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A Generic Framework for Tracking Using
Particle Filter With Dynamic Shape Prior

Yogesh Rathi, Namrata Vaswani, and Allen Tannenbaum

Abstract—Tracking deforming objects involves estimating the
global motion of the object and its local deformations as functions
of time. Tracking algorithms using Kalman filters or particle fil-
ters (PFs) have been proposed for tracking such objects, but these
have limitations due to the lack of dynamic shape information.
In this paper, we propose a novel method based on employing a
locally linear embedding in order to incorporate dynamic shape
information into the particle filtering framework for tracking
highly deformable objects in the presence of noise and clutter. The
PF also models image statistics such as mean and variance of the
given data which can be useful in obtaining proper separation of
object and background.

Index Terms—Dynamic shape prior, geometric active contours,
particle filters (PFs), tracking, unscented Kalman filter.

I. INTRODUCTION

I N recent years, there has been substantial research in the
field of active vision, more specifically, in the segmentation

and tracking of deforming objects (see [1]–[4] and the refer-
ences therein). Many methods based on geometric information
such as edges (see, e.g., [1]) track the global (rigid or affine)
motion of the object, whereas other techniques which utilize
the statistical properties of the image (e.g, mean and variance
of the intensities) [5]–[7] can track local shape deformations of
the moving objects. The latter methods track by minimizing an
image-based energy functional at each frame and do not incor-
porate motion dynamics of the moving object into their tracking
framework. The former methods can only handle affine motion
of the moving object and cannot track local shape deformations.
This paper extends the work done in [8] and proposes a geo-
metric observer for infinite-dimensional space of curves within
the particle filtering framework. It also incorporates dynamic
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shape priors and image statistics for tracking highly deformable
objects in the presence of noise and clutter.

A. Past Work

In order to appreciate this methodology, we briefly review
some previous related work. The possible parameterizations of
planar shapes described as closed contours are of course very
important. Various finite-dimensional parameterizations of con-
tinuous curves have been proposed, perhaps most prominently
the B-spline representation used for a “snake model” as in [2].
Isard and Blake (see [1] and the references therein) use the
B-spline representation for contours of objects and propose the
CONDENSATION algorithm [1] which treats the affine group
parameters as the state vector, learns a prior dynamical model
for them, and employs a particle filter (PF)[9] to estimate them
from the (possibly) noisy observations. Since this approach only
tracks affine parameters, it cannot handle local deformations of
the deforming object.

Another approach for representing contours is via the level
set method [10], [11] where the contour is represented as the
zero level set of a higher dimensional function, e.g., the signed
distance function [10], [11]. For segmenting an object, an initial
guess of the contour (represented using the level set function) is
deformed until it minimizes an image-based energy functional.
Tracking is then performed by minimizing this energy func-
tional at each iteration. This, however, does not take into account
the motion dynamics of the moving object. Some previous work
on tracking using level set methods is given in [6] and [7].

Shape information is quite useful when tracking in clutter,
especially if the object to be tracked gets occluded. Hence, a
number of methods have been proposed [5], [6] which incorpo-
rate a static shape prior into the tracking framework. The ap-
proach of these works is based on the idea that the object being
tracked does not undergo a deformation (modulo a rigid trans-
formation). Another method for obtaining a shape prior is via
principal component analysis (PCA) [12]. In this case, it is as-
sumed that the shape can undergo small variations which can be
captured by doing linear PCA. The dynamics of the variations in
shape can be learned using an autoregressive model which can
then be utilized within the CONDENSATION framework for
tracking small deformations in shape [4], [6]. However, linear
PCA is quite inadequate in representing the shape variations if
the object being tracked undergoes large deformations (as will
be explained in detail subsequently).

In [13], the authors propose a method for segmentation with
multiple shape priors. A joint energy which depends on the
image and a labelling function is minimized which leads to
automatic selection of shape priors appropriate for the object.
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However, this method cannot be used to provide dynamic shape
prior for tracking deforming objects since it would require prior
knowledge about all possible shapes of the object. In [5], the
authors minimize a shape-based energy (the Mahalanobis dis-
tance) in the kernel space to obtain a shape prior. In this case, a
set of training shapes is mapped to a high-dimensional space
using a nonlinear function and the Mahalanobis distance be-
tween the given shape and the training set is minimized to obtain
a shape prior. This method is related to kernel PCA [5], [14] and
is shown to perform better than linear PCA in a number of cases.
Kernel PCA can also be used to provide dynamic shape prior in
any tracking framework.

Other related approaches to tracking are given in [2], [3], [15],
and [16]. In [15], the authors propose a generic local observer
to incorporate prior information about the system dynamics for
tracking deformable objects. They impose a constant velocity
prior on the group action and a zero velocity prior on the con-
tour. The observed value of the group action and the contour
is obtained by a joint minimization of the energy. This is lin-
early combined with the value predicted by the system dynamics
using an observer.

The authors in [8] employ a particle filtering algorithm for
geometric active contours to track highly deformable objects.
The tracker, however, fails to maintain the shape of the object
being tracked in case of occlusion. The present work extends the
method proposed in [8] by incorporating dynamic shape priors
into the particle filtering framework based on the use of a locally
linear embedding (LLE). We further generalize the algorithm by
including the image statistics (mean and variance of the object
and background) in the state vector and formulate a geometric
active contour method which drives the contour not only based
on the image information, but also based on the statistics pre-
dicted by the PF. This makes the algorithm more robust to leaks
and occlusions.

LLE is widely used for dimensionality reduction and for pat-
tern classification; see [17]–[19]. It attempts to discover the non-
linear structure in high-dimensional data by exploiting the local
symmetries of linear reconstructions. To the best of our knowl-
edge, this is the first time LLE has been used for shape analysis
and tracking. Of course, the literature reviewed above is by no
means exhaustive.

The rest of the paper is organized as follows. Section II briefly
explains the basic theory underlying PFs and curve evolution.
Section III gives the motivation and describes the concepts of
LLE and shape similarity measures. Section IV develops the
state space model in detail, and Section V describes the experi-
ments conducted to test the proposed method. Some conclusions
and further research directions are discussed in Section VI.

II. PRELIMINARIES

This section briefly describes some of the basic ideas for PFs
and curve evolution using level sets which we will need in the
present work.

A. Particle Filtering With Importance Sampling

Let be a state vector evolving according to the
following difference equation: where is

i.i.d. random noise with known probability distribution func-
tion (pdf). At discrete times, observations become
available. These measurements are related to the state vector
via the observation equation: where is mea-
surement noise with known pdf. It is assumed that the initial
state distribution , the state transition function denoted by

and the observation likelihood given the state, denoted by
, are known. The PF [9], [20] is a sequential Monte

Carlo method which produces at each time , a cloud of par-

ticles, , whose empirical measure closely “follows”
, the posterior distribution of the state given past ob-

servations. The first application of PF to tracking in computer
vision was the CONDENSATION algorithm [21].

The algorithm starts with sampling times from the initial
state distribution in order to approximate it by

, and then implements the Bayes’ re-
cursion at each time step. Assuming that one can sample from
the posterior distribution , an empirical estimate of
this distribution is given by:

, where is the weight associated with the th particle.
In general, however, it is usually difficult, if not impossible, to
sample efficiently from the posterior . One solution
consists of using the importance sampling method given in [22]
and described briefly here.

Suppose is a probability density from which it
may be difficult to draw samples, and suppose that is a den-
sity from which it is easy to sample, and has a heavier tail than

(i.e., there exists a bounded region such that for all points
outside , ). is known as the proposal density
or the importance density. Let , be sam-
ples generated from . Then, an approximation to is given
by , where and

is the normalized weight of the th par-

ticle. So, if the samples, , were drawn from an importance
density, , and weighted by

then approximates . The
choice of the importance density is a critical design issue for
implementing a successful PF. As described in [22], the pro-
posal distribution should be such that particles generated
by it, lie in the regions of high observation likelihood. One
way of doing this is to use a proposal density which depends
on the current observation. This idea has been used in many
past works such as the unscented PF [23] where the proposal
density is a Gaussian density with a mean that depends on the
current observation.

In this paper, the state process is assumed to be Markov, and
the observations are conditionally independent given the cur-
rent state, i.e., . This gives the following
recursion for the weights [20]:

(1)
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Using this relation and a set of samples sampled from the
distribution , the empirical distribution for the posterior is
given by , where are
normalized weights. Next, resampling is performed so that par-
ticles with low weights are eliminated.

B. Curve Evolution

There is a large literature concerning the problem of sepa-
rating an object from its background; see, e.g., [6], [7], [24],
and [25]. Level sets have been used quite successfully for this
task. Many region-based active contour models have been in-
spired by the region competition model of Zhu and Yuille [24].
In this approach, starting from an initial estimate, the curve de-
forms under the influence of various forces until it fits the ob-
ject boundaries. The curve evolution equation is obtained as
the gradient descent iteration to minimize an “energy” .
In general, may depend on a combination of image-
based features and external constraints (smoothness, shape, etc.)
(see [26], [27], and the references therein). In [28], the authors
have proposed a variational framework for segmenting an ob-
ject using the first two moments (mean and variance) of image
intensities. The main idea behind this formulation is as fol-
lows. Let denote the image, denote the
signed distance function that embeds the contour such that

and denote the Heavy-side func-
tion [27]

else.

Let us denote by and , the probability density func-
tions of the image intensities with mean , and standard de-
viation , respectively. Assuming a Gaussian distribution
for the intensity inside and outside the object, we would like to
maximize the following energy [24], [28]:

(2)

where . Alternatively, one could minimize the energy
functional [28]

(3)

where we have added a regularizing term that penalizes the
length of the contour. The Euler–Lagrange for the above func-
tional is given by the following PDE:

(4)

where is the Dirac delta function, is a user
defined parameter that controls the smoothness of the curve and

is an artificial time marching parameter.1 Details on how to
evolve a curve using level set methods can be found in [10] and
[11].

