443 research outputs found

    A Pareto-metaheuristic for a bi-objective winner determination problem in a combinatorial reverse auction

    Get PDF
    The bi-objective winner determination problem (2WDP-SC) of a combinatorial procurement auction for transport contracts comes up to a multi-criteria set covering problem. We are given a set B of bundle bids. A bundle bid b in B consists of a bidding carrier c_b, a bid price p_b, and a set tau_b of transport contracts which is a subset of the set T of tendered transport contracts. Additionally, the transport quality q_t,c_b is given which is expected to be realized when a transport contract t is executed by a carrier c_b. The task of the auctioneer is to find a set X of winning bids (X is subset of B), such that each transport contract is part of at least one winning bid, the total procurement costs are minimized, and the total transport quality is maximized. This article presents a metaheuristic approach for the 2WDP-SC which integrates the greedy randomized adaptive search procedure, large neighborhood search, and self-adaptive parameter setting in order to find a competitive set of non-dominated solutions. The procedure outperforms existing heuristics. Computational experiments performed on a set of benchmark instances show that, for small instances, the presented procedure is the sole approach that succeeds to find all Pareto-optimal solutions. For each of the large benchmark instances, according to common multi-criteria quality indicators of the literature, it attains new best-known solution sets.Pareto optimization; multi-criteria winner determination; combinatorial auction; GRASP; LNS

    Improved opportunity cost algorithm for carrier selection in combinatorial auctions

    Get PDF
    Transportation costs constitute up to thirty percent of the total costs involved in a supply chain. Outsourcing the transportation service requirements to third party logistics providers have been widely adopted, as they are economically more rational than owning and operating a service. Transportation service procurement has been traditionally done through an auctioning process where the auctioneer (shipper) auctions lanes (distinct delivery routes) to bidders (carriers). Individual lanes were being auctioned separately disallowing the carriers to express complements and substitutes. Using combinatorial auctions mechanism to auction all available lanes together would allow the carriers to take advantage of the lane bundles, their existing service schedule, probability of securing other lanes and available capacity to offer services at lower rates and be more competitive. The winners of the auction are the set of non-overlapping bids that minimize the cost for the shippers. The winner determination problem to be solved in determining the optimal allocation of the services in such kind of combinatorial auctions is a NP-hard problem. Many heuristics like approximate linear programming, stochastic local search have proposed to find an approximate solution to the problem in a reasonable amount of time. Akcoglu et al [22] developed the opportunity cost algorithm using the “local ratio technique” to compute a greedy solution to the problem. A recalculation modification to the opportunity cost algorithm has been formulated where opportunity costs are recalculated every time for the set of remaining bids after eliminating the bid chosen to be a part of the winning solution and its conflicts have eliminated. Another method that formulates the winning solution based on the maximum total revenue values calculated for each bid using the opportunity cost algorithm has also been researched

    Exact algorithms for the matrix bid auction.

    Get PDF
    In a combinatorial auction, multiple items are for sale simultaneously to a set of buyers. These buyers are allowed to place bids on subsets of the available items. A special kind of combinatorial auction is the so-called matrix bid auction, which was developed by Day (2004). The matrix bid auction imposes restrictions on what a bidder can bid for a subsets of the items. This paper focusses on the winner determination problem, i.e. deciding which bidders should get what items. The winner determination problem of a general combinatorial auction is NP-hard and inapproximable. We discuss the computational complexity of the winner determination problem for a special case of the matrix bid auction. We present two mathematical programming formulations for the general matrix bid auction winner determination problem. Based on one of these formulations, we develop two branch-and-price algorithms to solve the winner determination problem. Finally, we present computational results for these algorithms and compare them with results from a branch-and-cut approach based on Day & Raghavan (2006).Algorithms; Bids; Branch-and-price; Combinatorial auction; Complexity; Computational complexity; Exact algorithm; Mathematical programming; Matrix; Matrix bids; Research; Winner determination;

    Efficiency Resource Allocation for Device-to-Device Underlay Communication Systems: A Reverse Iterative Combinatorial Auction Based Approach

    Full text link
    Peer-to-peer communication has been recently considered as a popular issue for local area services. An innovative resource allocation scheme is proposed to improve the performance of mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink (DL) cellular networks. To optimize the system sum rate over the resource sharing of both D2D and cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism. In the auction, all the spectrum resources are considered as a set of resource units, which as bidders compete to obtain business while the packages of the D2D pairs are auctioned off as goods in each auction round. We first formulate the valuation of each resource unit, as a basis of the proposed auction. And then a detailed non-monotonic descending price auction algorithm is explained depending on the utility function that accounts for the channel gain from D2D and the costs for the system. Further, we prove that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds. We explain non-monotonicity in the price update process and show lower complexity compared to a traditional combinatorial allocation. The simulation results demonstrate that the algorithm efficiently leads to a good performance on the system sum rate.Comment: 26 pages, 6 fgures; IEEE Journals on Selected Areas in Communications, 201

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing
    • 

    corecore