2,030 research outputs found

    Evaluation of optimisation techniques for multiscopic rendering

    Get PDF
    A thesis submitted to the University of Bedfordshire in fulfilment of the requirements for the degree of Master of Science by ResearchThis project evaluates different performance optimisation techniques applied to stereoscopic and multiscopic rendering for interactive applications. The artefact features a robust plug-in package for the Unity game engine. The thesis provides background information for the performance optimisations, outlines all the findings, evaluates the optimisations and provides suggestions for future work. Scrum development methodology is used to develop the artefact and quantitative research methodology is used to evaluate the findings by measuring performance. This project concludes that the use of each performance optimisation has specific use case scenarios in which performance benefits. Foveated rendering provides greatest performance increase for both stereoscopic and multiscopic rendering but is also more computationally intensive as it requires an eye tracking solution. Dynamic resolution is very beneficial when overall frame rate smoothness is needed and frame drops are present. Depth optimisation is beneficial for vast open environments but can lead to decreased performance if used inappropriately

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    GPS-MIV: The General Purpose System for Multi-display Interactive Visualization

    Get PDF
    The new age of information has created opportunities for inventions like the internet. These inventions allow us access to tremendous quantities of data. But, with the increase in information there is need to make sense of such vast quantities of information by manipulating that information to reveal hidden patterns to aid in making sense of it. Data visualization systems provide the tools to reveal patterns and filter information, aiding the processes of insight and decision making. The purpose of this thesis is to develop and test a data visualization system, The General Purpose System for Multi-display Interactive Visualization (GPS-MIV). GPS-MIV is a software system allowing the user to visualize data graphically and interact with it. At the core of the system is a graphics system that displays different computer generated scenes from multiple perspectives and with multiple views. Additionally, GSP-MIV provides interaction for the user to explore the scene

    Content Format and Quality of Experience in Virtual Reality

    Get PDF
    In this paper, we investigate three forms of virtual reality content production and consumption. Namely, 360 stereoscopic video, the combination of a 3D environment with a video billboard for dynamic elements, and a full 3D rendered scene. On one hand, video based techniques facilitate the acquisition of content, but they can limit the experience of the user since the content is captured from a fixed point of view. On the other hand, 3D content allows for point of view translation, but real-time photorealistic rendering is not trivial and comes at high production and processing costs. We also compare the two extremes with an approach that combines dynamic video elements with a 3D virtual environment. We discuss the advantages and disadvantages of these systems, and present the result of a user study with 24 participants. In the study, we evaluated the quality of experience, including presence, simulation sickness and participants' assessment of content quality, of three versions of a cinematic segment with two actors. We found that, in this context, mixing video and 3D content produced the best experience.Comment: 25 page

    MegaParallax: Casual 360° Panoramas with Motion Parallax

    Get PDF
    The ubiquity of smart mobile devices, such as phones and tablets, enables users to casually capture 360° panoramas with a single camera sweep to share and relive experiences. However, panoramas lack motion parallax as they do not provide different views for different viewpoints. The motion parallax induced by translational head motion is a crucial depth cue in daily life. Alternatives, such as omnidirectional stereo panoramas, provide different views for each eye (binocular disparity), but they also lack motion parallax as the left and right eye panoramas are stitched statically. Methods based on explicit scene geometry reconstruct textured 3D geometry, which provides motion parallax, but suffers from visible reconstruction artefacts. The core of our method is a novel multi-perspective panorama representation, which can be casually captured and rendered with motion parallax for each eye on the fly. This provides a more realistic perception of panoramic environments which is particularly useful for virtual reality applications. Our approach uses a single consumer video camera to acquire 200–400 views of a real 360° environment with a single sweep. By using novel-view synthesis with flow-based blending, we show how to turn these input views into an enriched 360° panoramic experience that can be explored in real time, without relying on potentially unreliable reconstruction of scene geometry. We compare our results with existing omnidirectional stereo and image-based rendering methods to demonstrate the benefit of our approach, which is the first to enable casual consumers to capture and view high-quality 360° panoramas with motion parallax.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 66599
    • …
    corecore