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Abstract—We propose a principled framework for recursively
segmenting deformable objects across a sequence of frames. We
demonstrate the usefulness of this method on left ventricular seg-
mentation across a cardiac cycle. The approach involves a tech-
nique for learning the system dynamics together with methods of
particle-based smoothing as well as nonparametric belief propaga-
tion on a loopy graphical model capturing the temporal periodicity
of the heart. The dynamic system state is a low-dimensional repre-
sentation of the boundary, and the boundary estimation involves
incorporating curve evolution into recursive state estimation. By
formulating the problem as one of state estimation, the segmenta-
tion at each particular time is based not only on the data observed
at that instant, but also on predictions based on past and future
boundary estimates. Although this paper focuses on left ventricle
segmentation, the method generalizes to temporally segmenting
any deformable object.

Index Terms—Cardiac imaging, curve evolution, graphical
models, image segmentation, learning, left ventricle (LV), level
sets, magnetic resonance imaging, particle filtering, recursive
estimation, smoothing.

I. INTRODUCTION

EMPORAL segmentation of deformable objects is a

problem encountered in many fields, including medical
imaging, video coding, surveillance, and oceanography. In
video sequences, the use of semantic object tracking is useful
for compression [1], [2]. In the area of surveillance, there
is often an interest in tracking known objects [3], [4], e.g.,
humans, whose motion involves nonrigid transformations. In
oceanography, the desire to segment and track oceanic fronts
is of interest to navigators, scientists, and oil rig drill teams
[5]-[7]. While the methodology we propose can be applied to
any of these temporal segmentation problems, we focus on a
medical application, in particular the segmentation of the left
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ventricle (LV) of the heart across a cardiac cycle. This is a
problem of interest because the left ventricle’s proper function,
pumping oxygenated blood to the entire body, is vital for
normal human activity.

Having segmentations of the LV over time allows cardiolo-
gists to assess the dynamic behavior of the human heart. One
quantitative measure of the health of the LV is ejection frac-
tion (EF), the percentage volume of blood transmitted out of the
LV in a given cardiac cycle. To compute EF, we need to have
segmentations of the LV at multiple points in a cardiac cycle;
in particular at end diastole (ED) and end systole (ES). In addi-
tion, observing how the LV evolves throughout an entire cardiac
cycle allows physicians to determine the health of the myocar-
dial muscles. Segmented LV boundaries can also be useful for
further quantitative analysis. For example, past work [8], [9] on
extracting the flow fields of the myocardial wall assumes the
availability of LV segmentations throughout the cardiac cycle.

The automated segmentation of the LV endocardium in bright
blood cardiac magnetic resonance (MR) images is a nontrivial
process. First, the image intensities of the cardiac chambers
vary due to differences in blood velocity [10]; blood that flows
into the ventricles produces higher intensities in the acquired
image than blood which remains in the ventricles [11]. Fur-
thermore, locating the LV is complicated by the presence of
the right ventricle and aorta jointly with the LV in many im-
ages of the heart. In addition, automatic segmentation of low
signal-to-noise ratio (SNR) cardiac images (e.g., body coil MR
or ultrasound [12]-[14]) is difficult because intensity variations
can often obscure the LV boundary.

Using segmentations from a previous or future frame can aid
in the segmentation of the object in the current frame. During a
single cardiac cycle, which lasts approximately 1 second, the
heart contracts from end diastole to end systole and expands
back to end diastole. Over this time, MR systems can acquire ap-
proximately 20 images of the heart. Because adjacent frames are
imaged over a short time period (approximately 50 ms), the LV
boundaries exhibit strong temporal correlation. Consequently,
previous and subsequent LV boundaries provide information re-
garding the location of the current LV boundary. Using such in-
formation is particularly useful for low SNR images, where the
observation from a single frame alone may not provide enough
information for a good segmentation. Fig. 1 shows the results of
static segmentations compared with results obtained using the
approach described in this paper. Our method exploits the dy-
namics of the heart and incorporates information from past and
future frames.

The incorporation of dynamic models into the tracking of
dynamically evolving shapes is an area of recent and growing
interest both for the problem of cardiac tracking and for more

1057-7149/$20.00 © 2008 IEEE

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on October 23, 2008 at 06:53 from IEEE Xplore. Restrictions apply.


https://core.ac.uk/display/11740056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SUN et al.: LEARNING THE DYNAMICS AND TIME-RECURSIVE BOUNDARY DETECTION OF DEFORMABLE OBJECTS

®)

Fig. 1. Sample segmentations of the LV, one near end diastole (a) and the other
near end systole (b), using a static segmentation method and our proposed re-
cursive framework.

general application. In particular, in the work of Chalana et al.
[14] and Jolly et al. [15] causal processing is performed in which
the segmentation from the most recent frame is used to initiate
a local search for the segmentation in the current frame—thus,
implicitly using a simple, linear random walk model for curve
evolution in which the best prediction of the current curve is the
previous one. Zhou et al. [16] allow more complex linear dy-
namics on a landmark-based representation for the curves (thus
introducing the issue of correspondence) but constrain the dy-
namics to be known and linear with Gaussian uncertainty and
perform best linear unbiased estimation at each time fusing to-
gether the causal prediction from the preceding frame and the
noisy measurements from the current frame. Senegas et al. [17]
use sample-based methods (using sequential Monte Carlo) for
causal shape tracking on a finite-dimensional representation of
the shape space using spherical harmonics. Their prediction step
implicitly defines an assumed dynamic model for cardiac mo-
tion that can be thought of as linear and Gaussian, with “pinned”
distributions at both the start and end of the cycle. In particular,
the mean shapes at ED and ES are determined from training
data, and, given the shape estimate in a particular frame, the
prediction is assumed to be Gaussian with mean shape given by
a linear combination of the current estimate and a fraction of
the difference between the mean shapes at ED and ES (hence,
driving the means toward these pinned values at the end points).
Vaswani et al. [18]-[20] also use a particle-based method for
causal shape tracking, but they do this directly in a variational
framework that leads to level-set based representations and par-
ticles that represent samples of the intrinsically infinite-dimen-
sional curve. Finally, Cremers [21] uses level sets and finite-di-
mensional representations using principal component analysis
to represent shapes and learns linear, Gaussian dynamic models
for this finite-dimensional representation.

As in Cremers’ approach, our method uses level set represen-
tations in concert with finite-dimensional projections of curves
onto principal components. However, in contrast to essentially
all of the previous methods, we do not constrain our dynamics
to be linear or Gaussian and, in fact, use nonparametric, infor-
mation-theoretic methods to learn statistical models for evolu-
tion of these finite-dimensional projections. As in Senegas’ and
Vaswani’s work, we use sample-based methods for the fusing
of our dynamic model with the dynamic image sequence. How-
ever, we perform noncausal smoothing in order to take advan-
tage of frames throughout the cardiac cycle in order to enhance
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segmentation at each frame. Moreover, if we exploit the period-
icity of cardiac motion (as is done implicitly through the “pin-
ning” operation in Senegas’ work) we are led to the problem of
performing smoothing on a graph consisting of a single cycle,
requiring the use of new particle-based methods appropriate for
inference on loopy graphs. In addition, while the core of our ap-
proach involves sampling and inference on finite-dimensional
projections of the shape space (as opposed to the purely infi-
nite-dimensional framework of Vaswani), by coupling level set
representations into our graphical structure appropriately, our
ultimate boundary estimates are in fact curves generated via
curve evolution and, hence, are not constrained to a finite-di-
mensional space.

In summary, the major contributions of our approach are
(a) the use of nonparametric, information-theoretic methods to
learn the dynamics of shape evolution; (b) the development of
particle-based smoothing algorithms (including ones based on
a single-cycle graph to capture periodicity of cardiac motion)
that allow segmentation throughout the LV cycle using all
available data; (c) the incorporation of level set methods in a
statistically consistent manner in order to generate boundaries
not constrained to reside in the finite-dimensional domain in
which dynamics have been learned; and (d) the demonstration
of the effectiveness of our approach (both qualitatively and
quantitatively) on cardiac imagery.

In Section II, we describe the probabilistic model structure
and components on which our segmentation technique is based.
In Section III, we introduce a finite-dimensional state represen-
tation for the LV boundaries, and present an information theo-
retic method for learning the system dynamics. Section IV con-
tains descriptions of the sample-based approximate inference
algorithms we use. This includes estimation algorithms for fil-
tering and smoothing on a Markov chain, as well as on a single
cycle graph. Furthermore, this section also includes the incorpo-
ration of curve evolution methods into our framework. In Sec-
tion V, we present experimental results on cardiac MR images
demonstrating the effectiveness of our approach. We conclude
in Section VI.

II. PROBABILISTIC MODEL STRUCTURE

We formulate the dynamic segmentation problem as the es-
timation of the posterior distribution of the boundary! at each
discrete time ¢ based on the data available. In this section, we de-
scribe the structure and components of the probabilistic model
we use in solving that estimation problem. Fig. 2 is a graph-
ical model representation [22], [23] of the statistical structure
we propose for describing data and cardiac dynamics over a
single cardiac cycle. In this graphical model, circular and rect-
angular nodes correspond to hidden and observed random vari-
ables, respectively, and the graph encodes the statistical depen-
dency structure of the model as we describe. Let us discretize
a cardiac cycle into T time points, corresponding to the T" tem-
poral frames in MR imagery of a single cardiac cycle. At each
time point ¢, we observe the image data ¥;, which are noisy mea-
surements of the blood and tissue intensity field. Let f; be a
coarse description of the intensities inside and outside the LV (in

I'We use the terms “boundary” and “curve” interchangeably throughout this
paper.
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Fig. 2. Graphical model representing the statistical model structure used in our
work.

particular, while other, more complex descriptions can be used,
we take f; to be the 2-D vector consisting of the mean intensity
inside the LV and the mean intensity outside). Let C_"t denote the
LV boundary at time t. We note that C, is an infinite-dimen-
sional curve that evolves in time. We also define a variable X,
which is a low-dimensional representation of C_"t, and which we
use as the the dynamic system state. The structure in Fig. 2 im-
plies a Markov structure for the dynamical model of X,.

Let us assume that ¢ = 1 corresponds to end systole (ES).
As we move from left to right in Fig. 2, we go through various
points in the cardiac cycle, e.g., through end diastole (ED) some-
where in the middle, back to ES towards the right end. Note the
dashed line connecting X; and X . This line indicates the pos-
sibility of a graphical link to exploit the periodicity of the car-
diac cycle, capturing the fact that although X; and X are not
temporal neighbors in absolute time, they are neighbors in the
cardiac cycle. We present techniques including and excluding
this link.

One key aspect of the graphical structure in Fig. 2 is that the
state variables X, are low-dimensional representations of the
LV boundaries C. This is motivated by the fact that we are in-
terested in learning the cardiac dynamics and that it is reason-
able to expect that statistical significance of this learning will
be enhanced if we use a compressed, finite-dimensional rep-
resentation for the curves representing the LV wall. Based on
this observation, our dynamical models, i.e., the graphical links
across time, are on these finite-dimensional representations. Of
course the actual observed data y, involve the real curve ét and
the intensities f;, which is captured in our model through the
other graphical connections. Note that this can be interpreted
as a finite-dimensional hidden Markov model capturing cardiac
dynamics.

We note that because of what we know about the cardiac
cycle, we expect the dynamics—i.e., the graphical links among
the X;’s from time to time to be time-varying. In our work, we
develop and use such time-varying models. We also note that
the time indexing puts ED and ES at particular frames with some
uncertainty in those frames. The models we develop also handle
such uncertainties.

Next we describe particular components of our model, that
is, probabilistic relationships between the random variables rep-
resented in the graphical model in Fig. 2 (we assume that the
cardiac cycle is cyclic so that the state following X is X7).
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This involves a likelihood model p(yq| ft, C_"t), an intensity prior
model p(f:|Cy), a curve prior model p(Cy|X,), and a dynam-
ical model for the system state p(X;|X;_1). Note that each of
these models can be associated with a single edge or multiple
edges in Fig. 2, and also that due to the Markov structure, these
are the only relationships required to characterize the joint dis-
tribution of the variables involved. Note that our loopy graph
represents a Markov random field. Namely, if we condition on
any two nonadjacent nodes, the two separated chains are inde-
pendent of each other.

A. Curve Prior Model (p(Cy| X))

As we mentioned, the state X} is a finite-dimensional approx-
imate representation of the boundary C'. A formal definition of
X, will follow in Section III-A. To allow for variability around
the curve represented by X;, we use the following model for
curve Cy:

p(ét|Xt) o exp(—Dz(C_"t,Xt)) (1

where D? (C_" , X+) measures the deviation of C, from X, by the
following formula:2

D*(Cy, X,) = / d%, (s)ds 2)

t

where dx, (s) is the distance of point s on C; from the curve
represented by X; [24]. Note that other distance measures could
be used, as well. In addition, if one were interested in a curve
length penalty or any other constraint on the boundary, such
regularization can be incorporated within the curve prior model.

B. Intensity Prior Model (p(f:|Cy))

Although we noted that differing blood velocities cause dif-
ferences in intensities within the left ventricle, these differences
are not systematic enough to be included in a spatial inten-
sity model. It is then reasonable to assume intensities exhibit
statistical homogeneity within regions. Models based on such
assumptions are widely used in image segmentation, one well-
known example being the Mumford—Shah model [25]. One ex-
treme of that idea is to model intensities simply as having con-
stant means inside and outside the region bounded by the curve,
as in Chan and Vese’s work [26]. Taking a similar perspective
to that in [26], we model mean intensities as a constant bright
intensity representing blood in Rin(ét) (the region inside the
LV boundary) and a constant darker one representing the my-
ocardium in Rout(ét) (the region immediately outside the LV
boundary).

In [26], the constant intensity values in each region are de-
termined in a completely data-driven fashion during the seg-
mentation process. However, in the cardiac imaging application,
we consider here, we can acquire statistical information about
these intensities from training images. Therefore, we use a prior
model for the intensity values inside and outside the LV. In par-

ticular, let f, = [ftRin(Ct)ftRout(Ci)]

with independent components. Here, ftR () and ftR out (Cr

T be a 2-D random vector,
) in-

2This deviation is not a metric because it is not symmetric (in general,
D(X,Y) # D(Y, X)) from its definition, but it provides a reasonable curve
prior.
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dicate the random variables for the constant intensities inside
and immediately outside the LV, respectively. Note that we ex-
plicitly indicate the dependence of the regions on C,. Based on
the distribution of intensities observed in the training data, we
determined that these variables can be accurately modeled by
log-normal distributions, leading to the following prior model:

- (log £ — up?
p(fi|Ct) o exp (— 207
log fFen (@) _ )2
-exp (—( 8 /i 957 ) . 3

2

2 02 are learned from segmented

The model parameters u, v, o
training data (see Section V).

