16 research outputs found

    Adapting Swarm Intelligence for the Self-Assembly of Prespecified Artificial Structures

    Get PDF
    The self-assembly problem involves designing individual behaviors that a collection of agents can follow in order to form a given target structure. An effective solution would potentially allow self-assembly to be used as an automated construction tool, for example, in dangerous or inaccessible environments. However, existing methodologies are generally limited in that they are either only capable of assembling a very limited range of simple structures, or only applicable in an idealized environment having few or no constraints on the agents' motion. The research presented here seeks to overcome these limitations by studying the self-assembly of a diverse class of non-trivial structures (building, bridge, etc.) from different-sized blocks, whose motion in a continuous, three-dimensional environment is constrained by gravity and block impenetrability. These constraints impose ordering restrictions on the self-assembly process, and necessitate the assembly and disassembly of temporary structures such as staircases. It is shown that self-assembly under these conditions can be accomplished through an integration of several techniques from the field of swarm intelligence. Specifically, this work extends and incorporates computational models of distributed construction, collective motion, and communication via local signaling. These mechanisms enable blocks to determine where to deposit themselves, to effectively move through continuous space, and to coordinate their behavior over time, while using only local information. Further, an algorithm is presented that, given a target structure, automatically generates distributed control rules that encode individual block behaviors. It is formally proved that under reasonable assumptions, these rules will lead to the emergence of correct system-level coordination that allows self-assembly to complete in spite of environmental constraints. The methodology is also verified experimentally by generating rules for a diverse set of structures, and testing them via simulations. Finally, it is shown that for some structures, the generated rules are able to parsimoniously capture the necessary behaviors. This work yields a better understanding of the complex relationship between local behaviors and global structures in non-trivial self-assembly processes, and presents a step towards their use in the real world

    Anthills built to order : automating construction with artificial swarms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 110-116).Social insects build large, complex structures, which emerge through the collective actions of many simple agents acting with no centralized control or preplanning. These natural systems motivate investigating the use of artificial swarms to automate construction or fabrication. The goal is to be able to take an unspecified number of simple robots and a supply of building material, give the system a high-level specification for any arbitrary structure desired, and have a guarantee that it will produce that structure without further intervention. In this thesis I describe such a distributed system for automating construction, in which autonomous mobile robots collectively build user-specified structures from square building blocks. The approach preserves many desirable features of the natural systems, such as considerable parallelism and robustness to factors like robot loss and variable order or timing of actions. Further, unlike insect colonies, it can build particular desired structures according to a high-level design provided by the user. Robots in this system act without explicit communication or cooperation, instead using the partially completed structure to coordinate their actions.(cont.) This mechanism is analogous to that of stigmergy used by social insects, in which insects take actions that affect the environment, and the environmental state influences further actions. I introduce a framework of extended stigmergy in which building blocks are allowed to store, process or communicate information. Increasing the capabilities of the building material (rather than of the robots) in this way increases the availability of nonlocal structure information. Benefits include significant improvements in construction speed and in ability to take advantage of the parallelism of the swarm. This dissertation describes system design and control rules for decentralized teams of robots that provably build arbitrary solid structures in two dimensions. I present a hardware prototype, and discuss extensions to more general structures, including those built with multiple block types and in three dimensions.by Justin Werfel.Ph.D

