8 research outputs found

    Stochastic Master Equations in Thermal Environment

    Full text link
    We derive the stochastic master equations which describe the evolution of open quantum systems in contact with a heat bath and undergoing indirect measurements. These equations are obtained as a limit of a quantum repeated measurement model where we consider a small system in contact with an infinite chain at positive temperature. At zero temperature it is well-known that one obtains stochastic differential equations of jump-diffusion type. At strictly positive temperature, we show that only pure diffusion type equations are relevant

    Entanglement in a fermion chain under continuous monitoring

    Get PDF
    We study the entanglement entropy of the quantum trajectories of a free fermion chain under continuous monitoring of local occupation numbers. We propose a simple theory for entanglement entropy evolution from disentangled and highly excited initial states. It is based on generalized hydrodynamics and the quasi-particle pair approach to entanglement in integrable systems. We test several quantitative predictions of the theory against extensive numerics and find good agreement. In particular, the volume law entanglement is destroyed by the presence of arbitrarily weak measurement.Comment: 18 pages, 8 figures, 2 new figure

    Stochastic Master Equations in Thermal Environment

    No full text
    We derive the stochastic master equations which describe the evolution of open quantum systems in contact with a heat bath and undergoing indirect measurements. These equations are obtained as a limit of a quantum repeated measurement model where we consider a small system in contact with an infinite chain at positive temperature. At zero temperature it is well-known that one obtains stochastic differential equations of jump-diffusion type. At strictly positive temperature, we show that only pure diffusion type equations are relevant
    corecore