5 research outputs found

    A Comparative Study of Stochastic Model Predictive Controllers

    Full text link
    [EN] A comparative study of two state-of-the-art stochastic model predictive controllers for linear systems with parametric and additive uncertainties is presented. On the one hand, Stochastic Model Predictive Control (SMPC) is based on analytical methods and solves an optimal control problem (OCP) similar to a classic Model Predictive Control (MPC) with constraints. SMPC defines probabilistic constraints on the states, which are transformed into equivalent deterministic ones. On the other hand, Scenario-based Model Predictive Control (SCMPC) solves an OCP for a specified number of random realizations of uncertainties, also called scenarios. In this paper, Classic MPC, SMPC and SCMPC are compared through two numerical examples. Thanks to several Monte-Carlo simulations, performances of classic MPC, SMPC and SCMPC are compared using several criteria, such as number of successful runs, number of times the constraints are violated, integral absolute error and computational cost. Moreover, a Stochastic Model Predictive Control Toolbox was developed by the authors, available on MATLAB Central, in which it is possible to simulate a SMPC or a SCMPC to control multivariable linear systems with additive disturbances. This software was used to carry out part of the simulations of the numerical examples in this article and it can be used for results reproduction.Gonzalez, E.; Sanchís Saez, J.; Garcia-Nieto, S.; Salcedo-Romero-De-Ávila, J. (2020). A Comparative Study of Stochastic Model Predictive Controllers. Electronics. 9(12):1-22. https://doi.org/10.3390/electronics9122078S12291

    Stochastic Model Predictive Control: An Overview and Perspectives for Future Research

    Full text link

    Stochastic MPC with applications to process control

    No full text
    This paper presents a model predictive control formulation for Networked Control Systems subject to independent and identically distributed delays and packet dropouts. The design takes into account the presence of a communication network in the control loop, resorting to a buffer at the actuator side to store and consistently apply delayed control sequences when fresh control inputs are not available. The proposed approach uses a statistical description of transmissions to optimise the expected future control performance conditioned upon the current system state, previously calculated control packets and transmission acknowledgements. Experimental studies using a quadruple tank process illustrate the applicability of the method to process control
    corecore