A different method to minimize the energy (2) using shape
gradient is given in [25]. In particular, the regularizing term

does not appear in the formulation proposed in [25], re-
sulting in a slightly different curve evolution equation. Note that
one could use any type of curve evolution equation (edge or re-
gion based) in the algorithm being proposed. We have made this
particular choice because it is simple yet powerful in segmenting
cluttered images.

III. MOTIVATION FOR USING LLE

In this section, we compare two shape learning techniques,
namely linear PCA and LLE. Of particular interest here is the
performance of these methods when the training data contains
shapes that have very different geometries. To provide dynamic
shape prior for highly deforming objects, any shape learning
technique should be able to capture all the different variations
in shape that an object undergoes. Linear PCA has been used to
provide shape prior in case the variability in shapes is small [12].
However, as will become clear, for large variations in shape,
linear PCA is simply inadequate. LLE, on the other hand, pro-
vides a good alternative in such scenarios.

In what follows, the shapes (closed curves) are assumed to
be embedded in a signed distance function with the zero level
set representing the contour. Shape analysis is performed on
these embeddings, so that it is easy to incorporate prior shape
knowledge in the level-set-based curve evolution equation.

A. Linear PCA

PCA has been widely used in many applications such as di-
mensionality reduction, shape analysis, data classification etc.
In PCA, one computes the linear projections of greatest vari-
ance from the top eigenvectors of the data covariance matrix.
Its first application to shape analysis in the level set framework
was accomplished by embedding a curve as the zero level set
of a signed distance function (see [12]). By doing this, a small
set of coefficients can be utilized for a shape prior in various seg-
mentation tasks as shown in [12] and [29]. Linear PCA assumes
that the set of permissible shapes form a Gaussian distribution,
i.e., all possible shapes can be written as a linear combination
of a set of eigen-shapes obtained by doing PCA on the training
data set [12], [29].

1The artificial time marching parameter � is different than the time t (which
denotes time in the context of the PF) used elsewhere in this paper.
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Fig. 1. Few shapes of a man from the training set (note the large deformation
in shape).

Fig. 2. Note that projection in PCA basis does not give a valid shape. (a) Orig-
inal shape; (b) projection in the PCA basis.

The eigen-shapes can be obtained as follows. Let repre-
sent the signed distance function corresponding to the surface

. All the s are aligned using a suitable method of registra-
tion [30]. The mean surface is computed by taking the mean
of the signed distance functions, . The variance
in shape is computed using PCA, i.e., the mean shape is sub-
tracted from each to create a mean-offset map . Each such
map is placed as a column vector in an -dimensional
matrix M, where . Using singular value decomposi-
tion (SVD), the covariance matrix is decomposed
as , where is a matrix whose column
vectors represent the set of orthogonal modes of shape variation
(eigenshapes) and is a diagonal matrix of corresponding sin-
gular values. An estimate of a new shape of the same class of
object can be obtained from principal components using an

-dimensional vector of coefficients, , where
is a matrix consisting of the first columns of . Given

the coefficients , an estimate of the shape , namely , can
be obtained as: . For more details please refer to
[12]. Thus, PCA assumes that the set of training shapes lie on
a linear manifold. For small shape deformations, PCA has been
used to provide dynamic shape prior [31] for a Bayesian tracker.

We now consider the question of the suitability of PCA
for providing reasonable candidate shape priors for highly
deforming objects. In particular, we would like to ascertain the
ability of PCA to represent previously unseen shapes, given
a training set of shapes with large deformation. To do this
we consider several shapes of a person (taken as an example
of a highly deforming object) as indicated in Fig. 1. Notice
the large variation in shape due to movement of the limbs.
PCA was performed on 75 such shapes (embedded in a signed
distance function). A previously unseen shape was projected
into the PCA basis and the coefficients computed. Given ,
the pre-image of the projection was computed as described
before. Fig. 2 shows the original and the pre-image of the
projection. As seen, the original and the projected shapes are
very different. Thus, in many cases, linear PCA cannot be used
to obtain a suitable shape prior if the training set lies on a
nonlinear manifold.

B. LLE for Shape Analysis

In [18], the authors proposed an unsupervised LLE algorithm
that computes low-dimensional, neighborhood preserving em-
beddings of high-dimensional data. LLE attempts to discover
nonlinear structure in high-dimensional data by exploiting the
local symmetries of linear combinations. It has been used in
many pattern recognition problems for classification. In this
work, we use it in the particle filtering framework for providing
dynamic shape prior.

The LLE algorithm [18] is based on certain simple geo-
metric principles. Suppose the data consists of vectors
of dimension , sampled from some underlying smooth
manifold. Provided there is sufficient data, we expect each data
point and its neighbors to lie on or close to a locally linear
patch of the manifold. We can characterize the local geometry
of these patches by a set of coefficients that reconstruct each
data point from its neighbors. In the simplest formulation of
LLE, one identifies nearest neighbors of the data point .
Reconstruction error is then measured by the cost function:

. We seek to find the weights
so as to minimize the reconstruction error

, subject to the constraint that the weights that lie
outside a certain neighborhood are zero and . With
these constraints, the weights for points in the neighborhood of

can be obtained as [17]

where and (5)

In applications where dimensionality reduction is the major ob-
jective, one proceeds further and computes a low-dimensional
vector corresponding to each , preserving the neighborhood
structure by keeping the weights constant [17]. This work
uses LLE only for obtaining the neighborhood structure in the
training set and not for dimensionality reduction. Performing
shape analysis using low-dimensional vectors is the subject of
future study as was done for linear PCA in [29].

