14,136 research outputs found

    Convergence rate and averaging of nonlinear two-time-scale stochastic approximation algorithms

    Full text link
    The first aim of this paper is to establish the weak convergence rate of nonlinear two-time-scale stochastic approximation algorithms. Its second aim is to introduce the averaging principle in the context of two-time-scale stochastic approximation algorithms. We first define the notion of asymptotic efficiency in this framework, then introduce the averaged two-time-scale stochastic approximation algorithm, and finally establish its weak convergence rate. We show, in particular, that both components of the averaged two-time-scale stochastic approximation algorithm simultaneously converge at the optimal rate n\sqrt{n}.Comment: Published at http://dx.doi.org/10.1214/105051606000000448 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multi-level stochastic approximation algorithms

    Full text link
    This paper studies multi-level stochastic approximation algorithms. Our aim is to extend the scope of the multilevel Monte Carlo method recently introduced by Giles (Giles 2008) to the framework of stochastic optimization by means of stochastic approximation algorithm. We first introduce and study a two-level method, also referred as statistical Romberg stochastic approximation algorithm. Then, its extension to multi-level is proposed. We prove a central limit theorem for both methods and describe the possible optimal choices of step size sequence. Numerical results confirm the theoretical analysis and show a significant reduction in the initial computational cost.Comment: 44 pages, 9 figure

    Stochastic Approximation and Modern Model-Based Designs for Dose-Finding Clinical Trials

    Full text link
    In 1951 Robbins and Monro published the seminal article on stochastic approximation and made a specific reference to its application to the "estimation of a quantal using response, nonresponse data." Since the 1990s, statistical methodology for dose-finding studies has grown into an active area of research. The dose-finding problem is at its core a percentile estimation problem and is in line with what the Robbins--Monro method sets out to solve. In this light, it is quite surprising that the dose-finding literature has developed rather independently of the older stochastic approximation literature. The fact that stochastic approximation has seldom been used in actual clinical studies stands in stark contrast with its constant application in engineering and finance. In this article, I explore similarities and differences between the dose-finding and the stochastic approximation literatures. This review also sheds light on the present and future relevance of stochastic approximation to dose-finding clinical trials. Such connections will in turn steer dose-finding methodology on a rigorous course and extend its ability to handle increasingly complex clinical situations.Comment: Published in at http://dx.doi.org/10.1214/10-STS334 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore