

EVALUATION OF OPTIMISATION TECHNIQUES FOR
MULTISCOPIC RENDERING

Grigor Todorov

This is a digitised version of a dissertation submitted to the University of
Bedfordshire.

It is available to view only.

This item is subject to copyright.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bedfordshire Repository

https://core.ac.uk/display/43758104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EVALUATION OF OPTIMISATION TECHNIQUES FOR

MULTISCOPIC RENDERING

Grigor Todorov

A thesis submitted to the University of Bedfordshire in fulfilment of the

requirements for the degree of Master of Science by Research

Institute for Research in Applicable Computing

October 2015

II

Abstract

This project evaluates different performance optimisation techniques applied to

stereoscopic and multiscopic rendering for interactive applications. The artefact

features a robust plug-in package for the Unity game engine. The thesis provides

background information for the performance optimisations, outlines all the

findings, evaluates the optimisations and provides suggestions for future work.

Scrum development methodology is used to develop the artefact and quantitative

research methodology is used to evaluate the findings by measuring performance.

This project concludes that the use of each performance optimisation has specific

use case scenarios in which performance benefits. Foveated rendering provides

greatest performance increase for both stereoscopic and multiscopic rendering but

is also more computationally intensive as it requires an eye tracking solution.

Dynamic resolution is very beneficial when overall frame rate smoothness is needed

and frame drops are present. Depth optimisation is beneficial for vast open

environments but can lead to decreased performance if used inappropriately.

III

Declaration

I declare that this thesis is my own unaided work. It is being submitted for the

degree of Master of Science by Research at the University of Bedfordshire.

Name of candidate: Grigor Todorov Signature:

Date:

IV

List of Content

Abstract ... ii

List of Content .. iv

Table of Figures .. v

Acknowledgements .. vi

1. Introduction ... 7

1.1 Aims and Objectives ... 8

1.2 Motivation ... 9

2. Contextual review and market research .. 10

2.1 Foveated Rendering... 10

2.2 Dynamic Resolution .. 16

2.3 Depth Reuse .. 18

3. Artefact Design, Development and Testing .. 20

3.1 Development and research methodology .. 20

3.2 Use of the artefact ... 21

3.3 Design and implementation of the performance optimisations 22

3.3.1 Foveated rendering system ... 22

3.3.2 Dynamic resolution system .. 31

3.3.3 Depth reuse system ... 36

3.4 Design and implementation of additional systems .. 39

3.4.1 Automultiscopic rendering ... 39

3.4.2 Performance measuring system .. 41

3.5 Problems encountered ... 42

3.6 Testing ... 44

4. Evaluation ... 45

4.1 Traditional rendering ... 47

4.2 Stereoscopic rendering .. 49

4.3 Multiscopic rendering ... 51

4.4 Dynamic resolution ... 53

5. Conclusion and future work .. 57

5.1 Conclusion ... 57

5.2 Future work ... 58

References ... 59

V

Table of Figures

Figure 1 Human eye rod: cone receptor ratio... 11

Figure 2 The distribution of rods and cones in the retina (Dubuc, 2002) ... 11

Figure 3 All the letters should be equally readable (Anstis, 1974) .. 11

Figure 4 Aparatus from (Yarbus, 1960) Image from (Yarbus eyetracker , 1960) .. 11

Figure 5 BlueGain EOG (crsltd, 2015) ... 11

Figure 6 Tobii TX300 .. 11

Figure 7 Gear VR (Gear VR, 2015) ... 13

Figure 8 Google Cardboard (Cardboard, 2015) ... 13

Figure 9 Archos VR (Archos VR, 2015) ... 13

Figure 10 The Eye Tribe Tracker for tablet (The Eye Tribe, 2015) ... 14

Figure 11 FOVE eye tracking headset (FOVE Inc, 2015) ... 14

Figure 12 StarVR headset (Starbreeze Studios, 2015) ... 14

Figure 13. Battlefield 4 Resolution Scaling (dualshockers.com, 2013) ... 17

Figure 14 Depth Perception (brainhq) ... 18

Figure 15 2D rendering camera prefab .. 23

Figure 16 Drawing order of the render textures ... 23

Figure 17 Whole screen camera for foveated rendering .. 25

Figure 18 Foveated region ... 27

Figure 19 Stereoscopy Interlaced Foveated Rendering .. 29

Figure 20 Multiscopic Foveated Rendering ... 31

Figure 21 Performance Manager ... 33

Figure 22 Dynamic Resolution Manager ... 34

Figure 23 Script Holder Cam game object ... 37

Figure 24 Stereoscopic and Multiscopic implementations depth optimisation .. 38

Figure 25 Traditional and multiscopic rendering ... 40

Figure 26 Performance manager set to save data to file... 41

Figure 27 2D Dynamic resolution rendering ... 54

Figure 28 Stereoscopy - Dynamic resolution ... 55

Figure 29 Multiscopic- Dynamic resolution .. 56

VI

Acknowledgements

My deepest gratitude to my director of studies Professor Amar Aggoun who gave

me both the freedom to explore on my own and the guidance when needed.

I would like to acknowledge James Wood for his continuous support.

7

1. Introduction

Modern video games rely on a wide variety of optimisation techniques in order to

reach the photo realistic rendering quality expected by the users. With the increase

of available computational power the demand of more beautiful, bigger and denser

virtual worlds also increases. Use of techniques such as occlusion culling,

tessellation, mipmapping and level of detail switching is vital for the smooth

performance and photorealism, but such techniques are mainly designed to work

for traditional rendering of one view. With the constant increase of available

stereoscopic enabled hardware such as head-mounted displays and also future

trends like multiscopic displays the use of old performance optimisation techniques

is not nearly enough to meet the demands. The utilisation of more advanced

performance optimisation techniques is required. The techniques evaluated in this

project can provide additional performance increase for specific game situations.

The first section of this report provides some academic and commercial background

information on techniques that could be beneficially used for applications that

require rendering of multiple views. Scrum development methodology is used to

implement all the performance optimisations in the Unity game engine.

Quantitative research methodology is utilized to design numerous experiments that

measure the performance of the optimisation techniques. This thesis report provides

an evaluation of the data measured as well as a summary of all the different

performance optimisations and their appropriate uses. The end of this report

features a section that provides some recommendations for future work.

8

1.1 Aims and Objectives

The aim of this project is to implement a number of optimisation techniques for

multiscopic rendering and evaluate their performances. This project has two end

products: an artefact and a thesis report. The artefact is open sourced and is intended

to be a good starting point for the implementation of any of the performance

optimisations discussed. The thesis documents the development process, analyses

the commercial and academic viability and evaluates the performance optimisation

techniques.

The objectives for both the thesis and the artefact are as follows:

Thesis:

- Outline multiple performance optimisation techniques that could be

potentially beneficial for multiscopic rendering.

- Explain how each performance technique is implemented and how it works.

- Outline the benefits, requirements, cost of implementation and practicability

for each optimisation technique.

- Evaluate the optimisation techniques by measuring and comparing their

performance benefits.

- Suggest future work.

Artefact:

- Implement the performance optimisations discussed in the thesis and create

a Unity plug-in.

- Follow good development practices and provide additional functionality.

- Create a system for performance measurement.

9

1.2 Motivation

The main goal of this project is to bring value for both academic and commercial

applications. Some of the performance optimisations discussed in this thesis have

never been evaluated for stereoscopic and multiscopic rendering and their

application for such situations is novel. The artefact of this project will enable

developers to implement such optimisation techniques in both commercial and

academic applications.

The development of this project was motivated by the lack examples of such

techniques implemented and openly available. The optimisations evaluated in this

thesis are implemented with the Unity game engine and C# code. Since the artefact

is open sourced the performance optimisations could also easily be adapted for

game engines other than Unity and can even be used within custom development

environments.

The artefact is designed to be easy to use and modify. The code is fully commented

and provides additional tooltips in the Unity user interface for ease of use.

This thesis is freely available online to further aid future works on the optimisation

techniques and is designed to be a useful starting point for anyone interested in

implementing them. It also evaluates all the performance optimisations and

provides suggestions on best use scenarios for each optimisation.

10

2. Contextual review and market research

This chapter outlines the findings after academic and market research was

conducted for each performance optimisation technique.

2.1 Foveated Rendering

People have a field of view of 135° vertically and 160° horizontally (NASA , 1964),

but the human eye does not have uniform distribution of optic nerves (Figure 2).

A small region of the human eye called “fovea” and located in the middle of the

retina (Figure 1) contains half of the optic nerves (Figure 2) and a field of view of

5° (Guenter, et al., 2012). As seen in Figure 3 the ability to perceive information is

rapidly decreasing away from the gaze location in the middle of the image and in

order to accommodate for this the size of the letters in the outer region of the image

is increased. People use motions called “saccades” (Ebisawa & Suzu, 1994) to

perceive their environment in high field of view. The quality of the peripheral vision

gradually degrades in areas further from the fovea. These areas, called “parafovea”

and “perifovia”, have far fewer cone receptors and more rod cells (Figure 1).

Cone cells are good at perceiving colour while rod cells are better at distinguishing

motion. People are good at detecting motion with their peripheral vision but fail at

distinguishing colours or shapes as the quality of vision degrades outside of the

foveated region.

Traditional displays are created with the assumption that the user can perceive every

region of the screen at the same time, which is clearly not the case. When only one

user is interacting with the screen a small fraction of the pixels is fully

comprehended (Guenter, et al., 2012) at any given moment.

11

FIGURE 1 HUMAN EYE ROD:

CONE RECEPTOR RATIO

(CURICO, ET AL., 1990)

FIGURE 2 THE DISTRIBUTION OF

RODS AND CONES IN THE RETINA

(DUBUC, 2002)

FIGURE 3 ALL THE LETTERS

SHOULD BE EQUALLY

READABLE (ANSTIS, 1974)

As seen in Figure 1, the retina has a small area that lacks photoreceptors called a

“blind spot” (Durgin, et al., 1995). The brain recreates the “blind spot” as well as

other missing parts of the vision by combining the information of both eyes and a

person cannot perceive the lack of information in that region. If we can discard the

portion of the screen that is hidden from the user’s perception and gradually

decrease quality and resolution towards the parts of the screen that are not

comprehended with the fovea we can increase the overall performance. In order to

create such effect we need to know the location of the user gaze at real-time,

therefore a robust eye tracking solution is required.

FIGURE 4 APARATUS FROM

(YARBUS, 1960). IMAGE FROM

(YARBUS EYETRACKER , 1960)

FIGURE 5 BLUEGAIN EOG

(CRSLTD, 2015)

FIGURE 6 TOBII TX300

EYE TRACKER

(TOBII TECHNOLOGY, 2011)

For the last half a century gaze tracking has been a widely researched field

(Yarbus, 1960). The eye tracker hardware used to be bulky (Figure 4), expensive

(Figure 6) and very intrusive for the user (Figure 5), but modern solutions solve

12

these issues and currently available eye tracking hardware is cheap, compact and

versatile. Eye tracking hardware usually works in one of three ways.

The most intrusive method is the eye-attached tracking with a special contact lens

that reflects infrared light (Chen & Kalinli, 2011). Eye tracking with contact lenses

is not an applicable solution for a commercial product as it requires the user to apply

eye lenses. This form of eye tracking provides accuracy and is used for research

purposes.

Eye tracking can also be achieved with electrooculography (crsltd, 2015).

This approach is good at measuring rapid eye saccade movements and is not an

accurate solution when measuring slow eye movements such as tracking an object

on the screen (Ebisawa & Suzu, 1994).

The last and most widely used approach is to use infrared light, cameras and image

processing to determine the eye rotation and gaze position. The use of infrared light

source is needed because the human eye can perceive light that falls in the visible

spectrum and infrared light is mostly unperceivable (Palczewska, et al., 2014).

One potential issue when using eye tracking is the rapid saccades a human eye

makes. The eye tracking solution needs to work with fast frequency in order to track

the eye wile in a saccade. The human brain selectively discards most of the

information received during rapid saccades in a process called saccadic masking

(Burr, et al., 1994). It is therefore not imperative to track the eye location while in

saccadic movement. As long as the eye tracking solution calculates the new gaze

point fast enough after the saccade no delay will be perceivable by the user.

The use of eye tracking for distribution of visual fidelity, foveated rendering, has

been researched extensively, with some very promising results (Guenter, et al.,

2012), but such research leads to the conclusion that current generation of eye

tracking solutions cannot be used commercially for foveated rendering as the

required eye tracking hardware is too expensive or does not provide the required

tracking speed. Recent commercial products have made eye tracking cheap and

widely available and this project tries to review the use of eye tracking for foveated

rendering with currently available and affordable eye tracking solutions.

Foveated rendering has many applications, some of which include virtual reality,

remote piloting and video teleconferencing (Baudisch, et al., 2003).

13

In foveated rendering eye tracking hardware is used to track the gaze point of the

user eyes and multiple layers of degrading quality and increasing size are rendered.

When foveated rendering is used successfully it could increase the performance and

reduce the required bandwidth. In the context of real-time computer graphics we

are not concerned with the bandwidth but are interested in the increase of

performance. An estimated performance increase after a successful implementation

of foveated rendering is a factor of five (Guenter, et al., 2012). This could lead to a

breakthrough in the smart phone rendering and instead of devices with more

processing power phones with low latency eye tracking and displays could be

developed. The mobile market may not seem to be a suitable medium for foveated

rendering due to the smaller screen size, but smart phones are front runners for the

current revolution of virtual reality. As the devices feature both very good

gyroscopes, high definition screens and their computational power continues to

grow, it is possible to use them for wireless virtual reality headsets.

Head-mounted displays are traditionally very bulky systems that are connected to a

computer and sharing the virtual reality experience with other people is difficult

due to their form factor.

FIGURE 7 GEAR VR (GEAR

VR, 2015)

FIGURE 8 GOOGLE CARDBOARD

(CARDBOARD, 2015)

FIGURE 9 ARCHOS VR

(ARCHOS VR, 2015)

Virtual reality headsets specifically designed to work in conjunction with smart

phones, such as Gear VR (Figure 7), Google Cardboard (Figure 8) and many other

solutions (Figure 9) have emerged on the market. The two major reasons why these

devices are not competitive with the tethered virtual reality experiences provided

by Oculus Rift, HTC Vive and other similar HMDs is the lack of positional tracking

for the head as well as the device performance. This project aims to solve the

performance problem by proposing the use of foveated rendering in conjunction

with eye tracking for smart phones.

14

The head position tracking problem could be solved in the near future with the

addition of a variety of sensors. Technologies such as Project Tango (Google

ATAP, 2015) feature depth sensors akin to the ones found in Kinect. There are also

technologies that can not only scan the environment for 3D point cloud but also

understand different hand gestures (Microsoft HoloLens, 2015).

Since the vast majority of the population already own smart phones and a gyroscope

sensor is the only requirement for the phone to be used as a virtual reality headset,

it is cheaper to use a phone as a head-mounted display than to invest in a tethered

alternative that also requires a powerful computer. The wide adoption of sensors for

depth and gestures is very important for the future of mobile virtual reality.

FIGURE 10 THE EYE TRIBE

TRACKER FOR TABLET (THE

EYE TRIBE, 2015)

FIGURE 11 FOVE EYE

TRACKING HEADSET (FOVE

INC, 2015)

FIGURE 12 STARVR HEADSET

(STARBREEZE STUDIOS, 2015)

There are multiple eye tracking solutions available for mobile devices (Figure 10)

but they usually target a form factor larger than a smart phone and are not suitable

for use in a head-mounted display. A hypothetical eye tracking solution that works

at a frequency fast enough to permit the use of foveated rendering for such device

could lead to more robust widely available virtual reality devices that are not

tethered to a PC and with the requirement of just a fraction of the computational

power of current mobile virtual reality.

One relevant head-mounted display that was recently backed on Kickstarter is

FOVE (Figure 11). It is tethered and therefore does not provide the benefits of smart

phone virtual reality, but it features an eye tracking solution. FOVE will be the first

commercially available head-mounted display with the ability to use foveated

rendering.

15

Another future head-mounted display that will use eye tracking extensively is

StarVR (Figure 12). It will feature two high definition screens and offer 210° field

of view and 5K resolution.

Other custom eye tracking modifications of the development version of Oculus Rift

are also available but are expensive (SensoMotoric Instruments, 2015) and mainly

used for academic research. It is possible to create a very cheap custom eye tracking

solution by using a PlayStation Eye camera (Sony , 2007) in a low resolution mode

which works at 120Hz, but this solution is mainly used by enthusiasts and is not

compact.

In order to eliminate the popping effect in foveated rendering perceived by the user

a low latency system is required. A 60Hz display is not a viable solution and for

successful implementation of foveated rendering both the display and the

eye-tracker need to work at 90Hz or more (Thunström, 2014).

For the development and testing of the foveated rendering the Tobii EyeX

(Tobii Technology, 2015) tracker was used. It is an affordable tracker targeting

video games audience. The original frequency of the eye tracker is not fixed but it

works at 30Hz or more. Custom build of the eye tracking engine was provided by

Tobii for the foveated rendering testing. It increased the Tobii EyeX frequency to

90Hz, but the tracking accuracy deteriorated. Even with reduced accuracy the

system works well for foveated rendering, but due to the lack of a high frequency

monitor available for this research popping effects were still perceivable.

The displays used for testing are 22-inch normal monitor, 42-inch automultiscopic

monitor and a Commander 3D tablet with autostereoscopic capabilities.

Current computer systems are capable of rendering for multiple 4K monitors, but

expensive graphics hardware is necessary. Existing game engines are capable of

rendering realistic scenes, but with stereoscopy and multiscopy the hardware needs

to render the scene from more than one view, which is computationally intensive.

Foveated rendering enables a wide adoption of multiscopic displays for personal

and commercial use as it reduces the required performance.

16

2.2 Dynamic Resolution

Since the dawn of 3D accelerated graphics researchers have been trying to increase

rendering performance. Numerous rendering optimisations that increase visual

fidelity or reduce processing power requirements have been produced.

Some techniques worth mentioning include level of detail switching (Clark, 1976),

tessellation (Microsoft Developer Network, 2013), occlusion culling (Oded

Sudarsky, 1999). Most performance techniques provide performance increase in

scenes that feature large amount of geometry by decreasing the overall quality of

the geometry the further it is from the camera. This usually leads to perceptibly bad

geometrical quality into the distance and object popping. Most performance

optimisations do not take into account the current situation and are either always

enabled or always disabled, but most of the games have a stable performance until

a graphically intensive scene is reached. In these situations artefacts such as object

popping could be avoided with smarter performance optimisation techniques that

only optimise the rendering when it is needed. One such technique that adapts to

performance to increase or decrease graphical fidelity is dynamic resolution.

Dynamic resolution (Intel, 2011) features a real-time adaptive change of the internal

resolution of the application. Traditionally the resolution in video games takes a lot

of time to change and can only be set in the options menu. The difference between

the traditional resolution settings and the dynamic resolution scaling is that the

resolution change affects the graphics user interface of the game while the dynamic

resolution changes the internal rendering resolution without any change to the user

interface.

Dynamic resolution scaling is rarely used in console games when the targeted

performance could not be met. Sometimes video games render the content at lower

and upscale it to larger resolutions. In other times rendering is set to target a specific

frame rate and the resolution is changed at run-time to accommodate the frame rate

target. Some Xbox One game titles such as “The Witcher 3: Wild Hunt”

(extremetech.com, 2015) and “Call of Duty: Advanced Warfare” (engadget.com,

2014) feature such resolution scaling system, but they render at pre-set width and

only scale the height resolution.

17

Other games provide a more passive settings option to change the resolution

scaling. One such game is Battlefield 4 (dualshockers.com, 2013) which features

an option called “Resolution Scale” available from the options menu. This only

applies to the PC version of the game and the value can be set between 25% and

200%. It is a separate option from the resolution of the game and it is effectively a

multiplier of the internal rendering resolution. Changing this value does not change

the user interface scaling. Figure 13 illustrates the difference of quality perceived

by the user.

FIGURE 13. BATTLEFIELD 4 RESOLUTION SCALING (DUALSHOCKERS.COM, 2013)

Changing the “Resolution Scaling” option to a lower value greatly deteriorates the

perceived quality but the amount of frames that can be rendered each second

increases. Resolution Scaling does not provide the benefits of dynamic resolution

but it is very useful for older rendering hardware.

Dynamic resolution is also used in some video editing software solutions

(Adobe, 2015) to display a preview of the final footage. Some 3D renderers

(VRay, 2011) are capable of showing a lower fidelity version of the final ray traced

scene, but instead of changing the resolution of the view they render a smaller

number of pixels for preview. One benefit of dynamic resolution is a smoother

overall experience due the reduction of frame per second drops. This project is an

opportunity to test dynamic resolution against other performance optimisation

techniques. The expected result for dynamic resolution is to have a great

performance benefit but to affects immersion in a negative manner. It needs to be

capped so that the performance quality does not deteriorate more than a pre-set

quality.

18

2.3 Depth Reuse

When rendering stereoscopic or multiscopic content the scene needs to be rendered

multiple times, the number of which corresponds to the number of views.

The human brain uses the difference of two views supplied from the eyes, called

“stereopsis” (University of Cambridge, 2003), to determine the distance from

objects (Figure 14).

FIGURE 14 DEPTH PERCEPTION (BRAINHQ)

Stereopsis decreases for objects that are far away from the eye. When rendering

virtual scenes that feature vast open areas some objects are far into the distance and

even though they are rendered for each view they do not contribute to the stereopsis.

It is possible to render the objects that are further than the distance of perceived

depth and reuse the rendering for all of the views in stereoscopy and multiscopy.

There are a number of ways in which this could be achieved. The depth buffer could

be reused and combined with other depth buffers for each view or extensive use of

“render textures” could be utilized. The “render texture” method was selected for

the implementation and evaluation of this technique due to it being easier to

implement and understand. It also works with existing image effects and provides

the ability to change the refresh rate of the two “render textures” which could further

be beneficial to performance. The first step is to render the distant objects in a

“render texture”. The next step is to render the close objects for each view into

another “render texture”. The final result for each view is achieved by combining

the “render texture” of the view with the “render texture” of the depth.

19

It is expected that this will be beneficial for vast scenes with a lot of geometry,

especially for multiscopic rendering where the depth will be reused multiple times.

It is very important to choose a distance from the camera that does not jeopardize

the stereopsis. For Oculus Rift a distance at which depth cues between the two eyes

are smaller than one pixel is 52 meters (SlowRiot, 2013). Such depth optimisation

is not viable for use in traditional rendering and is expected to decrease the overall

performance, but its benefits should scale up with the number of different views

rendered. Even at more than eight views it is possible to combine different views in

pairs and render depth only once for each pair. This is expected to provide a large

increase of performance and could work well in conjunction with other performance

optimisations discussed in this project. As this performance optimisation is limited

to multi-view rendering it is not widely researched or evaluated and this project will

feature one of the first implementations of such system. To the best of the author’s

knowledge no similar system has been implemented or evaluated in an academic or

commercial environment.

20

3. Artefact Design, Development and Testing

This chapter describes the use of the artefact as well as the development process.

3.1 Development and research methodology

The Scrum development methodology was used throughout the development of the

project. Each new feature was implemented in a different sprint. The length of each

sprint was between a few days and two weeks. Smaller features that are relevant to

each other were combined and implemented in one sprint. In some occasions such

as the dynamic resolution optimisation specifications changed after the original

sprint and a shorter sprint was needed to accommodate the changes.