In what follows, we assume that a closed curve is repre-
sented as the zero level set of a signed distance function .
Stacking all the columns of one below the other, one can ob-
tain a vector of dimension , if is of dimension (in
the rest of the paper, we use interchangeably to represent a
vector of dimension or a matrix of dimension . The
appropriate dimension can be inferred from the context).

Let us now see how well an unseen shape is represented using
LLE. Fig. 3 shows the original and the projected shape obtained
from 2 or more of the nearest neighbors. As is evident, LLE
performs quite better than PCA. Of course, this leaves open
the problem of how many nearest neighbors to choose. One
way to proceed is to compute the distance between the original
shape and the projected shape using different numbers of nearest
neighbors, denoted by . Fig. 4 shows the plot of distance as a
function of the nearest neighbors for two different shapes. As is
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Fig. 3. Shape representation with LLE; k is the number of nearest neighbors used to represent the original shape. (a) Original shape; (b) k = 2; (c) k = 10;
(d)k = 15; (e) k = 20.

Fig. 4. Graph of the distance between the original shape and the shape obtained
using different numbers of nearest neighbors; x axis is the number of nearest
neighbors and y axis is the distance between the shapes. Distance was calculated
using equation (6). Plots shown are for two different shapes of man from the
training data.

clear, the optimal value for may change for different shapes.
Finding the optimal for each shape can be computationally
complex, and will also depend on the training data set. Hence,
to reduce the computational complexity, we have used a fixed
value for in all our experiments. This approximation, however,
did not seem to effect the overall performance of our tracker.

C. Finding the Nearest Neighbors

In the previous section, we showed how to represent a shape
by a linear combination of its neighbors. Here we con-

sider the key issue of how to find the nearest neighbors. One
may be tempted to use the Euclidean 2-norm to find distance
between shapes, i.e., if is the (squared) distance be-
tween and , then . However, this
norm does not represent the distance between shapes, but only
the distance between two vectors. Since we are looking for the
nearest neighbors of in the shape space, a similarity measure
between shapes is a more appropriate choice. Many measures
of similarity have been reported; see , e.g., [5], [6], and [32]. In
this paper, we have chosen the following distance measure [33]:

(6)

where is the zero level set of . The first term in the
above equation gives the amount of “work” required to move
shape (embedded by ) to , i.e., the summation can be
evaluated by computing the Euclidean distance function of
(or, equivalently, absolute value of signed distance function, )
and summing up values of by moving along all points of
(or, equivalently, moving along the zero level set of )

on a discrete grid. Similarly, the second summation computes
the amount of “work” required to move contour to . We
chose this particular distance measure because it allows for par-
tial shape matching which is quite useful for occlusion handling.
More details about this measure may be found in [33]. The dis-
tance measure stated above is not invariant to differences in pose
and scale. A rigid registration should be performed between any
two shapes before is computed. There is a large body of liter-
ature concerning the problem of rigid registration between two
shapes [29], [30]. In this work, we minimize the distance with
respect to the translation and rotation parameters by using gra-
dient descent.

Note that is not differentiable at the zero level set; hence,
we use a smooth approximation for the absolute value function

, where is a small positive constant. Thus, if
represents one of the rigid parameters (translation, rotation),

then the gradient descent equation for each is given by

(7)

A related registration method, but with a different distance
metric is given in [6], [29], and [32]. Details on how to compute

can be found in [29]. In the rest of the paper, wherever
the distance measure is used, it is assumed that ,

have been registered with respect to an appropriate rigid
transformation. Our experiments show that, in general, the
above gradient descent equation converges quickly requiring
only 10–20 iterations. We should note that the development of
the remaining algorithm does not depend on a particular choice
of the distance measure. Thus, once the distance measure
between each and the rest of the elements in the training set
is known, one can find the nearest neighbors of .

IV. STATE SPACE MODEL

This section describes the state space model, the prediction
model, and the importance sampling concept used within the
particle filtering framework for tracking deformable objects. We
will employ the basic theory of particle filtering here as briefly
described above, and given in detail in [9] and [23].

Let denote the state vector at time . The state consists
of parameters that models the rigid (or affine) motion of the
object (e.g., for Euclidean motion), the curve
(embedded as the zero level set of ) which models the shape
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of the object and the image intensity statistics given by the mean
and variance of the object and background , i.e.,

. The observation is the image at time ,
i.e., .

The intensity distribution of the object and the background
can provide vital information for any tracking algorithm. For ex-
ample, in general, the mean intensity of the object being tracked
does not change drastically from one frame to the next. Thus,
tracking the mean object intensity along with the shape param-
eter can increase the robustness of the tracker. Hence, we have
included the intensity statistics of the object and background in
the state vector. Thus, one can obtain a model for the image from
the state variables, i.e., models the location and pose of the
object, models the shape of the object, , model the inten-
sity distribution inside the object and , model the intensity
distribution of the background.