C. Likelihood Model (p(y|f:, Cy))

Given the simple intensity model described above, variations
in the observed data, such as those due to differences in blood
velocity [11], are accounted for by the following multiplicative
noise model:

wlz) = { £ nz)

. z€ Run(Cy)
FE O n(2),

- “)
z € Rout(Ct)

where y;(z) is the observed data at time ¢, spatial location z;
and n(z) is a spatially independent, identically distributed log-
normal random field with log n(z) a Gaussian random field
having zero mean and variance o,. )

Given the two intensities ff2 ‘“(Ct), ffz °“°(Ct), and the loca-
tion of a particular boundary ?t, then log y:(2) is normally dis-

fR;,,(Ct)

tributed with mean log f; if that particular pixel is inside

the LV boundary (and log ftR““ (€ ititis outside), and variance
o2. Consequently, the likelihood of the entire observed image
¢ at time ¢ can be written as

zERM (ét)

_ /(logyf(z) - 10g ftRO“t(Ci))z dz) . (5)

(log ye(z) — log fn(C1)y2
202

p(yt|ft76t) X exp (

2
20z

D. State Dynamics (p(X¢|Xt-1))

As Fig. 2 indicates, the statistical structure of the state process
consists of a Markov chain, corresponding to the solid edges
in the figure, possibly augmented by an additional statistical
constraint, indicated by the dashed edge, to capture (statistical)
periodicity. As this latter piece is easily described-and can be
viewed as conditioning the Markov chain on this additional
piece of information, the major component needed to complete
our statistical model is that of capturing the Markovian dy-
namics between two temporally-neighboring states X;_; and
X, in the evolution of the LV, and can be associated with the
the edges between the X’s in Fig. 2. The perspective we take
in this paper is to learn a time-varying dynamical model from
off-line training data (using expert-segmented LV boundaries),
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Fig. 3. Tllustration of LV shape variability. ©> & o;%); for the first eight primary
modes of variability (+ = 1,2, ..., 8, left to right). Solid curve represents %> +
o;v; while dashed represents ¥ — o;%);.

and then use that model in the automatic segmentation process.
Using a finite-dimensional approximate representation X; of
the boundaries C, makes the learning problem better posed and
the learned models more useful for prediction. In Section III,
we describe this representation, and an information-theoretic
approach for learning the forward dynamics p(X|X:—1), as
well as the backward dynamics p(X;_1|X¢).

III. SYSTEM DYNAMICS

In this section, we describe our finite-dimensional represen-
tation of LV boundaries and propose a technique for learning
the boundary dynamics.

A. Boundary Representation

The set of LV boundaries have different internal areas and dif-
ferent shapes across a cardiac cycle and across patients. We want
to represent these boundaries in a simple, low-dimensional, yet
accurate, manner. For a given boundary (a 1-D curve in 2-D
space), we propose a representation using a signed distance level
set function [27] (a 2-D surface in a 3-D space) where the level
set function takes an absolute value equal to its distance from
the curve. Given a training set of expert LV segmentations, we
first find the area of each LV boundary and normalize the bound-
aries (across patients and over time) with respect to area. While
there are a variety of approaches that are possible for specifying
finite-dimensional projections of shapes, we use one that has
been used with substantial success in other contexts [28], [29].
Specifically, we use principal component analysis (PCA) on the
signed distance functions (SDFs) of the normalized boundaries
to obtain a finite-dimensional basis for the shapes [28], [29].
Given this basis, we can represent the SDF of each shape by
a linear combination of the basis elements. Thus, our finite-di-
mensional shape space consists of all curves with SDFs that are
linear combinations of this finite set of basis vectors [and where
the probabilistic relationship between actual curves and their fi-
nite-dimensional representations is given by (1)].

A large part of the shape variability is contained in the first
few modes of variability. For our particular application, 97% of
the variability can be captured by the first eight modes. Fig. 3
shows these eight primary modes of variability. Thus, we can
approximate the SDF (v) of each shape by

vty oy ©)
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where 1 is the mean level set and 1); is the sth mode of vari-
ability. It should be noted that there is no guarantee that the ap-
proximation will yield a single connected closed boundary. This
is a limitation of using PCA on signed distance level set func-
tions for shape representation. However, since the shapes are
generally simple (curvature does not change drastically around
a boundary), we have not observed any problems using SDFs.
In addition to the shape, the cross-sectional area of the left ven-
tricle (A;) is important. Area needs to be added to the state be-
cause we previously normalized the curves before determining
the shape variability. Thus, we then have a finite-dimensional

approximation for each boundary consisting of the area and
a= [a(l); a®; a(s)]T

X, = [At} . ™

o

B. Learning the System Dynamics

In this work, we propose and use a dynamical system
model based on statistical learning, rather than a physics-based
model. This is motivated by the fact that purely physics-based
models [30]-[33] are usually not readily available at the level
of granularity one would need in an image analysis problem,
and existing models may require high-dimensional states
and/or a complex set of differential equations that model the
interaction between the parts of the evolving system, which
can pose computational difficulties and require specifica-
tion/tuning/identification of many parameters.

We propose a method for learning the dynamics of de-
formable objects from training data. The closest work to ours
appears to be that of Cremers [21]. However, unlike [21], which
is based on linear models with Gaussian uncertainty, in our
framework, we learn the dynamics using information-theoretic
ideas and nonparametric statistics, without limiting them to
being linear or Gaussian. One might wonder if this additional
modeling capacity comes with an unreasonable cost. Our
approach to learning is based on the technique in [34], which
provides a nonparametric, yet computationally tractable ap-
proach to learning the dynamics. Our approach can directly
estimate high-order Markov models by identifying the func-
tionals of the past that have maximal mutual information with
the future. However, for simplicity of development, we present
only the first-order model of this type, with some specialization
to take into account what we know about cardiac dynamics
from ED to ES and back again.

Our approach involves two steps. First we learn maximally
informative statistics about the past (or future) for the prediction
of the current state. The second step involves nonparametrically
estimating the (forward and backward) transition densities.> We
describe these steps in the following subsections.

C. Maximally-Informative Statistics

We are interested in learning the statistical relationship be-
tween X;_; and X; and one might estimate the joint density

3If we are only performing causal processing, we only need the forward densi-
ties; however, for smoothing and for estimation when we include the periodicity
constraint, we need both forward and backward transition densities.
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only if an extensive amount of training data were available. Al-
though we have achieved significant dimensionality reduction
by representing the LV dynamics in terms of X’s rather than
C’s, the degrees of freedom in the dynamical model can still
be too many, especially if we have limited training data. Ide-
ally, we would like to consider only the portion of the state
X,;_1 that is statistically pertinent to the prediction of X;. It
should be noted that we are not building a reduced-order model
but simply positing that there is a reduced-dimensional part of
the full-state X; that can be used for accurate prediction of the
next state for the forward model or the past state for the back-
ward model. To this end, let us introduce a function g;—1(X;—_1)
which seeks to reduce dimensionality yet capture all of the infor-
mation in X;_; thatrelates to X,.# This is achieved exactly only
when I(X3; Xi1) = (X4 qe—1(X¢—1)), where I(Xy; X¢—1)
is the mutual information between X; and X;_;. Practically,
however, information is lost when we introduce the function
qt—1. By the data processing inequality, T(X¢; gr—1(X¢—1)) <
I1(X4; Xi—1), with equality only in the ideal case; when there is
no loss of information. In practice, even if we cannot generally
make I(Xy; q—1(X¢—1)) equal to I(Xy; X¢—1), we can try to
make it as large as possible. As a result, we pose the problem
as finding ¢;_1 that maximizes I(X¢; ¢z—1(X¢—1)). This makes
qi—1(X¢—1) a maximally-informative statistic instead of a suffi-
cient statistic. Our use of reduced-dimensional variables as max-
imally informative statistics for both forward and backward pre-
diction can be interpreted as a form of learning with constraints,
in this case imposing the constraint that the functional of the
present needed for forward or backward prediction has reduced
dimension.

Let us now briefly describe how we perform that optimiza-
tion, namely the maximization of mutual information between
X and ¢;—1(X¢—1). The mutual information expression is given
by

(X qe1(Xe-1)) = H(Xe) + H(ge—1(Xe-1))
—H(X¢, q—1(Xe—1)) (8)

where H () denotes the entropy of the random variable x. The
training data provide samples of X; together with information
about the cardiac phase at each time. We estimate the entropies
in (8) based on such samples, using leave one out resubstitution.
In particular, given N equally weighted samples wgl) of p(X4),
we approximate this density using a kernel density estimate with
Gaussian kernels. Let us define k(X; .7:51), 02) to be a Gaussian
kernel with mean J:SL) and variance o2, where o2 is determined
by a method such as that in [35]. Then, the entropy estimate of

qt(Xt) is

H(Qt(Xt))
= _i zleog L Z k(qt(:r(i))' qt(x(j)) 0_2) )
N gt N -1 — t I t )

4Note that we can define a function in the “backward” direction in a com-
pletely analogous fashion.
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Taking the derivative with respect to any parameter a of the
function ¢, yields

-k ((It (wgz)) e (xgj)» 02)>

oq:(2)  9gu(a)
. da - da ’

By applying (10) to the second term of (8) (and using a similar
derivation to find the derivative of the joint entropy of the third
term), we can determine the gradient of T(X;;q:—1(X:—1)). At
each iteration, we move in the direction of the gradient to max-
imize mutual information, continuing until convergence.

