A theoretical quantum brain model is proposed using a nonlinear Schroedinger
wave equation. The model proposes that there exists a quantum process that
mediates the collective response of a neural lattice (classical brain). The
model is used to explain eye movements when tracking moving targets. Using a
Recurrent Quantum Neural Network(RQNN) while simulating the quantum brain
model, two very interesting phenomena are observed. First, as eye sensor data
is processed in a classical brain, a wave packet is triggered in the quantum
brain. This wave packet moves like a particle. Second, when the eye tracks a
fixed target, this wave packet moves not in a continuous but rather in a
discrete mode. This result reminds one of the saccadic movements of the eye
consisting of 'jumps' and 'rests'. However, such a saccadic movement is
intertwined with smooth pursuit movements when the eye has to track a dynamic
trajectory. In a sense, this is the first theoretical model explaining the
experimental observation reported concerning eye movements in a static scene
situation. The resulting prediction is found to be very precise and efficient
in comparison to classical objective modeling schemes such as the Kalman
filter.Comment: 7 pages, 7 figures submitted to Physical Review Letter