstract
	1. Introduction
	2. Model
	3. Guidelines
	3.1. Criterion 1
	3.2. Criterion 2
	3.3. Criterion 3

	4. Examples
	4.1. Susceptible-Infected-Recovered Simulator
	4.2. Building Performance Simulator

	5. Conclusions
	Appendix A. DetHetGP Prior
	Supplementary Materials
	Funding
	References