At this point, we make a simplification, and constrain ¢;(Vt)
to be a linear function. We can then write

Qs Qaa
Qaza Q&

(10)

Qtfl(thl) = Q1 X1 = { } Xi—1. (11)
t—1

The problem now reduces to finding the parameters of ().
It should be noted that the linearity assumption for ¢; does
not mean that the resulting dynamic model is either linear or
Gaussian [34], just that we choose statistics for the conditional
densities that are linear functions, but the resulting transition
densities that are learned (see Section III-D) will involve non-
linear functions of these statistics.

In the discussion thus far, we have discussed finding a time-
varying ¢;. In order to have an accurate estimate of the parame-
ters of ¢, there must be sufficient training data. Practically, we
may not have enough data to learn a different ¢, for each ¢. For
our particular training set, we learn the dynamics separately in
the two distinct phases of the cardiac cycle: gg for the systolic
phase, when oxygenated blood leaves the LV, and ¢p is for the
diastolic phase, when the LV fills itself with blood.

D. Learning the Forward and Backward Densities

Given the maximally informative statistics gs and qp, we
now discuss how we obtain the forward densities (backward
densities can be learned in a completely analogous manner)
based on training data. Note that given a forward model, there is
a precisely defined model in reverse time which is completely
consistent. It is, thus, worth noting that there are not two dif-
ferent models but rather two different representations of the
same model. Such models play a variety of roles inclulding
their use in defining optimal smoothing algorithms [36]-[39],
algorithms that use all data in a time interval to estimate the
chain at every point in the interval. These algorithms can be
thought of as message-passing algorithms in which messages
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are passed both forward and backward, each using the corre-
sponding model (forward and backward) in the message-passing
stage.

The procedure we describe in this section produces densi-
ties of the form p(X;|gi—1(X¢—1)) which we use as approx-
imate representations of the state dynamics p(X|X;_1). Let
us consider a time instant in the systolic phase. Given sam-
ples of X; and X;_;, we construct a kernel density estimate
of the joint density px, q.(x,_,)(Xt,qs5(X¢—1)), from which
we can obtain the desired forward transition density by con-
ditioning: px, |¢s(x,_,)(Xtlgs(X¢—1)). Note that although we
do not learn a different maximally informative statistic for each
time in the systolic and diastolic phases, our framework allows
for the learning of a different transition density for each time,
resulting in a time-varying dynamical model. However, in prac-
tice, this requires the availability of sufficient training data to
support such learning. When the number of training samples
is moderate, one could impose a time-invariant model for the
systolic phase, and one for the diastolic phase (and, hence, use
all data in that phase, rather than only at a particular time, for
learning), as we do in our experiments in Section V.

What we have described up to this point produces different
dynamical models for the systolic and diastolic phases. To use
the right model during the segmentation process, one would
need to know the cardiac phase at particular frames. However,
as there is uncertainty and patient-to-patient variability in
the precise location of ED and ES—and since our transition
models switch at these times (e.g., at ES, the point of minimum
area, cardiac motion changes from the systolic to the diastolic
phase)—we need to incorporate this variability into our statis-
tical model. We do this first by using training data to learn the
probability that the heart is in each phase at particular times in
the cycle and use this to define a “transition region” over which
the transition density is taken as a mixture density based on gg
and ¢p.

In particular, we assume that we are in the systolic (diastolic)
phase between frames 1 and 6 (12 and 20). For the region in be-
tween, we apply a combination of the two dynamics according
to the mixture probability determined empirically. For instance,
14.3% of the training examples reach end systole at frame 6 and
transition to the diastolic phase from that frame onward. Based
on that, when constructing p(X7|qs( X)), 14.3% of the samples
of come from the forward density using qp while 85.7% come
from the forward density using ¢g.

To demonstrate the usefulness of the mixture model, Fig. 4(a)
shows predictions obtained for the eighth frame in a test se-
quence using a mixture dynamic model constructed for that time
instant. Since we have access to the underlying LV sequence,
we actually know that this particular test sequence is in the
systolic phase between frames 7 and 8. Of course, this infor-
mation is not available in a real data processing setting. Note
the bimodal nature of the predictions due to sampling from the
two densities, acknowledging the uncertainty about the phase,
rather than making a strict (and potentially wrong) choice. As
described in Section IV, such predictions are then combined
with data. Sample boundaries after such a data update are shown
in Fig. 4(b), together with the ground truth, which shows that
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Fig. 4. (a) Predictions for frame 8 in a test sequence. Samples in black come
from p(X5s|gp (X)) while those in green come from p(Xs|¢s(X+7)). (b) Most
likely, boundaries after incorporating the data at frame 8 superimposed upon the
truth (red dash-dotted curve). A reasonably accurate set of curve estimates are
obtained after the data update at frame 8 (See Section IV).

by providing predictions from both phases, we allow the data to
properly weigh in for the right phase.

IV. INFERENCE ALGORITHMS

In this section, we describe our approach to dynamic segmen-
tation based on the graphical model of Fig. 2, the component
models described in Section II, and the dynamic model for X
learned using the method discussed in Section III. Thanks both
to the nonparametric form of the forward and backward tran-
sition densities for X and, more generally, the complex nature
of the Bayesian inference problems we wish to solve, we are
led to the use of sampling—i.e., particle-based algorithms [40],
[41] to approximate the densities and likelihood functions re-
quired in the inference procedure. However, there are two is-
sues that preclude the straightforward use of standard particle
filtering methods in our problem. The first is that in addition
to considering causal filtering, we are also interested not only in
noncausal smoothing (i.e., using all data to estimate cardiac state
at each point in the cycle) but also in performing this smoothing
when we also take into account the periodicity of the cycle,
which adds a loop to the graphical model in Fig. 2 (illustrated
by the dashed edge). The second is that a full particle repre-
sentation of the inference problem of LV segmentation would
involve generating particles for the infinite-dimensional curves,
C. While an approach to doing this has recently been devel-
oped (for models in which curve dynamics are described by
linear-quadratic variational formulations) [18]-[20], we have
chosen to avoid this additional complexity through an approx-
imation that involves solving level-set based curve evolutions
during the sampling procedure.

A. Causal Filtering

In the filtering problem, the goal is to estimate X for any ¢
based on y1.+ = {y.|r < t}. Based on the graphical model in
Fig. 2, the posterior density p(X;|y1.+) can be written as

P(Xt|y1:)
x / /C Dl fo, Cop(fCo)p(Crl Xo)
- p(Xe|yra—1)dCdf, (12)
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where p(X¢|y1.¢—1) is the prediction density

p(Xt|?/1:t—1) = / p(Xt|Xt—1)p(Xt—1 |yl:t—1)dXt—1-

Xi1
(13)
As in standard particle filtering algorithms (Appendix I), we as-
sume the availability of a sample-based version of the density
p(Xi—1|y1.t—1) at the preceding iteration. Suppose that we rep-
resent p(X¢—1|y1:+—1) by an equally-weighted set of N samples
20 (e {1,2,...,N})s

N
p(Xi—1|yre-1) = %Z& (Xt_l — a;?_) ) . (14)

i=1

Using the condition density p(X¢|q:—1(X¢—1)) as an approxi-
mation for p(X;|X;_1) and applying the N samples to (13), we
sample from the learned forward transition density for each of
these samples (pXi|qr—1(X¢—1 = :17521)) to generate a sampled
version of the one-step-ahead predicted density p(X;|y1.,—1).In
particular, for each xE? 1> we generate M equally weighted sam-
ples, resulting in the following estimate:

| MN ‘
p(Xilyre-1) = WUN Z 0 (Xt - ngz,l) . (15)
i=1

Given this density and set of particles, the objective then is to
provide a sample-based approximation to the density p(X¢|y1.+)
in (12). In standard particle filtering applications—in which
the measurements depend directly on X, all this involves is
a reweighting of the particles in the one-step-ahead predicted
density, p(X¢|y1.+—1), using the likelihood function for the
observations conditioned on each particle. However, as can be
seen in (12), the computation of these new weights in our case
is complicated by the two intervening variables in our graphical
model, namely f; and C,, as (12) requires a marginalization
over these variables. One way to deal with that complication
would be to approximate the marginalization operation by
choosing the (ft, C_)"t) pair which maximizes the integrand of
(12).