Given the description above, we would like to recursively
obtain the probability as described above in Sec-
tion II-A. In general, it is quite difficult to sample from the
prior distribution , especially in this particular
case, where the state space consists of the curve which has
to be sampled from an infinite-dimensional space of curves.
Hence, we perform importance sampling as described below.
The proposed algorithm is analogous to the unscented particle
filter (UPF) [23], wherein an unscented Kalman filter (UKF) is
used to obtain the importance distribution. In fact, we propose a
novel method which is conceptually similar to the UKF to obtain
the importance density function for each particle . For a better
comprehension of the proposed method, we briefly describe the
main concepts underlying the UPF as follows [23].

1) At time , initialize the particles (state) by sampling
from the prior distribution.

2) Importance Sampling: For , update the parti-
cles by sampling from the importance density function ob-
tained using UKF.

3) Resample so that particles with low weights are eliminated.
The UKF in the importance sampling step above can be briefly
described as follows.

1) Deterministically obtain sigma points (particles) using the
mean and covariance of the samples from the prior distri-
bution.

2) Time update: Propagate each of the sigma points into the
future using the function .

3) Measurement update: Incorporate the new observation to
compute the updated mean and covariance

where is the Kalman gain which determines how much
to trust the system model versus the observation.

In the UPF framework, UKF is used to obtain the proposal
density function for each par-

ticle of the PF (see [23] for details). is then obtained by
sampling from . We now describe the time update step and

the measurement update step in the proposed framework to ob-
tain the importance density function.

A. Time Update

The state at time is given by: where
is random noise vector, is any user defined input data (in

our case, it is the set of training shapes) and is possibly a non-
linear function [23]. The problem of tracking deforming objects
can be separated into two parts [3]:

1) tracking the global rigid motion of the object;
2) tracking local deformations in the shape of the object,

which can be defined as any departure from rigidity.
Accordingly, we assume that the parameters that represent rigid
motion and the parameters that represent the shape are
independent. Thus, it is assumed that the shape of an object does
not depend on its location in the image, but only on its previous
shape and the location of an object in space does not depend
on the previous shape. Hence, the prediction step consists of
predicting the spatial position of the object using the following:

(8)

where is random Gaussian noise vector with variance .
The prediction for shape is obtained as follows:

(9)

where are user-defined weights such that
and , are the nearest neighbors of

obtained as described in Section III-C. Note that we have used
the data from the training set to obtain . This is the reason
is a function of (user data) as defined above.

A more generalized formulation of the prediction step above
can be obtained by sampling the weights from a known dis-
tribution to obtain a set of possible shapes and then choosing
the predicted shape from this set, based on certain criteria. A
different approach to choosing these weights could be based on
their distances from the shape , i.e., the nearest neighbor
gets higher weight than the next nearest, and so on. Thus

(10)

where and .
We believe that one of the main contributions of this paper

is the formulation of a scheme that allows one to dynamically
predict the shape of the object without learning the sequence
in which they occur. Thus, the only knowledge required in this
prediction step is a training set of shapes. In particular, one does
not need to sample from an infinite-dimensional space of shapes
(curves), but only from a set containing the linear combination
of nearest neighbors of . This not only reduces the search
space dramatically, but also allows to sample from a finite set of
possible shapes.

The system model for the image intensities is assumed to be
Gaussian with a certain variance. Furthermore, it is assumed
that the image statistics are independent. Thus, the prediction
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for object statistics , and background statistics , can be
obtained as follows:2

(11)

where , , , .

B. Measurement Update

We now proceed to describe how to obtain samples from the
proposal distribution based on the current observation. In partic-
ular, we perform importance sampling for each element of the
state vector. The entire algorithm can be divided into two steps.

1) Sample from the proposal distribution for the rigid param-
eters based on the current image .

2) Obtain samples for the shape parameter and the image
statistics parameters , , , .

The first step can be implemented in the following manner: At
time , for each particle , generate samples as described in the
prediction step in (8). Using the image at time , a rigid
transformation is applied to each (in particular ) by
doing iterations of gradient descent on the image energy

with respect to the rigid transformation parameters ,
i.e., we generate

(12)

where is given by

and (13)

The above gradient descent algorithm can be implemented
as given in [29] for each of the translation, scale and rotation
parameters.

In the second step, importance sampling is performed for the
rest of the state vector by doing a few iterations of gradient
descent (“curve evolution”) on the energy, , i.e.,

(14)

where is given by

(15)

2We would like to thank the anonymous reviewer for pointing out that on
some special class of images the above model cannot be directly used. Specifi-
cally, for images with variances very close to zero, the prediction for � , �
may be negative. For such cases, one can either remove the variances from the
state vector or the prediction step can be modified to �̂ = max(� +

n ; � ), where � is a small positive constant.

where

The energy is as defined in (3) and is defined by
[6]

(16)

where is the contour obtained from a linear combination
of the nearest neighbors of , with weights obtained from (5).
Note that of course depends on . We, however, assume a
piecewise constant model for . Thus, at each iteration of
gradient descent, is obtained by finding the nearest neighbors
of and taking a linear combination of these.

This idea has been used in a different context by Chan and
Vese [27] and Yezzi [34] to segment images based on mean in-
tensities. In the Chan–Vese model, one computes the mean in-
tensities inside and outside the object after every iteration (even
though the mean intensities depend on the evolving contour).
Similarly, we compute the shape after every iteration. The
corresponding curve evolution equation is given by

(17)

This PDE tries to drive the current contour embedded by to-
wards that embedded by . This ensures that the current con-
tour (embedded in ) is close to the set of learnt shapes. This
is another instance where LLE is being used in the proposed
algorithm. An alternative to obtaining the evolution equation
for without the piece-wise constant assumption can be
found in [25], where the authors use the shape gradient for com-
puting the appropriate flow. Of course, the resulting flow is
more accurate but quite complicated. The piece-wise constant
assumption did not seem to affect the performance of the algo-
rithm and worked well in practice keeping the overall gradient
descent quite simple to compute.

The PF-based energy is defined as

(18)

where3

(19)

3Note that û , v̂ , etc., are obtained from (11) and do not denote partial
derivatives.
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The corresponding Euler–Lagrange for these energy functionals
are given by

(20)

where is the unit inward normal and

with , region inside and outside , respectively, and

Thus, the contour evolution corresponding to tries to drive
the contour towards the region which will satisfy the statistics
of the image as predicted by the PF in (11). This ensures that the
proposal distribution so obtained depends on the system model
as well as the current observation which is another point of de-
parture from the method proposed in [8] where the proposal den-
sity heavily depended on the current observation. Note that con-
straining the object intensity moments as described above helps
in avoiding leaks (unwanted departures from the actual shape)
along with preventing large and sudden changes in estimation
of the object intensity distribution. Incorporation of image sta-
tistics as described in (18) and (20) into the PF is another con-
tribution of the present work.

Thus, the overall gradient descent equation in (14) moves the
contour towards the joint minimizer of the image-based term

, the shape-based term , and the PF-based term
. The parameters , are chosen based on how much

one wants to trust the image (observation) information
versus the system model ( , ).

Equation (15) may be implemented by summing the PDEs
(4), (17), and (20) as follows:

(21)

where is the speed term from (4), is the speed term
from (20) and is the shape term from (17). We perform only

( or ) iterations of gradient descent since we do not want
to evolve the curve until it reaches a minimizer of the energy,

. Evolving to the local minimizer is not desirable since the
minimizer would be independent of all starting contours in its
domain of attraction, and would be highly dependent upon the
observation, . Thus, the state at time would loose its depen-
dence on the state at time , and this may cause loss of track
in cases where the observation is bad. Thus, the choice of is
quite important.

Choosing to be too large (taking the curve very close to
the minimizer) can move the particles too close to the current
observation, i.e., trust in the observation is high. If is chosen
to be too small, it implies very low trust in the observations ob-
tained and as a result the particles will not be moved to the region
of high observation likelihood. Hence, the choice of depends
on how much one trusts the system model versus the obtained
measurements. Note that, will of course also depend on the
step-size of the gradient descent algorithm, as well as the type
of PDE used in the curve evolution equation. Thus, iterations
of gradient descent performs the same function that the term

performs in the
UKF framework, i.e.,

(22)

In UKF, the Kalman gain is analytically determined by the
system model under a Gaussian state distribution assumption.
Thus, is small if trust in the obtained measurement is less,
whereas is large otherwise. In the present case, however, is
a fixed model parameter which determines how much influence
does the current observation have on the predicted state.

The above framework is very similar to the use of UKF in the
UPF framework [23] with the assumption that the distribution
for each particle is highly peaked around (variance very
close to zero). Thus, the sample is obtained as

with
(23)

This formulation is quite advantageous (compared to UKF),
since it does not require expensive computation of the covari-
ance matrix4 for (the shape vector), no computation of sigma
points (since the covariance is assumed to be zero) is done, and
finally one does not need a separate mechanism to compare the
actual measurements with the predicted measurements (see the
algorithm for UKF in [23]).

4In some cases, one may not be able to compute the covariance matrix easily
if the dimension is very large, for example, if the shape vector� is of dimension
500 � 500.
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To summarize, a sample from the proposal distribution may
be obtained as follows:

(24)

C. Statistics for Textured Objects

The above formulation can only track regions with homoge-
neous image intensities, since we only include the mean and
variance of the object in the state space. However, one can easily
extend this formulation to track complex textured objects by in-
corporating the response of an appropriate filter (e.g., Gabor)
into the state space model, and then trying to drive the contour
evolution towards the filter response predicted by the PF, analo-
gous to (20) above. One very simple extension can be obtained
as follows: To incorporate information about texture, one can
obtain a vector valued image from the given gray scale image

by using the gradient information at each point as follows:

(25)

where and are spatial derivatives in the and directions
respectively. Consequently, one works with this new vector
image with , being vector means and , being the cor-
responding covariance matrices. This idea was first proposed
in [34] to segment textured images. To make the mathematical
analysis a bit easier, let us assume that we only include the
vector means of the object and background

in the state vector. To separate the object from
background using only the mean intensities, one can directly
use the energy functional defined in [34] [instead of
defined earlier in (3)]. Notice that the two components of

are independent. Hence, the energy functional
can now be modified for the vector case as follows:

The corresponding Euler–Lagrange can be written as

Similar changes can be made to and the corresponding
Euler–Lagrange computed. This formulation can now be used
to track textured objects. One can also use a structure tensor,
as has been proposed in many works, to find the image and
segment the resulting image [35]. Thus, the proposed method
can easily be extended to track objects with nonhomogeneous
intensity distribution. In this work, however, we restricted our
experiments to nontextured images.