    Anthills Built to Order: Automating Construction with Artificial Swarms

    Get PDF
    PhD thesisSocial insects build large, complex structures, which emerge through the collective actions of many simple agents acting with no centralized control or preplanning. These natural systems motivate investigating the use of artificial swarms to automate construction or fabrication. The goal is to be able to take an unspecified number of simple robots and a supply of building material, give the system a high-level specification for any arbitrary structure desired, and have a guarantee that it will produce that structure without further intervention.In this thesis I describe such a distributed system for automating construction, in which autonomous mobile robots collectively build user-specified structures from square building blocks. The approach preserves many desirable features of the natural systems, such as considerable parallelism and robustness to factorslike robot loss and variable order or timing of actions. Further, unlike insect colonies, it can build particular desired structures according to a high-level design provided by the user.Robots in this system act without explicit communication or cooperation, instead using the partially completed structure to coordinate their actions. This mechanism is analogous to that of stigmergy used by social insects, in which insects take actions that affect the environment, and the environmental state influences further actions. I introduce a framework of "extended stigmergy" in which building blocks are allowed to store, process or communicate information. Increasing the capabilities of the building material (rather than of the robots) in this way increases the availability of nonlocal structure information. Benefits include significant improvements in construction speed and in ability to take advantage of the parallelism of the swarm.This dissertation describes system design and control rules for decentralized teams of robots that provably build arbitrary solid structures in two dimensions. I present a hardware prototype, and discuss extensions to more general structures, including those built with multiple block types and in three dimensions

    Adapting Swarm Intelligence For The Self-Assembly And Optimization Of Networks

    Get PDF
    While self-assembly is a fairly active area of research in swarm intelligence and robotics, relatively little attention has been paid to the issues surrounding the construction of network structures. Here, methods developed previously for modeling and controlling the collective movements of groups of agents are extended to serve as the basis for self-assembly or "growth" of networks, using neural networks as a concrete application to evaluate this novel approach. One of the central innovations incorporated into the model presented here is having network connections arise as persistent "trails" left behind moving agents, trails that are reminiscent of pheromone deposits made by agents in ant colony optimization models. The resulting network connections are thus essentially a record of agent movements. The model's effectiveness is demonstrated by using it to produce two large networks that support subsequent learning of topographic and feature maps. Improvements produced by the incorporation of collective movements are also examined through computational experiments. These results indicate that methods for directing collective movements can be extended to support and facilitate network self-assembly. Additionally, the traditional self-assembly problem is extended to include the generation of network structures based on optimality criteria, rather than on target structures that are specified a priori. It is demonstrated that endowing the network components involved in the self-assembly process with the ability to engage in collective movements can be an effective means of generating computationally optimal network structures. This is confirmed on a number of challenging test problems from the domains of trajectory generation, time-series forecasting, and control. Further, this extension of the model is used to illuminate an important relationship between particle swarm optimization, which usually occurs in high dimensional abstract spaces, and self-assembly, which is normally grounded in real and simulated 2D and 3D physical spaces

    Computing multi-scale organizations built through assembly

    Get PDF
    The ability to generate and control assembling structures built over many orders of magnitude is an unsolved challenge of engineering and science. Many of the presumed transformational benefits of nanotechnology and robotics are based directly on this capability. There are still significant theoretical difficulties associated with building such systems, though technology is rapidly ensuring that the tools needed are becoming available in chemical, electronic, and robotic domains. In this thesis a simulated, general-purpose computational prototype is developed which is capable of unlimited assembly and controlled by external input, as well as an additional prototype which, in structures, can emulate any other computing device. These devices are entirely finite-state and distributed in operation. Because of these properties and the unique ability to form unlimited size structures of unlimited computational power, the prototypes represent a novel and useful blueprint on which to base scalable assembly in other domains. A new assembling model of Computational Organization and Regulation over Assembly Levels (CORAL) is also introduced, providing the necessary framework for this investigation. The strict constraints of the CORAL model allow only an assembling unit of a single type, distributed control, and ensure that units cannot be reprogrammed - all reprogramming is done via assembly. Multiple units are instead structured into aggregate computational devices using a procedural or developmental approach. Well-defined comparison of computational power between levels of organization is ensured by the structure of the model. By eliminating ambiguity, the CORAL model provides a pragmatic answer to open questions regarding a framework for hierarchical organization. Finally, a comparison between the designed prototypes and units evolved using evolutionary algorithms is presented as a platform for further research into novel scalable assembly. Evolved units are capable of recursive pairing ability under the control of a signal, a primitive form of unlimited assembly, and do so via symmetry-breaking operations at each step. Heuristic evidence for a required minimal threshold of complexity is provided by the results, and challenges and limitations of the approach are identified for future evolutionary studies

