92 research outputs found

    Cross layer routing and scheduling for multi-channel Wimax mesh networks

    Get PDF
    Broadband wireless networks are becoming increasingly popular due to their fast and inexpensive deployment and their capabilities of providing flexible and ubiquitous Internet access. Due to the limitation of shared resources in wireless mesh network such as bandwidth, spatial reuse is introduced for concurrent transmissions. The simultaneous transmissions face many challenges regarding interference on the ongoing transmission. To maximize the network performance of mesh networks in terms of spatial reuse, it is essential to consider a cross-layer for resource allocation in different layers such as the routing network layer, the scheduling resource allocation Media Access Control (MAC) layer and physical layer. Therefore, this thesis focuses on improving the spatial reuse for resource allocation mechanism including routing tree construction by taking into consideration the reliable path, channel assignment and scheduling algorithms. Firstly, a Fuzzy based Constructed Routing Tree (FLCRT) is proposed to incorporate fuzzy logic with routing to enable cognitive capability in packet forwarding for uplink or downlink communication. Secondly, the link-aware routing path is proposed to satisfy the connection lifetime and better routing stability for successful requirements of transmission using multi sponsor node technique. Then, a better understanding of reliability analysis is pursued in the context of homogeneous wireless network. Ultimately, heuristic resource allocation including channel assignment and centralized scheduling algorithms are proposed based on the cellular learning automata to enhance the number of concurrent transmissions in the network by efficiently reusing the spectrum spatially. The attempt of heuristic resource allocation algorithms is to find the maximal number of nodes that could transmit data concurrently. The numerical and simulation results show that FLCRT, Learning Automata Heuristic Channel Assignment (LAHCA), and Learning Automata Heuristic Centralized Scheduling (LAHCS) perform better in terms of scheduling length, channel utilization ratio, and average transmission delay as compared with the existing approaches. The proposed FLCRT scheme with respect to the number of subscriber station (SS) nodes performs better in decreasing the scheduling length, average transmission delay, and channel utilization ratio by 38%, 19%, and 38% compared with Interference-Load-Aware routing. LAHCA algorithm improves the number of channels in comparison with random selection algorithm by 8%. LAHCS algorithm using multi channels proposed by LAHCA can reduce the scheduling time, average transmission delay as well as enhance channel utilization ratio versus number of SS nodes by 7%, 8%, and 6% respectively compared with Nearest algorithm in higher traffic demands

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    A Survey of Self Organisation in Future Cellular Networks

    Full text link

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    Quality of service based distributed control of wireless networks

    Get PDF
    corecore