One principled manner in which to do this would be to use

each each particle :175‘12_1 to generate its own pair of samples of

ft and C, by solving the optimization problem

(f',Cy") = argmaxlog (P(Z/t|ft7 Cop(f:|Cr)

1,Ct

P(CilXi =af)_)) 16)

tjt—1

and then to weight that particle by the exponential of the maxi-
mizing value of the right-hand side of (16) (and finally to renor-
malize these weights so that they sum to 1). This would, of
course, require generating one particle pair (f;"", C_"t* ") for each
particle in p(X¢|y1.4—1), a computationally intensive task. In-
stead, we have found it effective to generate a single particle

SFor simplicity, our representation here is based on delta functions. One could
use any other kernel function instead.
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() of the

pair by optimizing an average over all particles x tlt—1

right-hand sides of (16), i.e., by solving

(F2.6) = argmaxlog | plulfi.C)
ft,Ct J Xy
'p(ft|6t)p(6t|Xt)p(Xt|y1:t—1)dXt- (17)

Substituting expressions from (1), (3), (5), and (15) into (17),
and using the fact that

/p(é’t|Xt)p(Xt|y1:t71)dXt
J X

MN
Zexp( DX(Cr,al) ) (8)
we obtain

(f7.Cy) = arg min E(f,,Cy)

F,Cy

19)

where

E(f:,Cy) = —logp(ye| fr. Ce) — log p(f:|Ch)

_108;/ p(6t|Xt)p(Xt|y1:t—l)dXt
X,
(log ye(2) — F"(C))*

() —
202
2€Rin(C1)

N / (log y:(2) — Fout(Cy))?
202

dz

dz)

(Fp(Ch) - v)?)

zE€Rout (éi)

N ((Fé“((i) —u)’

2 2
203 207

MN

+ log WZeXp(—DQ(C_”t, ETt 1))‘| (20)

where Fi*(C,) = log fR‘“(Ct) and Fo"(Cy) = log fF (Cy),
Practically, we initialize the minimization using the mean shape
from the training data.

The solution to this variational problem is related to joint
boundary and field estimation methods—e.g., those based on
the so-called Mumford-Shah functional [26], [42], [43]—and
can be solved in an analogous manner, using coordinate descent
and curve evolution (see Appendix II).

At the end of this process, we have essentially replaced (12)
by

p(Xf,Iym)

p(yel £, CHp(F71C)p(CF 1 X )p(Xelyre—1). (1)

Now we can use (21) to re-weight our particle-based
representation

MN ‘
Z wgb)‘s(Xt - $§f3_1)7

i=1

p(XtIym) = (22)
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wf) = Zp(ul 17, G (5710
(G7IXe = af)_y)

tt—1

(23)

with Z chosen so that the weights sum to 1. Finally, we can
resample this density to IV equally weighted samples (see Ap-
pendix I). Thus, from equally weighted samples representing the
posterior at ¢t — 1, we have arrived at equally-weighted samples
for the posterior at ¢.

B. Noncausal Smoothing

In the smoothing problem, the goal is to estimate X for any ¢
based on y, forall 7 € [1,T] in the cardiac cycle (we denote this
observation sequence by y1.7). Based on the graphical model
in Fig. 2, the posterior density of interest, p(X¢|y1.7), can be
written as

p(X¢lyrr)
x / /C Pl fo Co)p( £ Cp(Gr Xo)

p(Xy |y(1:T)\t)d6tdft (24

where YT\t denotes all data in 4.7 except y;. Note that the
likelihood, intensity prior, and curve prior terms are the same
as in the filtering formulation of (12), but the prediction term is
now conditioned on y1.7\¢- Note that this formulation is valid
for smoothing on a chain as well as inference on a single cycle
graph (i.e., when the dashed edge in Fig. 2 is included). Let us
first consider the chain case.

As in the filtering problem, consider the following approxi-
mate representation of (24)

P(Xt|y1:T)

o p(yel £, Cp(fF1CHp(CF 1 X )p(Xelyrne). (29

We will describe how to compute f;* and C_"t* in this case, but for
the time being, assume we have them. We are then left with the
computation of (25) at each point in time, which is a classical
smoothing problem or, equivalently, an inference problem on
the graph in Fig. 2 (for the moment without the dashed edge).
The solution can be found in many sources, and, with an eye
toward including the dashed edge, we describe this in terms of
message-passing also known as belief propagation [44]. In par-
ticular, the Markovian structure of X implies that (25) has the
following form:

p(Xelyrr) o plysl £, CF)p(f7 |G )p(CF | Xe)p(Xe)

H mTt(Xt)

TEN(t)

(26)

where the neighbors N(t) for each time ¢ are times just be-
fore and after, i.e., # — 1 and ¢ + 1 (except for the end points
1 and T which have neighbors on only one side), and where the
“messages” ..+ (X} ) represent a summary of all of the informa-
tion provided by points in time before (for 7 = ¢ — 1) or after
(T =t + 1)—i.e., they are likelihood functions capturing all of
the information relevant for inference at time ¢ contained in the
dynamical relationships and data either before or after ¢.
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These messages themselves have recursive structure inherited
from the graph. Adopting graphical model notation and termi-
nology [22], [23], these recursions involve the specification of
the probabilistic model in terms of potential functions corre-
sponding to each node/time in our graph and to each edge. In
our case, the node potentials capture all of the statistical infor-
mation localized to time ¢ alone, i.e.,

be(Xeyye) = p(yel £, Cp(FE1CHP(CEI X )p(Xh). (27

The edge potentials are given by

(X X,y = P X _ pGIX) _ p(X X))

T op(X)p(Xr)  p(Xy) p(X;)
(28)

where the last two forms in (28) suggest how these expressions
are used. In particular, if 7 = ¢ — 1, the next-to-last expression
in (28) involves the forward prediction density, while the last
expression involves the backward prediction density.

Using these quantities, the messages in (26) satisfy the fol-
lowing relationship:

m'rt(Xt)
o8 / d)t,T(Xt7XT)1/)T(XT7yT)
X,

: H mST(XT)dXT

SEN(T)\t

(29)

where N(7) \ ¢ denotes all neighbors of node X, except X;.
Note in our case that for the graph of Fig. 2 (without the dashed
line), each of these sets consists of a singleton (except for t = 1
and t = T for which these sets are empty). In particular, for
T =1t—1, N(7)\tis the single point ¢ — 2 and (29) corresponds
precisely to the causal filtering operation, in which we take the
information from the preceding time (¢ — 2), incorporate the
available information at time ¢ — 1 (the multiplication by the
node potential at time 7 = ¢ — 1), and then predict ahead one
time step (the multiplication by the edge potential from ¢ — 1
to ¢ followed by the integration to marginalize out time ¢ — 1.
Analogously, if 7 = ¢ + 1, (29) corresponds to a backward
propagation of information.

These fixed-point equations can be solved iteratively via dif-
ferent methods for message-scheduling, i.e., for choosing the
order in which messages are updated. For a chain, one approach
is to perform smoothing by a two-sweep procedure, moving
from the leftmost node of the chain to the rightmost one and
then back again. Such an algorithm yields the correct answers
at the end of these two sweeps. The same idea can be gener-
alized to tree-structured graphs. At the other extreme one can
update all messages simultaneously—i.e., we can simply apply
the fixed point equations iteratively

miy (Xy)
x [ (X X (Xe)
X

I mE N (X)dX-
SEN(T)\t

(30)
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For inference on chains (and on tree-structured models more
generally), convergence occurs once the messages from each
node have propagated to every other node in the graph.