    Proceedings of the 2004 ONR Decision-Support Workshop Series: Interoperability

    Get PDF
    In August of 1998 the Collaborative Agent Design Research Center (CADRC) of the California Polytechnic State University in San Luis Obispo (Cal Poly), approached Dr. Phillip Abraham of the Office of Naval Research (ONR) with the proposal for an annual workshop focusing on emerging concepts in decision-support systems for military applications. The proposal was considered timely by the ONR Logistics Program Office for at least two reasons. First, rapid advances in information systems technology over the past decade had produced distributed collaborative computer-assistance capabilities with profound potential for providing meaningful support to military decision makers. Indeed, some systems based on these new capabilities such as the Integrated Marine Multi-Agent Command and Control System (IMMACCS) and the Integrated Computerized Deployment System (ICODES) had already reached the field-testing and final product stages, respectively. Second, over the past two decades the US Navy and Marine Corps had been increasingly challenged by missions demanding the rapid deployment of forces into hostile or devastate dterritories with minimum or non-existent indigenous support capabilities. Under these conditions Marine Corps forces had to rely mostly, if not entirely, on sea-based support and sustainment operations. Particularly today, operational strategies such as Operational Maneuver From The Sea (OMFTS) and Sea To Objective Maneuver (STOM) are very much in need of intelligent, near real-time and adaptive decision-support tools to assist military commanders and their staff under conditions of rapid change and overwhelming data loads. In the light of these developments the Logistics Program Office of ONR considered it timely to provide an annual forum for the interchange of ideas, needs and concepts that would address the decision-support requirements and opportunities in combined Navy and Marine Corps sea-based warfare and humanitarian relief operations. The first ONR Workshop was held April 20-22, 1999 at the Embassy Suites Hotel in San Luis Obispo, California. It focused on advances in technology with particular emphasis on an emerging family of powerful computer-based tools, and concluded that the most able members of this family of tools appear to be computer-based agents that are capable of communicating within a virtual environment of the real world. From 2001 onward the venue of the Workshop moved from the West Coast to Washington, and in 2003 the sponsorship was taken over by ONRā€™s Littoral Combat/Power Projection (FNC) Program Office (Program Manager: Mr. Barry Blumenthal). Themes and keynote speakers of past Workshops have included: 1999: ā€˜Collaborative Decision Making Toolsā€™ Vadm Jerry Tuttle (USN Ret.); LtGen Paul Van Riper (USMC Ret.);Radm Leland Kollmorgen (USN Ret.); and, Dr. Gary Klein (KleinAssociates) 2000: ā€˜The Human-Computer Partnership in Decision-Supportā€™ Dr. Ronald DeMarco (Associate Technical Director, ONR); Radm CharlesMunns; Col Robert Schmidle; and, Col Ray Cole (USMC Ret.) 2001: ā€˜Continuing the Revolution in Military Affairsā€™ Mr. Andrew Marshall (Director, Office of Net Assessment, OSD); and,Radm Jay M. Cohen (Chief of Naval Research, ONR) 2002: ā€˜Transformation ... ā€™ Vadm Jerry Tuttle (USN Ret.); and, Steve Cooper (CIO, Office ofHomeland Security) 2003: ā€˜Developing the New Infostructureā€™ Richard P. Lee (Assistant Deputy Under Secretary, OSD); and, MichaelOā€™Neil (Boeing) 2004: ā€˜Interoperabilityā€™ MajGen Bradley M. Lott (USMC), Deputy Commanding General, Marine Corps Combat Development Command; Donald Diggs, Director, C2 Policy, OASD (NII

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field
    corecore