D. Setting the Importance Weights

As described before, the importance weights are given by [20]

(26)

The likelihood probability, i.e., the probability of observing the
image given the state (object shape, position, and intensity dis-
tribution) is defined as

(27)

The prior density is given by

with

where (28)

where is the (squared) distance measure defined above in
(6), and is the maximum a posteriori (MAP) estimate of
the shape at time . We should note that using the MAP
shape information available from time is quite essential
since it adds more weight to particles which are closer to the
previous best estimate than particles that are far away. This is
quite useful in case of occlusion wherein particles which look
like the previous best shape are given higher probability, despite
the occlusion. The model parameter is chosen based on the
size of the variation in the shape of an object from one frame
to the next. So one should choose a smaller value for if the
variation in shape is small and larger otherwise.

From (23), and assuming a very small but nonzero variance,
one can write , where is a constant. In
addition, we assume that (in particular, the variance) is the
same for all particles . Thus, using (23), (27), and
(28), one can compute the importance weights

E. Improvement Using Importance Sampling

Fig. 5 shows the histogram of the likelihood probability of the
particles with and without using the importance density. As can
be seen, more particles are moved to the region of high likeli-
hood if the importance distribution is used.

V. PARTICLE FILTERING ALGORITHM

Based on the description above, the complete particle filtering
algorithm can be summarized as follows.
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Fig. 5. Likelihood probability distribution (a) with and (b) without using im-
portance density q(:) for frame 2 of octopus sequence (200 particles).

For each particle perform the following.
1) Importance Sampling:

a) Obtain model prediction for using (8), (9), and
(11) as

b) Perform ( and ) steps of curve evolution on
each

2) Weighting and Resampling:
a) Calculate weights and normalize

where is as defined in (28).

b) Resample to generate particles
distributed according to .

3) Go back to the importance sampling step for .

The resampling step improves sampling efficiency by elimi-
nating particles with very low weights.

VI. EXPERIMENTS

The proposed algorithm was tested on four different se-
quences, and the corresponding results are presented in this
section. We certainly do not claim that the method proposed in
this paper is the best one for every image sequence on which
it was tested, but it did give reasonable results with a small
number of particles on all of the image sequences. We should
add that to the best of our knowledge this is the first time
dynamic shape prior in a level set framework has been used
in conjunction with the PF [9] for tracking such deforming
objects. Also note that the framework is quite general in that

it allows to track multiple objects with different intensity
statistics. It can also be used to track color image sequences
with the statistics corresponding to each color channel included
in the state vector. In this work, however, we restricted our
experiments to gray level images.

A. Choice of Model Parameters

Parameters chosen determine the system model for each of
the tracking sequence. Hence, the choice of these parameters is
indeed important. We have chosen the following set of parame-
ters in our experiments for all the test sequences, i.e., the same
set of parameters were used in obtaining all the results.

1) Choosing , the number of nearest neighbors: will
depend on the number of similar shapes available in the
training set [18]. If the training set contains many shapes
with high shape similarity measure (6), then can be
higher. In our experiments, the training set was obtained
by hand-segmenting images from the test sequence.
Choosing gave acceptable results.

2) Choosing : A classical choice [5] is
. For all the

test sequences, was used. A good choice for
in (28) was .

3) The algorithm presented in this paper is quite general.
However, even if we use a particular case of this general
method, the results are encouraging. In particular, we have
used the following:

a) ;
b) from Section IV-D and (a) above, we get

;
c) accordingly, was used and only the

corresponding gradient descent term (20) was incor-
porated in the curve evolution equation.

4) models the motion dynamics of the object being
tracked. In all the test sequences, since the spatial motion
of the object was not large, we used . Also,
only translational motion was assumed, i.e., .

5) The conditional distribution for was assumed to

be for all test
sequences.

6) We assumed , with the other
weights assumed to be zero (see (10)). Our experiments
show that the tracking results are not sensitive to this par-
ticular choice of the parameters. Of course, , should
be normalized so that .

7) depends on the image statistics and will be different
for different image sequences. In order avoid choosing a
different parameter for each image sequence, one can nor-
malize and then use a fixed value for . In our exper-
iments we have used .

8) and were used in tracking all the test
sequences.

B. Numerical Issues

The number of particles required for a successful implemen-
tation of any particle filtering algorithm grows exponentially
with the dimension of the state vector. For example, the
CONDENSATION algorithm with a 3-D state vector requires
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Fig. 6. Shark sequence I. First row: tracking results without shape information. Second row: Results using the proposed algorithm.