Such message computations can be performed exactly only
in special cases—e.g., when everything is Gaussian—in which
these functions have fixed finite-dimensional parameterizations.
This leads to the need for sample-based methods analogous to
those used in particle filtering. In our work, we use two such
sampling-based algorithms. The first, the forward-backward
algorithm of Doucet et al. [41], is a two-sweep procedure. The
forward step of the algorithm uses particle filtering as explained
in Section IV-A. In the backward pass, it then re-weights
the particles that were obtained through the forward filtering
process to obtain the posterior p(X¢|y1.7) at each time ¢. The
second algorithm we consider and use is nonparametric belief
propagation (NBP) [45]. In NBP, particle representations serve
as weighted mixture distribution approximations (in particular
Gaussians sums) of the true messages. The NBP algorithm
stochastically approximates the parallel message propagation
operation in (30) and thus provides a consistent nonparametric
estimate of the outgoing message. The message products in
(26) and (29) are computed using an efficient local Gibbs
sampling procedure. One of the most interesting ideas in NBP
is a method for sampling from such products without explicitly
constructing them. A detailed description of NBP can be found
in [45]. Here, we only hightlight a number of aspects of our
framework differentiating it from a standard application of
NBP.

The first involves the dependence of the node potentials on
fi and C_"t* Let us describe how we compute these quantities at
each iteration [with the resulting values then used to update the
node potentials in (27) for use in NBP]. Let p(”)(Xt|y(1:T)\t)
denote the density of the product of the incoming messages to
node X; at iteration m, [i.e., the product of messages in (30)],
represented nonparametrically as

N
n 1 i i
P (Xelyarne) & 5 2 wiip k(e 2 ], A)
1=1

. (31)
where N is the number of samples, 15%\ ,[n] denotes the i
sample, and k(X; wﬁ;\ ,[n], A) denotes a Gaussian kernel with
mean xilz)T\ ,[n] and covariance A. This is analogous to (15) for
the filtering problem. The objective then is to provide an ap-
proximation to the posterior p(X¢|y1.7) using a sample-based
version of (26). This requires the computation of f;* and C}, for
which we use a similar procedure to that in the filtering context:
at every iteration 1 we carry out the following optimization:

(f7[n], G [n]) = arg min En(f:, Cr)

fi,Ct

(32)

where

En(fhc_;t) = —logp(yt|ft, ét) - logp(ft|ét)
—108;/ P(d&|Xt)P(n)(Xt|y(1:T)\t)dXt (33)
X

which is essentially the same as (20) except for the last term.
Given the form of p(”)(Xt|y(1:T)\t) in (31), this term involves
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a convolution of the Gaussian kernel with p(Cy| X;). To simplify
that operation, just for this step of our procedure, we approxi-
mate the Gaussian kernel with a Dirac delta function, through
which the last term in (33) becomes

1 i = i
log |\ Z wEI)T\t[n] exp(—D*(Ct, xg\)T\t [n])) (34)

where D is as defined in (2). Once the values of f;[n] and C}[n]
are found to minimize this functional we update the node poten-
tial 1/15") (Xt,y:) (note that here we indicate the dependence of
the potential on the iteration n explicitly) using (27). Then the
NBP belief update procedure [45] can be used to generate sam-
ples from the posterior density p(X:|y1.7)-

Another point worth mentioning is the way we represent the
edge potentials in passing messages in different directions on
an edge. For complete consistency, we should use precisely the
same potential for messages being sent in either direction. This
is not an issue in Doucet’s forward-backward algorithm, as in
that approach no new particles are generated in the backward
sweep—they are simply reweighted. However, for NBP both
forward and backward messages are used. For messages passed
forward (i.e., m(;_1);) in the chain, the pairwise potential used
in (29) i8 Yi—1 +(Xi—1,Xs) = p(X¢|Xi—1)/p(X:) which re-
quires the forward conditional density. Meanwhile, for mes-
sages passed backward in time (i.e., m;(;—1)), we write the pair-
wise potential as ¢, ;—1(X¢, Xi—1) = p(Xe—1|Xe)/p(Xe—1)
which requires the backward conditional density. Since we learn
the forward and backward densities separately (as described in
Section III), the approximations to t;_1 ; and 1); ;—; used in
our algorithm are not precisely equal. Rather than introducing
a method to enforce equality (a difficult thing to do with par-
ticle-based densities) we do not enforce it. As we will see, this
is not a significant issue. Moreover, such an approximation is
not unprecedented. Sigal et al. [46], for instance, learn the con-
ditional densities separately in the process of tracking motion.

Finally, we turn to incorporating the additional dashed edge
in Fig. 2 in order to more tightly couple the LV boundary at
the start and at the end of a complete cycle. Specifying this
graphical model involves introducing a single additional edge
potential to our existing model. We define this edge potential
in exactly the same way as the other edge potentials in our
framework, and learn the associated transition densities from
training data. On tree-structured graphs, exact inference can be
achieved using belief propagation (BP) for discrete or Gaussian
variables. However, the formulae in (26) and (29) are no longer
valid if there are loops in the graph. Inference for general loopy
graphs is a challenging problem on which considerable current
work is being performed. For example, methods do exist to
“correct” belief propagation for the case of a single loop as in
Fig. 2 (with the dashed edge). That said, it is also true that in
many cases—especially when the loops are long [47]—simply
applying the fixed point equation of (30)—i.e., performing local
belief propagation updates neglecting the fact that there are
loops in the graph—works well. Note that there is no counter-
part to Doucet’s forward-backward algorithm for loopy graphs,
and, hence, to implement loopy belief propagation—i.e., the
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iterative application of (30) to the graph of Fig. 2—we use
NBP.

V. EXPERIMENTAL RESULTS

A. Setup

We apply the proposed technique on 2-D mid-ventricular
slices of MR data, but we also note that we can in principle
apply the method to 3-D data. The dataset we use contains
twenty-frame time sequences of breath-hold cardiac MR im-
ages, each representing a single cardiac cycle with the initial
frame gated (synchronized) with an electrocardiogram (EKG)
signal. We do not consider arrhythmias because only patients
having sustained and hemodynamically-stable arrhythmias,
a rare situation, can be practically imaged and analyzed.
Anonymized data sets were obtained from the Cardiovascular
MR-CT Program at Massachusetts General Hospital. Our
training set consists of 42 cardiac cycles of 20 frames each
for a total of 840 images, acquired from five patients. The
segmentations on the training set were carried out manually
by both radiologists as well as researchers whose results were
reviewed by radiologists. All of the training and test sets come
from healthy patients. If we had a rich enough set of training
data, the model would theoretically still work with unhealthy
patients. However, if the training set included some types of
abnormal cardiac behavior and then we encountered yet a
new/different type of abnormality in the test set there would
be no guarantee how well it would work. Stated another way,
healthy training data behave uniformly. If we had training
data for a certain abnormality, the model certainly should be
able to handle test data with cardiac behavior similar to this
abnormality. The difficulty is finding a rich set of data for
specific abnormalities. In the interest of brevity, representative
results are presented here. However, we refer the reader to [48]
for the full illustration of results.

In the training phase, we take the 840 images as well as man-
ually segmented boundaries, normalize each boundary with re-
spect to area, and then perform PCA to extract the first eight pri-
mary modes of variability as described in Section III-A. Using
the PCA coefficients as well as the areas, we form the state
vector X; for each boundary sample at a particular time ¢. We
then estimate the parameters of the intensity prior (Section II-B)
u, v, 02, 02 by computing sample means and sample variances
in high-SNR MR images. For the outside region Rt (@), we
take a five-pixel wide band around the boundary (to provide con-
text, the average area of the LV at end diastole is 1889 pixels
while that at end systole is 380 pixels). We choose Royt (C_"t) to
have width five in an effort to ensure that this region contains
only myocardial muscle, while providing a large enough region
to have meaningful statistics.

