23,962 research outputs found

    Bio-inspired vision-based leader-follower formation flying in the presence of delays

    Get PDF
    Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles) to date. Towards this goal, we make three contributions in this paper: (i) we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii) we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii) unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents

    A Tractable State-Space Model for Symmetric Positive-Definite Matrices

    Get PDF
    Bayesian analysis of state-space models includes computing the posterior distribution of the system's parameters as well as filtering, smoothing, and predicting the system's latent states. When the latent states wander around Rn\mathbb{R}^n there are several well-known modeling components and computational tools that may be profitably combined to achieve these tasks. However, there are scenarios, like tracking an object in a video or tracking a covariance matrix of financial assets returns, when the latent states are restricted to a curve within Rn\mathbb{R}^n and these models and tools do not immediately apply. Within this constrained setting, most work has focused on filtering and less attention has been paid to the other aspects of Bayesian state-space inference, which tend to be more challenging. To that end, we present a state-space model whose latent states take values on the manifold of symmetric positive-definite matrices and for which one may easily compute the posterior distribution of the latent states and the system's parameters, in addition to filtered distributions and one-step ahead predictions. Deploying the model within the context of finance, we show how one can use realized covariance matrices as data to predict latent time-varying covariance matrices. This approach out-performs factor stochastic volatility.Comment: 22 pages: 16 pages main manuscript, 4 pages appendix, 2 pages reference

    A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.894244Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and backgroun

    Quantum Brain: A Recurrent Quantum Neural Network Model to Describe Eye Tracking of Moving Targets

    Full text link
    A theoretical quantum brain model is proposed using a nonlinear Schroedinger wave equation. The model proposes that there exists a quantum process that mediates the collective response of a neural lattice (classical brain). The model is used to explain eye movements when tracking moving targets. Using a Recurrent Quantum Neural Network(RQNN) while simulating the quantum brain model, two very interesting phenomena are observed. First, as eye sensor data is processed in a classical brain, a wave packet is triggered in the quantum brain. This wave packet moves like a particle. Second, when the eye tracks a fixed target, this wave packet moves not in a continuous but rather in a discrete mode. This result reminds one of the saccadic movements of the eye consisting of 'jumps' and 'rests'. However, such a saccadic movement is intertwined with smooth pursuit movements when the eye has to track a dynamic trajectory. In a sense, this is the first theoretical model explaining the experimental observation reported concerning eye movements in a static scene situation. The resulting prediction is found to be very precise and efficient in comparison to classical objective modeling schemes such as the Kalman filter.Comment: 7 pages, 7 figures submitted to Physical Review Letter

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object
    corecore