Fig. 7. Shark sequence II. First row shows tracking results with no shape information. Next two rows shows results using the proposed algorithm.

about 2000–5000 particles. In this work, however, the proposed
formulation allows for successful tracking with just about
50–100 particles. This is due to the formulation of the im-
portance density function as a gradient descent step described
previously in Section IV. This step makes the proposed algo-
rithm practically implementable. Note that the state vector for
all the sequences was 4-D in addition to the very high-dimen-
sional representation of the contour (typically 200–300 on a
discrete grid). Of course, we do not claim that the method in
this work can be implemented in real-time (10–20 Hz), but that
it is feasible to implement such a high-dimensional state-based
algorithm in reasonable time. Specifically, it took about 30 s to
process one frame with un-optimized Matlab code on a 3-GHz
Windows machine.

We should note that the most time consuming part of the pro-
posed method is the gradient descent step and the rigid registra-
tion step (for providing shape information). Recently, [36] pro-
posed a real-time level-set-based algorithm for tracking. One
could use such a technique for speeding up the gradient descent
step. We believe that this would significantly improve the speed
of the algorithm.

C. Shark Sequence I

In this sequence, there is significant change in the shape of the
shark as it moves. The intensity distribution also varies quite a
bit from the head to tail. Results of tracking the shark without
shape information using the algorithm given in [8] is shown in

Fig. 6. Trying to track the sequence with (4) alone is also not en-
couraging. Note that, due to large shape variations, PCA cannot
be used to provide shape information. Fig. 6 shows tracking re-
sults using the proposed algorithm with 42 particles. 8% of the
images were hand-segmented to obtain the training set.

D. Shark Sequence II

This sequence has very low contrast (object boundaries in
some images are barely visible even to human observers) with
a shark moving amid a lot of other fish (clutter) which partially
occlude it simultaneously in many places. This results in a dra-
matic change in the image statistics of the shark if a fish from the
background occludes the shark. The training set was obtained by
hand segmenting 10% of the images from the image sequence.
This is because the shape variation is large from one frame to the
next. Tracking results without shape prior information but using
the intensity moments within the state vector is shown in Fig. 7.
As can be seen, even though the algorithm tracks the shark, it
is unable to maintain the shape. Results using the proposed al-
gorithm (with shape prior) are shown in Fig. 7. This sequence
demonstrates the robustness of the proposed algorithm in the
presence of noise and clutter. The number of particles used for
this sequence was 56.

E. Octopus Sequence

As seen in Fig. 8, the shape of the octopus undergoes large
changes as it moves in a cluttered environment. It gets occluded
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Fig. 8. Octopus sequence: Results using the proposed algorithm. Notice that a fish with the same mean intensity occludes the octopus.

Fig. 9. Results of tracking using the proposed method. Top row shows shape deformation after every 3–4 frames. Last image at the bottom right is the segmentation
using equation (4).

for several frames by a fish having the same mean intensity
(see the top row). Tracking this sequence using (4) or any other
method without shape information may result in the curve
leaking to encompass the fish. Fig. 8 shows tracking results
using the proposed method. As seen, the shape of the octopus
is maintained despite the occlusion. For tracking this sequence
we used 40 particles, and the training set included 9% of the
possible shapes.

F. Soccer Sequence

This sequence tracks a man playing soccer. There is large de-
formation in the shape due to movement of the limbs (hands
and legs) as the person tosses the ball around. The deforma-
tion is also great from one frame to next when the legs occlude
each other and separate out. There is clutter in the background
which would cause leaks if geometric active contours or the par-
ticle filtering algorithm as given in [8] were used to track this
sequence. Results of tracking using the proposed method are
shown in Fig. 9. Here, we employed 70 particles, and 15% of
the possible shapes were included in the training set.

VII. CONCLUSIONS AND LIMITATIONS

In this paper, we have presented an approach which incorpo-
rates dynamic shape prior information and image statistics into
a particle filtering algorithm for tracking highly deformable
objects in presence of noise and clutter. The shape prior in-
formation is obtained using LLE for shapes. No motion or
shape dynamics are required to be known for tracking complex
sequences, i.e., no learning is required. The only information
needed is a set of shapes that can appropriately represent the
various deformations of the object being tracked. The proposed
algorithm can be further generalized to include the intensity
distribution of the object and background as part of the state

vector (to track objects with texture) instead of mean and
variance.

Nevertheless, the current algorithm has certain limitations.
First, it is computationally very expensive, as each particle has
to be evolved for many iterations. Second, the training set should
contain sufficient number of possible shapes of the object being
tracked so that LLE can be used, i.e., each shape should have at
least two neighbors which can be used to provide shape prior.
Finally, it is quite difficult to know the size of the training set to
use to obtain reasonable tracking results.

Future work involves obtaining samples for shapes by trav-
eling along the geodesic path from one shape to the other in
the shape space as given in [37]–[39]. This could further reduce
the number of elements required in the training set and samples
could be generated online during the tracking process.
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