Next we learn the maximally informative statistics as de-
scribed in Section III-C. For ();, we assume that there is no in-
teraction between the area and shape of the object. So, Q45 = 0
and Qz4 = 0in (11).6 Thus, the learning of the area dynamics
can be separated from that of the shape dynamics. For the shape

6Given arich enough training data set, one can allow interactions between the
area and shape when learning €., but in this work, we assume a block diagonal
(Q; matrix.
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statistic (Q5, we have empirically determined that going from
one to two dimensions led to a significant improvement, while
subsequent increases in dimension did not lead to substantial
gains in capturing shape dynamics. Thus we have taken the
statistic ¢ to be 3-D (two dimensional for shape and one for
area), so that @) 4 is scalar and Q5 is 2 x 8. From the training
data, we learn the 17 parameters (1 for @ 4, 16 for ) z) for each
function Q). After learning the maximally informative statistics,
we learn the transition densities as described in Section III-D.
Although our framework is general enough to learn a different
dynamical model at each time ¢, we chose to learn a single model
for the systolic phase and a single model for the diastolic phase.
The next step is to learn the dynamical models in the transition
region, through mixtures of systolic and diastolic models. We
determine the percentage contributions at each time ¢ based on
the percentage of the training data samples being at a particular
phase at that time. As a result, we obtain a different mixture den-
sity, hence a different dynamic model, at each time point in the
transition region.

Our test set consists of 234 cardiac cycles of 20 frames each,
acquired from 26 patients, different from the patients used for
the training set. Each cardiac cycle test set was estimated in-
dependently. Given a test image sequence to be segmented, we
first pick a noise variance 03 (see Section II-C) based on the
values empirically determined from the training data. We then
use one of the inference algorithms described in Section IV to
perform segmentation. To initialize our algorithms with some
priors on the boundaries, we use the mean shape and area from
the training data samples for that time instant. Thus, the test sets
do not require user intervention for setup although one could
theoretically provide the "truth’ for t = 1 to obtain a better set of
segmentations. For causal filtering, and for forward-backward
smoothing, we do this just for ¢ = 1, whereas for parallel mes-
sage passing in NBP we do it for each time ¢. To terminate the
parallel message passing in NBP, at each iteration we compute
the Kullback-Leibler (KL) divergence between successive esti-
mates of the posterior density p(X¢|y1.7) at each node, and stop
when the maximum KL divergence over all nodes gets smaller
than some predefined threshold. We use 200 particles to rep-
resent each of the densities involved in our algorithm. While
the algorithm was created for accuracy and has not been op-
timized, the convergence time per image frame was about 30
s on a desktop personal computer having a single-core Xeon
2.2-GHz processor running MATLAB version 6.5 on a Linux
OS.

B. Evaluation Metrics

We measure accuracy by computing the dice coefficient [49]
(commonly used for evaluation of segmentations in medical
imaging) between the segmentation and the manually seg-
mented truth

2A(R1 n Rg)
A(Ry) + A(R»)

Dice(R;, Ry) (35)

where R denotes the region inside a boudnary, I?; N I; repre-
sents the intersection of regions R; and R;, and A(R;) is the
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Fig. 5. LV segmentation results (yellow) of smoothing by NBP on a chain, on
high-SNR observations. Ground truth shown in green.

area of region R;. The dice measure evaluates to 1 when two re-
gions are a perfect match and O when the regions are a complete
mismatch.

1) Evaluation of LV Boundary Estimates ¢;: To determine
the accuracy of a set of boundary estimates, we compute the dice
measure between each of the estimates C_"t* and the ground truth
at that time, and then average over all of the dice coefficients
computed. For instance, if we have four cardiac cycles of 20
frames in our test set, we compute the dice measure for each of
the 80 segmentations and then determine their average. We refer
to this average as the dice boundary coefficient.

2) Evaluation of Samples of the Posterior of the State Xy:
In addition to examining the accuracy of the boundary esti-
mates, it may be instructive to evaluate the quality of the sam-
ples of the posterior density of X;. To quantitatively examine
samples, we can determine the dice coefficient between each
sample from a posterior density p(X;|y1.7) and ground truth.
Since none of these samples are expected to be as accurate as
the LV boundary estimate C_";f, we expect the average dice coeffi-
cient from the samples to be smaller than the dice coefficient for
the LV boundary estimate at the same frame. To determine the
accuracy of samples, we compute the average across the sam-
ples in all of the frames analyzed. For example, if we have four
cardiac cycles of 20 frames in our test set, with each posterior
represented by 50 samples, then we compute the dice measure
for all 4000 samples and then determine the average of these
dice coefficients. Henceforth, we refer to this average as the dice
sample coefficient.

We note that one of the advantages of the particle-based ap-
proach is that having the posterior distribution in principle al-
lows us to understand more than simply looking at the dice
sample coefficient. In particular having a density for shape con-
ditioned on data and a dynamical model gives us a picture of the
variability intrinsic to the problem-i.e., a representation of the
posterior density is more informative about the remaining un-
certainty after estimation than simply giving a single estimate.

C. Smoothing Results on the Chain

1) NBP: First we consider smoothing results on the chain
using NBP. Figs. 5 and 6 show representative estimates (:"t* of
the LV boundary for high and low SNR data, together with
ground truth. The dice boundary coefficient in high SNR is
0.9214, while for low SNR it is 0.8909. All the dice coefficient
computations in this paper are based on the test data consisting
of 234 cardiac cycles.

When we constrast these results to causal filtering (dice
boundary coefficient of 0.8654 for high SNR and 0.8210 for
low SNR), we observe that smoothing results are more accurate.
We would expect this result because these estimates effectively
incorporate more data. Table I contains the numbers we have
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Fig. 6. LV segmentation results (yellow) of smoothing by NBP on a chain, on
low-SNR observations. Ground truth shown in green.

TABLE 1
DICE BOUNDARY COEFFICIENTS ACHIEVED BY VARIOUS ALGORITHMS
Shape Causal Smoothing by | Smoothing | Loopy
SNR Prior | Filtering Fw/Back by NBP NBP
High || 0.8516 | 0.8654 0.9210 0.9214 0.9292
Low || 0.8035 | 0.8210 0.8836 0.8909 0.9069

Fig. 7. LV segmentation results (yellow) of the forward-backward smoothing
algorithm on low SNR observations. Ground truth shown in green.

®) ©

Frame 1

Frame 2

Fig. 8. Comparison of filtering and forward-backward smoothing on low SNR
data. (a) Samples of the filtering posterior p(_X|y.. ) are shown in yellow, while
samples of the smoothing posterior p(X,;|y1.r ) are shown in red. The manually
segmented truth is shown in blue. (b) Image which illustrates the distribution
of the filtering samples, with the two curves (yellow and red) indicating the
largest and smallest curves in the samples and the gray scale variations showing
the frequency that a given pixel is contained within the curve samples (black
indicating zero occurrences and white indicating that the point is contained in all
of the sampled curves). (c) Image which shows the distribution of the smoothing
samples in a similar manner to (b), with the two curves again indicating the
largest and smallest curves.

mentioned here. For causal filtering-based segmentation exam-
ples, please see [43].

2) Forward-Backward Method: We next present results
for smoothing on a Markov chain using the forward-back-
ward method. Fig. 7 shows the segmentations using low SNR
data. The dice boundary coefficient is 0.8836. This result is
similar to the 0.8909 obtained by NBP on the same Markov
chain and better than the 0.8210 obtained using filtering.
Note that filtering is essentially just the forward step of the
forward-backward procedure. Table I contains the numbers we
have mentioned here.

To provide a visual comparison of filtering and smoothing,
Fig. 8(a) shows the most representative samples of the poste-
rior density p(X¢|y1.+) for filtering (yellow) and the posterior
density p(X¢|y1.7) for forward-backward smoothing (red), to-
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TABLE II
DICE SAMPLE COEFFICIENTS FOR MARKOV CHAIN SMOOTHING USING THE
FORWARD-BACKWARD METHOD COMPARED WITH THAT FROM FILTERING.
THE VALUES ARE BASED ON THE 50 MOST HEAVILY
WEIGHTED SAMPLES OF THE POSTERIOR

Dice sample Causal Smoothing by
coefficient Filtering Forward-Backward
High SNR 0.7683 0.8452
Low SNR 0.6951 0.7904

Fig. 9. LV segmentations (yellow) obtained from loopy NBP on a high-SNR
cardiac MR image sequence. Ground truth shown in green.

CACACACE

Fig. 10. LV segmentations (yellow) obtained from loopy NBP on a low SNR
cardiac MR sequence. Ground truth shown in green.

gether with the manually-segmented truth (blue) for two repre-
sentative frames. Qualitatively, we observe that the more erro-
neous curves mostly belong to the filtering posterior. Fig. 8(b)
and 8(c) shows the variability of the curves in a different way
for filtering and smoothing, respectively. This suggests that the
smoothing posterior is tighter. Quantitatively, for low-SNR data,
the dice sample coefficient is 0.6951 for filtering and 0.7904 for
forward-backward smoothing. Table II shows the results of the
dice sample coefficient for high and low SNR data.

D. Single Cycle Graph Results

Figs. 9 and 10 show the segmentations obtained using loopy
NBP on the high and low SNR data, respectively. The results are
in general very accurate. For high-SNR data, the dice boundary
coefficient is 0.9292, while that for low SNR data is 0.9069.
The results show an improvement of estimates over those from
smoothing on a chain. When we examine the segmentations at
each frame more carefully (not shown here), we observe that the
improvement provided by the loopy model is most significant
near the beginning and end of the cardiac cycle, as one would
expect.

E. Comparison of Estimates With Static Segmentations

We also visually demonstrate the benefits of our approach
by comparing our segmentation results with the static, shape
prior-based segmentation algorithm of Tsai et al. [29]. Fig. 11
shows our results using NBP on a loopy graphical model to-
gether with the results of the method in [29] on the same data.
The static segmentation method of [29] uses the same training
data as our approach for learning the shape priors. We qualita-
tively observe that the loopy NBP approach leads to more accu-
rate segmentations. This observation is supported quantitatively
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Fig. 11. Comparison of the LV boundary estimates of loopy NBP with static
segmentations using a shape prior (dark red) based on [29]. Ground truth is
shown in green.

by the dice boundary coefficients in Table I. The static segmen-
tation method achieves 0.8516 and 0.8035, for the high and low
SNR cases, respectively, while the corresponding numbers for
loopy NBP are 0.9292 and 0.9069.

VI. CONCLUSION

In this paper, we have presented an approach for time-re-
cursive segmentation of evolving deformable objects. In
particular, we have proposed nonparametric, information-the-
oretic methods to learn the time-varying dynamics of such
deformable objects from training data, with the specific appli-
cation of LV evolution in cardiac imaging. Using a Bayesian
framework, we have developed particle-based smoothing algo-
rithms that allow time-recursive segmentation throughout the
LV cycle using all available data. In our development, we have
used not only Markov chains for the temporal LV evolution,
but also a single-cycle graph to capture periodicity of cardiac
motion. We have adapted and used message passing algorithms
for approximate solution of these inference problems. In this
framework, we have used finite-dimensional approximate
representations of the LV boundary as state variables, rather
than the infinite-dimensional LV boundaries themselves, in
order to improve the reliability and accuracy of the learning
process. However, we have also incorporated level set methods
in a statistically consistent manner into this framework in
order to generate boundaries not constrained to reside in the fi-
nite-dimensional domain in which dynamics have been learned
and exploited. We have demonstrated the effectiveness of our
approach (both qualitatively and quantitatively) on cardiac MR
imagery. These results exhibit the improvements provided by
our approach over static segmentation methods.

APPENDIX |
PARTICLE FILTERS

For dynamical systems whose state evolution involves non-
parametric densities, sample-based methods, such as particle fil-
ters [40], [41], can be used for recursive state estimation. These
sequential Monte Carlo (MC) techniques represent the density
through a discrete set of weighted samples drawn from that den-
sity which in turn approximate the density through a kernel den-
sity estimate.

Suppose X; is a Markov process we want to estimate based
on measurements vy, that represent noisy observations of the
underlying process X;. To determine the posterior distribution
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p(Xt|y1.t), where y1.4 = [y1, 92, .. -, Y], the set of all observa-
tions from the initial time to time ¢, we apply Bayes’ Rule

(Xt Y |yr:e—1)

P(Xelyre) =p(Xelye, yra—1) = o)
Pyt X, y1:e-1) . (X | X1, y1:0-1)
P(Xi-lyra—1)dXoor. (36)
This expression simplifies to
P(Xely1:e)
0<P(?/t|Xt)/Y P(Xe| Xe—1)p(Xi—1]y1:-1)d X1 (37)

because X; is Markov and the observations y; are indepen-
dent from each other conditioned on their associated state X;.
From this equation, we can observe the recursive nature of the
problem. In particle filtering, the continuous distribution at any
time ¢ is approximated by a sample-based representation

Zw )k(a, Ty ))

Xt|y1 it (38)

where k(z; a:,g )) represents kernel centered at xg 2 . Suppose that

at time ¢ — 1, we have samples :LE )1 having weights wg )1 to

approximate p(X;—1|y1.+—1). The points propagate through the

dynamics to sample points ;,"’ having weights wt(l t) 1- These
points are then weighted by the likelihood, namely
i 1 i i
wg ) = Ep (yt|x§ )) wg‘t)_l 39)

where Z is a normalizing constant which ensures that the
weights sum to 1.

One of the key concepts of particle filters is the idea of im-
portance sampling. If a given distribution p(z) cannot be sam-
pled, we resort to sampling from a proposal density 7(z) and
apply the weight of p(x)/7 () to the samples. The weighting
for each sample ;" is necessary to adjust for the fact that we
sample from 7 () rather than p(z), the distribution of interest.
Mathematically

(4
w® o p(lt(i)) 40)
m(wy”)
where in order to maintain a valid probablhty distribution, we
normalize the weights such that ), w;, 0 =1.

Another feature of particle filters is resampling. After a few
iterations in the recursive filtering process, most of the particle
weight may become concentrated among a small set of samples,
leading to a degenerate distribution. The process of resampling
can mitigate this problem. Resampling involves generating a
new set of samples xy’ ) from the approximate representation
p(z) ~ ZMl wy )k(a: Ty ) Resampling can be accomplished
in many different ways [40].
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APPENDIX 11
FORMULAE FOR COORDINATE DESCENT

Given the functional of (20), we solve the problem using co-
ordinate descent.” For the f; step, we fix the boundary C; and
compute the intensity estimates. Using the assumption that f;
is piecewise constant, the f; which minimizes F( f;, C;) for a
given CY is
JL% fRin(ét) logy:(z)dz + %

1 1
o2 fRin(ét) dz + o2
U% fRo“t@t) log y:(2)dz + UU_Z

1 1
oz Jron@n @2+ 52

ftRin (Cy) = exp

ftRm.t (e}

= exp . (41)

For a given f;, we apply curve evolution to find the C', that min-
imizes E( f¢, éﬁ) To accomplish this, we compute the first vari-
ation of E( f;, Cy) with respect to C; and move in that direction.
The formula for the first variation is

BC_'; out ( A~ ing/ A~
() = = [a(F(Co) - F*(Co)

- (2logy(z) — FtOUt(ét) - th(ét))

+2B, (th(j_t> — (F™(Cy) —logye(2))
+ 20, LELED =0 (o ) — g (2)

—

1 = G i
+3 Zexp(—D2(0t7zglt)_l))(VdZ(z7z§|2_l) ‘N

+d(z,28)_ ) )k(2))IN (42)

where o« = 1/202, B, = 1/20, B, = 1/20}, Q =
> exp(—D2(Ch, mg‘?_l)) A;, is the area of Ry, and Aoy is
the area of Royt, %(2) is the curvature of C at z, N is the unit
outward normal of C at z, and 7 is an iteration-time parameter
used during the curve evolution process. The computation of
the first variation relies on four separate derivations of curve

flows [24], [26], [50], [51].
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