Testing was done mostly at the end of the development cycle. Manual integration

testing was utilized to make sure that the components work and the user cannot

provide awry values and break them. Additional care was taken to make sure that

all of the custom cameras could work with a variety of field of view and culling

settings. The Unity profiler was used to confirm that there are no memory leaks and

unusual bottlenecks. After the testing period all the detected problems were fixed

and the final performance tests were executed.

Git was used for version control and the private repository hosting was provided by

Bitbucket. Microsoft Word was used for the writing of this thesis and Dropbox was

used for backup and synchronisation.

Quantitative research methodology was utilized in the performance evaluation as it

is more suitable for the purposes of this project than a qualitative approach.

Performance was measured and evaluated in the thesis and used to determine the

best use cases for each performance optimisation technique.

21

3.2 Use of the artefact

The artefact is a tool for evaluation of different rendering optimisations for

traditional, stereoscopic and multiscopic rendering. It also consists of the

implementation of all the optimisations and is set up to be as simple to implement

to existing Unity projects as possible. As the artefact is also a plug-in, in order to

reduce its size there will be no example scenes included. The user has to import the

plug-in to an existing Unity project in order to properly utilize and measure the

performance optimisations.

The artefact will be both shared as a Unity project repository on Github as well as

downloadable “.unitypackage” file that can be imported and used in an existing

project.

The rendering optimisations are split in three categories: traditional, stereoscopic

(interlaced) and multiscopic rendering.

For each category there are four prefabs:

- Default rendering

- Foveated Rendering

- Depth Optimisation

- Dynamic resolution

The prefabs act as cameras when added to the scene. The user can edit different

options for the rendering optimisations using the “inspector” tab in Unity.

The artefact also features a system that can track, measure and save the performance

information into a file that can be opened with Microsoft Excel. The evaluation

graphs in this thesis are generated using the information from those files.

22

3.3 Design and implementation of the performance

optimisations

This subsection provides additional information on the implementation and use of

the performance optimisation techniques.

3.3.1 Foveated rendering system

Each foveated rendering view requires at least two cameras. One of the camera is

readjusting based on the user gaze point and renders a small portion of the screen.

The other camera renders the whole screen, but with a reduced resolution.

To further increase performance it is possible to have two level of detail versions

of every model. The foveated camera should render the high-poly version of the

models while the camera that renders the whole screen should only use the

low-poly objects. The cameras render to “render textures” and the “render textures”

are then displayed to the screen with their proper location and order. This enables

us to change the rendering resolution at will. The user can provide the parameters

for the rendering resolutions for both of the cameras, as well as additional rendering

settings.

The parameters that can be adjusted include:

- Change resolution multiplier for each region. The resolution of the scene is

multiplied to the resolution multiplier. In order for a region to have a resolution of

half the normal resolution the multiplier should be set to 0.5. In order to use super

sampling

anti-aliasing the user can choose a resolution multiplier of 2 or more.

- Antialiasing level of the render texture. This value should be either 1, 2, 4 or 8.

It is available for every region.

- The location of the foveated rendering on screen. The foveated rendering can be

used with both gaze location, mouse location or it could be placed in the centre of

the screen. In order for gaze location to be used the user needs to implement an eye

tracking solution and provide the location to the foveated rendering.

23

- The user can apply image processing effects for each region. The foveated

rendering can work in conjunction with other full screen image processing effects.

- The user can change the drawing order of the render textures or even use the output

render textures for the needs of the application.

- The user can change the rendering layer of the camera. When each LOD level is

in a different layer the user can specify the LOD layer for each region.

- The resulting foveated region is a square.

The foveated rendering system is applied in a different way depending on whether

the rendering is in 2D, stereoscopic or multiscopic.

The traditional (2D) foveated rendering camera consists of a prefab game object

with three game objects as children (Figure 15).

FIGURE 15 2D RENDERING CAMERA PREFAB

The prefab is called “2D Foveated Rendering” and has only one component called

“RenderTexturesDrawingOrder” (Figure 16).

FIGURE 16 DRAWING ORDER OF THE RENDER TEXTURES

As the name implies the script is used to display the “render textures” of the

foveated regions as well as the whole screen before them. An array of

“CreateRenderTexture” objects is used to provide connection to the “render

textures” to be rendered. The order of the objects in the array is used to determine

the rendering order of the render textures. The current implementation of 2D

foveated rendering is the only implementation of foveated rendering in the artefact

that provides the possibility of having more than one foveated region.

The stereoscopic and multiscopic foveated renderings are implemented with only

24

one foveated region in mind due to limitations in the maximum amount of textures

in a shader.

The “RenderTexturesDrawingOrder.cs” script draws the render texture on the

screen based on the order of the “Rend Texture” and the “full screen” toggle for

each ‘CreateRenderTexture” object. The first texture to be displayed before the

foveated regions should always be a full screen “render texture”.

The foveated regions are never full screen textures. They are displayed at the

appropriate location on the screen using the focus point, which could be the

gaze-point, mouse position or other position supplied to the “UpdateViewport”

component.

Every game objects that is a child of the “2D Foveated Rendering” is a camera.

The user can manually add or remove cameras as each camera is another region of

the foveated rendering. The prefab is by default set to draw the “render textures” of

two cameras. There is only one foveated region and the other camera renders the

whole screen. Another camera is available, called “HD foveated Region Camera”,

but it is disabled by default. The purpose of this camera is to demonstrate that

additional cameras could be added and it was originally used to render a foveated

region with super-sampled resolution in a configuration of two foveated regions.

In order to activate this foveated region the user has to enable the “HD foveated

Region Camera” game object and place it as the last element of the “rendTextures”

array in the “RenderTexturesDrawingOrder” component.

Every camera has its own components that determine multiple rendering attributes.

25

“Whole Screen Camera” renders the whole screen before the foveated rendering is

applied on top.

FIGURE 17 WHOLE SCREEN CAMERA FOR FOVEATED RENDERING

The “Whole Screen Camera” game object has two components attached

(Figure 17). The first component is a standard Unity camera component. The culling

mask field is important as it provides additional performance increase. It is possible

to set the “Whole Screen Camera” to render the low resolution version LOD level

while the cameras that render the foveated regions could render the high resolution

LOD level.

The field of view value of the “Whole Screen Camera” is used as the basis for the

calculation of the field of view of the foveated regions. All of the performance

optimisations are designed and implemented in a way to accommodate the use of

any field of view and aspect ratio.

26

The “CreateRenderTexture” component has multiple fields. Each field does as

follows:

- “Rend Tex” is exposed in the inspector for debugging purposes. The render

texture is going to be created on start.

- “Resolution multiplier” is a float variable that is going to determine the

resolution of the render texture.

- Full screen toggle specifies whether the render texture is full screen or not.

- The “Current mode” field can be set to “Traditional”, “Stereoscopic” or

“Multiscopic”

- “Uviewport” is a field that should be given a reference to the

“Update Viewport” component only if the camera is used for a foveated

region. If the camera renders the whole screen this reference will not be used

and can be ignored.

- “Anti-Aliasing Power of Two” is used to specify the antialiasing value of

the render texture. It can hold a value of 1, 2, 4 or 8. This will be ignored if

there are image processing effects added to the camera or the camera has

enabled high dynamic range.

The current mode is used to determine the resolution of the created render texture.

If the mode is set to stereoscopic the width of the render texture will be half of the

width of the screen. Each mode requires render textures with different sizes.

Every camera used in a foveated region has “UpdateViewport” component attached

(Figure 18). The “UpdateViewport” component is used to update the viewport

according to the focus position value.

27

FIGURE 18 FOVEATED REGION

The exposed fields of the “UpdateViewport” are as follows:

- “Base Cam Ref” is a reference to the “base camera”, which is the camera

that renders the whole screen. In this example that camera is called

“Whole Screen Camera”. The field of view of this camera determines the

field of view of the foveated cameras.

- “Region Resolution Multiplier” determines the size on screen of the

foveated region. It is a float variable multiplied to the screen height

resolution to determine the size of the foveated region. A 0.25 “Region

Resolution Multiplier” would result in a foveated region that is 25% the

screen height.

- “Multiscopic” is a Boolean toggle and should be enabled if the camera is

used for multiscopic foveated rendering.

- The “Region Resolution Multiplier” should be changed according to the eye

tracking latency, the display latency and the screen size and distance from

28

the user. The longer the delay the bigger the “Region Resolution Multiplier”

should be. If the screen is large and is far from the observer the

“Region Resolution Multiplier” should be large. Head-mounted displays

can have a very small foveated region.

As the name implies the “UpdateViewport” changes the viewport of the cameras

every frame.

In order for foveated rendering to work at different field of views the field of view

of the foveated region camera needs to be calculated from the field of view of the

“whole screen” camera. A standard frustum size at distance formula

(Unity Technologies, 2015) is used to calculate the field of view of the foveated

region camera.

Other variables calculated are the “helperValX” and “helperValY”. They are used

for properly shifting the vanishing point of the cameras.

If the multiscopic toggle is enabled the code is almost the same with the only

difference that the camera aspect ratio is explicitly set to “1” and another variable

helper “multiscopicHelper” is calculated. The code is fully commented and

provides additional information regarding the implementation of each system.

The “SetFocusPoint” function is called every time the foveated region needs to

move. The “focusPoint” variable is used to determine the new position of the

foveated region. A new vanishing point (Unity Technologies, 2015) for the camera

is set using the new “focusPoint” and the helper variables. This only happens if the

“focusPoint” is somewhere in the application window.

The camera prefabs for Stereoscopic and Multiscopic foveated rendering work in a

different way from the traditional foveated rendering with one view. Instead of

displaying the render texture on the screen, shaders are needed to combine the views

appropriately.

The “Multiscopic Foveated Rendering” and the “Stereoscopy Interlaced Foveated

Rendering” prefabs consist of only one game object each. This is due to the fact

29

that they use additional helper prefabs for each view. The helper prefabs are

instantiated in the right locations and each one represents a different view.

The “Stereoscopy Interlaced Foveated Rendering” prefab consists of two

components. A standard camera and a custom “InterlacedFoveatedCameraSetup”

component (Figure 19).

FIGURE 19 STEREOSCOPY INTERLACED FOVEATED RENDERING

- “Interlaced One View Prefab” is a helper prefab with a camera set for

foveated rendering that will be used for each of the two views.

- “Cam Distance” determines the distance between the two cameras.

- “Focus Distance” - the cameras will point at a location that is at this distance

in front of this game object.

- “Foveated Interlaced Mat” is the material with the shader set for foveated

interlaced rendering.

The “Interlaced Foveated One Camera” helper prefab consists of only one camera

and is a copy of the “2D Foveated Rendering” prefab with small changes.

The “RenderTexturesDrawingOrder” component is disabled and a new component

called “Ref Helper” is attached to it. This component provides references to the two

render textures.

30

The “InterlacedFoveatedCameraSetup” component is used to set up the

stereoscopic foveated rendering cameras. In the “Start” function two camera

systems for stereoscopy are instantiated and set up accordingly. In the

“SetMatProperties” the material that will interlace the textures is provided.

Each of its properties will be set-up in order for the shader to interlace all of the

render textures into stereoscopic foveated rendering. The final function of the

“InterlacedFoveatedCameraSetup” component displays the shader pass on the

screen.

As previously mentioned the “Foveated Interlaced Mat” is a reference to the

material with a shader that can combine the two foveated views into one. The shader

is called “FoveatedInterlaced” and requires four render textures. Each foveated

view has two textures and there are two views for stereoscopy. As shaders do not

work with pixels the screen and resolution also need to be provided to the shader.

The fragment segment of the shader determines the pixel location of the current

texel and returns the appropriate texture.

In order to support other types of stereoscopic rendering such as “side by side” the

shader needs to be edited accordingly. For the artefact of this project the only

targeted stereoscopic implementation is horizontally interlaced with each pixel row

being either perceived by the left eye or the right. Later a more powerful system

could be implemented that enables the user to edit the interlaced type between

horizontal and vertical as well as side by side stereoscopy.

The “Multiscopic Foveated Rendering” prefab (Figure 20) works in a very similar

manner.

A helper prefab is used for each view of the multiscopic foveated rendering.

The helper prefab is very similar to the helper prefab for foveated stereoscopic

rendering but all of the modes in its “CreateRenderTexture” component are set to

multiscopic.

31

FIGURE 20 MULTISCOPIC FOVEATED RENDERING

The shader used to combine the views is called “FoveatedMultiscopy” and requires

sixteen textures, two for each of the eight views. It first determines the pixel and

then the views of every subpixel. It also determines if the pixel is part of the

foveated region or not and returns a texel accordingly. Since the Unity texture limit

per shader is sixteen the implementation of foveated rendering with more than one

region is not possible with the current implementation. Other implementations with

multiple shaders may enable the use of many foveated regions.

3.3.2 Dynamic resolution system

Dynamic resolution is rarely used in video games as it generally decreases the

overall experience quality of the user. It is questionable whether dynamic resolution

is very beneficial for the performance and the first part of this subsection will try to

answer this question by evaluating data gathered from conducting an experiment.

One of the test scenes called “Viking Village” was used to conduct the experiment

and it consists of running the same walk-through scene at different resolutions.

The expected result is a sufficient increase of performance with resolution reduction

to justify implementation of the system. Another expected result is scalability with

32

very predictable increase factor when the resolution is reduced. The experiment was

conducted for both traditional rendering as well as multiscopic rendering and the

resolutions evaluated were four of the most used resolutions.

Performance test – Viking Village – traditional

Resolution: Average fps

1280x720 267.22

1366x768 259.19

1600x900 241.16

1920x1080 218.02

Performance test – Viking Village – Multiscipic

Resolution: Average fps

1280x720 48.45

1366x768 48.17

1600x900 44.79

1920x1080 41.91

0

100

200

300

400

500

600

700

Traditional rendering test - frames per seconds

267.22 259.19 241.16
218.02

0

100

200

300

1280x720 1366x768 1600x900 1920x1080

0

20

40

60

80

100

120

140

160

Multiscopy - frames per second

48.45 48.17

44.79

41.91

35

40

45

50

1280x720 1366x768 1600x900 1920x1080

w

w

w

w

w

w

w

w

33

As seen in the comparison chart rendering at reduced resolution increases

performance and the performance increase is very predictable. A reduction of the

resolution from 1080p to 720p results in an increased performance by 20.27% for

traditional rendering and 14.47% for multiscopic rendering. It is therefore a viable

performance optimisation technique and it is going to be evaluated in this project.

The dynamic resolution (Figure 21) system does not track performance but it needs

the performance information to properly function. The “PerformanceManager”

component attached to prefab with the same name measures the performance.

It has some additional functionality and can display the performance information

on either the left or the right corner of the screen. The “PerformanceManager.cs”

script is also a singleton and only one instance should be enabled in the scene at any

given moment.

FIGURE 21 PERFORMANCE MANAGER

The overall performance of the scene is tracked by tracking two variables.

The “Fps” is the frames per second of the application. Bigger “Fps” numbers mean

smoother gameplay experience. The “Ms” is the milliseconds each frame takes to

render. One of the variables can easily be calculated from the other, but both of

them are displayed in the Unity inspector for the convenience of the user.

The Performance Manager was compared to other performance tracking solutions

such as “Fraps” and “GeForce Experience” and proved to be a robust performance

tracking solution with fast response.

As with the other performance optimisations, adding any of the dynamic resolution

camera prefabs would result in a proper implementation of the camera in the scene,

but all of them still need an instance of the “PerformanceManager” prefab to

function properly. If there is no instance of the “PerformanceManager” in the scene

it will be instantiated when needed.

34

The dynamic resolution prefab for traditional rendering is called “2D Dynamic

Resolution” and it has two components attached. One of the components is a

standard camera and the other component is the “DynamicResolutionManager”

script.

FIGURE 22 DYNAMIC RESOLUTION MANAGER

The user has a large variety of options to edit:

- “Resolution Multiplier Width” and “Resolution Multiplier Height” are the

starting resolution multipliers for the width and height.

- If “Only Set at Start” toggle is enabled the initial resolution multipliers will

be used at the start to set the resolution and the resolution will not be

changed based of performance.

- “Resolution Width Multiplier Min Max” and “Resolution Height Multiplier

Min Max” are used to specify the minimum and maximum values of the

resolution multiplier.

- “Target FPS” is the currently targeted frames per second the dynamic

resolution system will try to achieve.

- “Dynamic Resolution Mode” selects the dynamic resolution mode.

There are two different versions of dynamic resolution implemented and

this field changes between them.

- “Rate of Change” specifies the “wait time” of the coroutine that calls the

functions that changes the resolution dynamically.

- When “Gui Info Display” toggle is enabled a gui text appears at the top right

corner of the screen. The text shows some information regarding the

dynamic resolution system.

35

With dynamic resolution the user specifies a target frame rate and the application

changes resolution at run time in order to meet the frame rate target. The difference

between current frame rate and targeted frame rate is evaluated once in a while and

the resolution multiplier variable is changed based on that. The resolution multiplier

variable is multiplied by the screen resolution and the resulting value is the new

resolution. When performance is needed the resolution could be very low and when

the frame rate exceeds targeted frame rate the resolution multiplier variable is

increased and an anti-aliasing super sampling is achieved. Sometimes in video

games there are scenes in which a major event happens with a lot of geometry and

effects displayed on the screen at the same time. This leads to reduced performance

and lagging.

With a dynamic resolution system such event would reduce the rendering resolution

in order to keep the application playable and the user experience smooth. In order

to only benefit from super-sampling the dynamic resolution could be set up to only

increase the resolution and never decrease it beneath the monitor screen resolution.

Instead of trading quality for performance this is a trade of frames per seconds for

super sampled resolution. At rare performance intensive scenery the super sampling

effect would be disabled in order to increase performance as needed.

As the change of the resolution multipliers leads to generating new render texture

it is performance intensive in itself and should not happen every frame. A coroutine

called “AdaptResolution” is utilized. Its rate of change value could be set from the

“Rate of Change” field. Different applications may require different coroutine

execution times and therefore experimentation is advisable.

The dynamic resolution system has two different modes implemented. The first

mode, called “Custom”, is designed to reduce the amount of times the resolution

changes.

The user experience deteriorates when the resolution changes frequently and if this

happens only when needed it could be very beneficial for the overall immersion.

The “Custom” mode only adapts the resolution when the current frame rate and the

target frame rate have a difference greater than two frames. The “Custom” mode

36

features a novel implementation that was designed and created for this project and

its purpose is to provide an alternative to the widely adapted “Intel” method (Intel,

2011). The “Intel” mode features a standard implementation of dynamic resolution

first proposed by Intel.

The dynamic resolution for stereoscopic and multiscopic rendering have very

similar implementations but they also have additional fields exposed in the Unity

“inspector”. These fields are intended for setting up the stereoscopic and

multiscopic rendering. The fields of the components that control the dynamic

resolution system are the same for traditional, stereoscopic and multiscopic

rendering.

3.3.3 Depth reuse system

The camera frustum of the depth reuse system is made out of two different frustums

from two cameras. One of the cameras renders the closer part of the frustum and

the other one renders the further part. The camera that renders the closer frustum

has its “Clear flags” set to “Solid Colour” and the background colour alpha channel

set to 0. The alpha channel is used in the shader to stitch the two textures together.

The goal of the depth reuse system is to render the distant objects of the scene only

once and reuse them in all of the views for stereoscopy and multiscopy.

The resolution of the depth texture can be changed to further increase performance.

This performance optimisation is not expected to increase the performance of

traditional rendering of one view unless the render texture resolution multipleir of

the far camera is set to a low value.

Having two frustums for close and far objects also gives us the possibility to change

their rendering rate. Even though this is not implemented in the artefact it is possible

to set the far camera to render at thirty or fifteen frames per second and the closer

camera to render at sixty. Just like in real world the further an object is from the

camera the slower its movement is perceived. In some cases high frame rates for

distant objects is not needed.

37

The implementation of depth optimisation in the artefact can render two LOD levels

with the two cameras to further increase performance.

The frustum culling for the two cameras is set to 0.1 to 30 for the camera that

renders near objects and 27 to 1000 for the camera that renders far objects.

The two frustums should overlap, otherwise artefacts appear. Occlusion culling

should also be disabled for the camera that renders far objects for the proper

functioning of the system.

In order to add a depth optimised camera to an existing screen the user has to add

the appropriate prefab to the scene. Depth optimisation camera prefabs exist for

traditional, stereoscopic and multiscopic rendering.

The “2D Depth Optimisation” prefab provides depth optimised camera for

traditional rendering of one view. The game object has three child objects.

- “Near” is the camera that renders game geometry that is close to the camera.

- “Far” is the camera that renders far objects.

- “ScriptHolderCam” is another camera that does not render anything, but is

required for the combination process.

The “ScriptHolderCam” has a component called “Combine Depth” (Figure 23).

FIGURE 23 SCRIPT HOLDER CAM GAME OBJECT

The fields exposed to the user are as follows:

- “Shader” is a reference to the shader used for combining the render textures.

- “Far Cam” is a reference to the camera that renders far geometry

- “Near Cam” is a reference to the camera that renders near geometry

- “Far Render Texture resolution” is float value multiplier used to determine

the resolution of the output render texture of the far camera.

38

The “CombineDepth.cs” derives from “ImageEffectBaseCustom.cs” which is a

modification of the “ImageEffectBase.cs” script from Unity.

 The shader that combines the two render textures tests if the alpha colour value of

each texel is smaller than “1”. If the value is smaller the output is set to the far

texture and if the value is “1” the output is set to the near texture.

The stereoscopic and multiscopic implementations are similar to the traditional

implementation, but instead of having two cameras for one viewport there are two

cameras for each.

FIGURE 24 STEREOSCOPIC AND MULTISCOPIC IMPLEMENTATIONS DEPTH OPTIMISATION

The scripts from stereoscopic and multiscopic depth optimisation both derive from

their appropriate base scripts and therefore reuse the code. The difference from the

traditional depth optimisation implementation is that instead of a shader a material

reference is required. The shaders are attached to the materials and have very similar

implementation to the “CombineDepth” shader, but for multiple views. In order to

provide more realistic results the depth render texture is shifted horizontally for

each view. Different scenarios require different shifting value and therefore an

experimentation is required until a good result is reached.

39

3.4 Design and implementation of additional systems

This section examines the other systems and techniques utilized in the artefact.

3.4.1 Automultiscopic rendering

Multiscopic rendering plug-in for Unity is not available and the creation of a custom

solution for the purposes of this project was required.

After extensive research in multiscopic rendering, shaders and the workings of the

Alioscopy monitor that was available the end product was a small and robust

plug-in that lets the user combine multiple views into an output texture suitable for

lenticular automultiscipic screens.

The Alioscopy monitor works by combining subpixels of different views. Each new

pixel is a combination of three subpixels from three different views. This is a

trade-off between width and height resolution.

Subpixel rendering is not a new concept and has been used as an anti-aliasing effect

for text when rendered on screens that have separated red, green and blue subpixels.

When using subpixel rendering it increases the width resolution by three times and

decreases the height resolution by three times.

The lenticular sheet of the automultiscopic Alioscopy monitor is placed at an angle

in which every subpixel in a row of pixels is a part of a different view. Each pixel

consists of three different views. Each subpixel of the original pixel becomes a part

of another pixel. Different subpixel configurations, varying lenticules per inch and

different rotations of the lenticular sheet can lead to different amounts of views

displayed on the screen. The Alioscopy monitor that was used for testing consists

of eight different views and a resolution of 1920 by 1080 pixels. After the subpixels

are combined the new resolution becomes 5760 by 360. Since there are 8 views the

resolution for each view is 720 by 360.

This is a resolution that is not viable for commercial or home use, but with the

creation of displays with higher resolution this technology will become more viable.

40

As of 2015 4K “Ultra High Definition” screens are widely available with a standard

resolution of 3840 by 2160. If such screen is used for eight view automultiscopic

monitor the resolution of each view would be 1440 by 720 pixels.

Future technologies such as the 11K Samsung display announced to be released in

2018 (Hardawar, 2015) would have a resolution of 11264 by 6336 pixels and if

used for eight view multiscopic rendering each view would be with a resolution of

4224 by 2112 pixels.

Traditional

Resolution:

Subpixel rendering

resolution:

Resolution per

view (8 views)

Total amount of

pixels:

1280x720 3840x240 480x240 921600

1920x1080 5760x360 720x360 2073600

3840x2160 11520x720 1440x720 8847360

11264x6336 33792x2112 4224x2112 71368704

When a rendering output for multiscopic screen is viewed on a traditional screen

the image appears blurred. Only after the image is displayed on the specialised

monitor with the appropriate pixel distribution, lenticules per inch and angle of

lenticular lens the automultiscopy is perceived. Figure 25 demonstrates the

difference between rendering for a traditional screen and the output of combining

eight views for automultiscopic screen.

FIGURE 25 TRADITIONAL AND MULTISCOPIC RENDERING

Currently available multiscopic displays have a small amount of views and even

though they provide more freedom of movement then autostereoscopic screens, the

user cannot move more than a few centimetres horizontally. One solution for this

problem is the use of head tracking to move the virtual cameras based of the user

head position, but it would also require a more active parallax barrier.

41

3.4.2 Performance measuring system

When performance was measured the frames per second and the milliseconds per

frame values were saved into an excel file. The values were used for the creation of

numerous graphs that can be seen in the “Evaluation” section of this thesis.

 The “PerformanceManager” can only track performance but does not save it to a

file. In order for the system to save the performance information into a file a

“SavePerfDataToFile” component needs to be added to the scene. There are two

types of “SavePerfDataToFile” components. The base version is the one that saves

the frames per second and the milliseconds per frame to file (Figure 26). The second

component that also inherits all the features of the “SavePerfDataToFile_Base” is

called “SavePerfDataToFile_DynamicResolution” and can save additional

information for the dynamic resolution current values to the file.

FIGURE 26 PERFORMANCE MANAGER SET TO SAVE DATA TO FILE

The “SavePerfDataToFile_Base”component has multiple fields:

- “Record Interval” is the interval at which performance information will be

recorded.

- “Record for Seconds” is the length of the recording. The information is

recorded for this amount of time and at the end of the recording the

performance information file is generated.

- “File name” is a string of letters that are used as the beginning of the

recording file name.

42

- “Perf Manager” is a reference to the performance manager. As multiple

“SavePerfDataToFile” instances can possibly be added to the same scene

they could be attached to game objects different to the “Performance

manager” game object, but they all need a reference to the “Performance

manager” game object to record performance.

In order to properly evaluate different optimisation techniques all of the cameras

have to follow the same movement path. A spline editor (Schoen, 2013) was used

for each performance experiment. The spline system is not a part of the artefact and

is not available in the plug-in.

3.5 Problems encountered

The first performance optimisation implemented was foveated rendering.

Dynamic resolution and depth optimisation followed afterwards. Through the

development process there were multiple problems encountered. Some of the most

persistent ones are as follows:

- The first problem was the proper implementation of subpixel rendering.

This proved to be a hard task and required custom shader that combines

eight views into one. Each view is rendered at its proper resolution and

therefore no pixels are lost in the conversion. This complicates the task even

furthered and therefore the first version implemented rendered each view at

the resolution of the screen. Since no open source solution for multiscopic

rendering was available there was no starting point and extensive research

in stereoscopy, multiscopy and shaders was required.

- Properly shifting the foveated rendering camera matrix was an issue. In the

original implementation the foveated region was rendered with the

resolution of the screen due to shifting of the camera viewport in Unity.

With the new implementation that relies on render textures such shifting is

not needed and the render textures could be at the exact size required, which

increases performance.

43

- Since the size of the available alioscopy screen exceeds the maximum

monitor size for the eye tracking hardware the only way to test foveated

rendering on the multiscopic screen is to use mouse location instead of the

user gaze. Even though foveated rendering is currently not applicable for

large multiscopic screens future high resolution displays for smart phones

could be used with eye tracking for foveated rendering in head-mounted

displays. The artefact is intended to be a starting point for future

developments of foveated rendering for such head-mounted displays.

- The multiscopic foveated rendering could now work well with aspect ratios

other than 16 by 9 and field of view other than 70. This issue was later

solved by incorporating the field of view and aspect ratio values to the

calculation of the vanishing point shift.

- It was not possible to fully test the capabilities of foveated rendering.

In order to have a system with unperceivable latency a screen with refresh

rate of 120Hz is required and such screen was not available for the

development of the artefact. The eye tracker also needs to be with a very

low latency and such eye trackers are very expensive and not commercially

available.

A custom build of the eye tracking engine was provided by Tobii.

It increased the frequency of the eye tracker to 90Hz which makes it

applicable for commercial foveated rendring use, but this mode is still being

testing and may never be released for the consumers as it reduces the

tracking quality.

- The dynamic resolution performance optimisation had a very persistent bug

that disabled the shadows of the scenes after a while. It also restarted the

computer after prolonged use. The bug was a memory leak due to the

generation of the new render texture without destroying the old one.

- The current method of combining views in the depth optimisation does not

work well with scenes that have transparent objects. White or pink lines

could appear on transparent objects or water. This bug is the result of the

current implementation of the depth reuse shader.

44

3.6 Testing

Testing was conducted shortly after the development of the artefact. Each of the

components is thoroughly tested with different settings to make sure that the user

cannot break any of the performance optimisation cameras. Multiple bugs were

detected and fixed and the overall stability of the system increased.

The Unity profiler was used to check for unexpected bottlenecks and the windows

task manager was used to test for memory leaks.

After the testing period the detected problems were fixed. It was important to fix

the issues and polish the code before the evaluation of each performance

optimisation was conducted as the data gathering process takes a lot of time and

small changes in the code would require to repeat the process additional times.

45

4. Evaluation

In order to evaluate the performance optimisation techniques appropriately multiple

experiments were conducted. A custom performance tracking script

“SavePerfDataToFile.cs” was implemented. The script has access to the

“PerformanceManager.cs” script and logs the current frame rate as well as the

milliseconds per frame value. At the end of the performance tracking period the

logs are combined into an .xml file that is compatible with Microsoft Excel.

The experiments are conducted for the performance optimisations as well as the

“Default Rendering” for comparison.

The main goal of the experiments is to illustrate when each performance

optimisation increases performance enough to be a viable solution.

The experiments were executed on the same machine and the Unity scenes had the

same settings applied in order to minimize the differences between them.

The only difference was the scene geometry and the amount of time it took to

execute the test. In order to further minimise any differences a waypoint system

was used to create a path for the camera. For the foveated rendering performance

optimisation the foveated region was locked at the centre of the screen and no eye

tracking was used.

The settings used in Unity for the experiments are as follows:

- All cameras have a field of view set to 70.

- The clipping planes of the cameras are set to: 0.1-1000.

- The cameras are set to render the appropriate LOD layers.

- Forward rendering was used.

- No anti-aliasing. Texture quality set to “Full Resolution”.

- The performance was logged once every 0.1 seconds. “The Viking Village”

scene walk-through takes 101 seconds. The Museum scene walk-through

takes 22 seconds. The Blacksmith scene walk-through takes 65 seconds.

- Due to Unity bug another “dummy” camera was placed. That camera does

not render any layer and is solely used to fix a Unity bug. Without this fix

46

the custom cameras fail to start rendering when the executable is built and

played.

Performance optimisation specific settings for the Foveated rendering experiments:

- Low Definition camera set to 0.3 (0.3 of the resolution).

- Foveated region was set to 0.3 (0.3 of the height of the screen).

Performance optimisation specific settings for the Depth rendering experiments:

- Near camera clipping set to: 0.1-30

- 2D Far camera clipping set to: 29-1000

- 3D Far camera clipping set to: 27-1000

For the multiscopic experiments:

- Distance between the cameras: 0.04

- Focus distance: 10

The machine used for the experiments:

GPU GeForce GTX 750 Ti
CPU Intel i7 – 3770 3.40GHz

Hard drive: ATA Crucial CT240M50 SCSI

RAM 8.00GB

OS Windows 7 Home Premium SP1 64-bit

Resolution 1920x1080

GPU Drivers 355.60 (Release date 13.08.2015)

The three scenes used for the evaluation experiments are chosen for their varying

degree of complexity. The “Museum” scene is a closed environment while the

“Viking Village” and the “Blacksmith” scenes are large vast areas.

47

4.1 Traditional rendering

Viking Village scene:

Average Values:
 Default 222.5fps 5.59ms
 Foveated 315.4fps 3.99ms 41.75%

 Depth 234.8fps 5.34ms 5.53%

Museum scene:

Average Values:
 Default 265.8fps 3.80ms
 Foveated 772.2fps 1.32ms 190.6%

 Depth 208.8fps 4.82ms 21.44%

0

100

200

300

400

500

600

700

0

0.5

0

200

400

600

800

1000

1200

w
w
w

w
w
w

48

Blacksmith scene:

Average Values:
 Default 85.68fps 11.91ms
 Foveated 114.9fps 9.08ms 34.1%

 Depth 70.08fps 14.51ms 18.21%

The foveated rendering optimisation proves to be very beneficial for traditional 2D

rendering. It increases the average frame rate of the “Museum” scene by 190.6%

and also provides a substantial boost in performance for both the “Blacksmith” and

the “Viking Village” scenes. Both the “Viking Village” and the “Museum” scenes

feature foveated rendering with different level of detail levels which greatly

increases the overall performance. The “Blacksmith” scene does not have different

level of detail levels implemented and therefore does not benefit from additional

performance increase.

The depth optimisation is only beneficial for the “Viking Village” scene and it

reduces the performance in the two other scenes. The main goal of the depth

performance optimisation is to reuse the same render texture for multiple views and

as the traditional rendering only requires one view no reuse is utilized.

0

2

0

50

100

150

200

w
w
w

49

4.2 Stereoscopic rendering

Viking Village scene:

Average Values:
 Default 139.37fps 9.44ms
 Foveated 167.2fps 7.54ms 19.97%

 Depth 181.2fps 7.07ms 30.01%

Museum scene:

Average Values:
 Default 183.5fps 5.533ms
 Foveated 547.4fps 1.874ms 198.3%

 Depth 142.4fps 7.087ms 22.4%

0

100

200

300

400

500

600

0

0.5

0

200

400

600

800

1000

0

.

3

c

m

w
w
w

w
w
w

50

Blacksmith scene:

Average Values:
 Default 50.09fps 20.14ms
 Foveated 64.1fps 16.13ms 27.97%

 Depth 46.62fps 21.45ms 6.93%

Foveated rendering proves to be a very beneficial performance optimisation for

stereoscopy by increasing the overall performance of the “Museum” scene by

198%. The depth optimisation results are similar to the traditional rendering

experiment. Depth optimisation should only be considered for stereoscopic

rendering after careful consideration of the scene. Scenes with vast open areas could

benefit from depth reuse, but only when the camera is rotated towards distant areas.

Foveated rendering could be very useful for head-mounted displays and provide a

large increase of performance. This experiment was conducted with relatively large

foveated region and if such system is implemented for virtual reality the required

region will be considerably smaller and the performance benefit will be greater.

0

2

0

20

40

60

80

100

120

w
w
w

51

4.3 Multiscopic rendering

Viking Village scene:

Average Values:
 Default 42.17fps 32.77ms
 Foveated 44.81fps 29.36ms 6.26%

 Depth 66.14fps 18.66ms 56.84%

Museum scene:

Average Values:
 Default 61.42fps 16.61ms
 Foveated 121.6fps 8.50ms 97.98%

 Depth 40.58fps 24.62ms 33.93%

0

50

100

150

200

0

0.5

0

50

100

150

200

w
w
w

w
w
w

52

Blacksmith scene:

Average Values:
 Default 17.44fps 57.09ms
 Foveated 18.59fps 54.62ms 6.59%

 Depth 20.11fps 49ms 15.31%

With the increase of the amount of views the depth reuse technique proves to be a

viable solution for performance increase. The “Museum” scene does not benefit

from depth reuse because the scene features a small room and there are no objects

far into the distance. If depth optimisation is used for commercial project it should

only be enabled when there are objects far into the distance and it is beneficial for

the performance. The foveated rendering does not provide large performance

benefit for the “Blacksmith” and the “Viking Village” scenes with multiscopic

rendering.

As gaze tracking in itself is very performance intensive it could reduce the overall

performance for multiscopic rendering, especially if it’s not used in conjunction

with different level of detail levels.

0

2

0

5

10

15

20

25

30

35

w
w

w

53

4.4 Dynamic resolution

The “Blacksmith” scene was used for the dynamic resolution experiments because

it closely resembles an actual scene that could be found in a modern video game.

The goal is to evaluate the default rendering against the two dynamic resolution

modes implemented: Custom and Intel. The most important outcome of these

experiments is the frames per second variable. The goal of the dynamic resolution

is to keep the frames per second as close to the target frame rate and therefore the

two implemented methods will be evaluated on their ability to keep the frame rate

close to the set target.

The dynamic resolution settings are as follows:

- Minimum/Maximum multiplier values: 0.6 – 2

- Rate of change: 0.1

- Info GUI is disabled

The frames per second targets are set to be slightly larger numbers than the

averages:

- 2D rendering targets 90 frames per second

- Stereoscopic rendering targets 60 frames per second

- Multiscopic rendering targets 20 frames per second

54

FIGURE 27 2D DYNAMIC RESOLUTION RENDERING

 Default Custom Intel

Average fps 85.68 89.65 89.61

Average width 1920 1751.233 1720.41

Average height 1080 985.06 967.73

Average multiplier 1 0.9120 0.8960

For traditional rendering the custom implementation is slightly better than the Intel

implementation, but the improvement is negligible. Both custom and Intel

implementations provide a stable adaptation to the targeted frame rate. As it can be

seen in Figure 27 the Intel implementation has a few spikes while the Custom

implementation is very stable and is therefore a better alternative for this particular

scene.

0

20

40

60

80

100

120

140

2D - Dynamic resolution. Target fps: 90

w w w

55

FIGURE 28 STEREOSCOPY - DYNAMIC RESOLUTION

 Default Custom Intel

Average fps 50.08 59.30 59.49

Average width 1920 1817.84 1766.88

Average height 1080 1022.53 999.49

Average multiplier 1 0.9467 0.9202

For stereoscopic rendering with dynamic resolution the Intel implementation

provides average frame rate that is closer to the targeted frame rate than the custom

implementation. Even though the Intel implementation has better average values

the custom implementation does not have as many spikes (Figure 28) and it

therefore would provide a smoother overall experience. Dynamic resolution should

be considered for use in stereoscopic application when the desired frame rate cannot

be reached or when there are spikes of geometric quantity as it will make sure that

the application runs smooth. Head-mounted displays would greatly benefit from

dynamic resolution as even small decrease of frame rate leads to very bad

experiences in virtual reality and breaks the user immersion.

0

20

40

60

80

Stereoscopy - Dynamic resolution. Target fps: 60

w w w

56

FIGURE 29 MULTISCOPIC- DYNAMIC RESOLUTION

 Default Custom Intel

Average fps 17.43 19.03 19.28

Average width 1920 1505.15 1464.76

Average height 1080 846.64 835.17

Average multiplier 1 0.7839 0.7628

For multiscopic rendering the average value of Intel dynamic resolution

implementation is closer to the targeted frame rate. As seen in (Figure 29) both of

the implementations produce a lot of spikes, but as the Intel implementation

provides closer frame rate to the target it is a better solution for multiscopic

rendering.

Dynamic resolution is very easy and cheap to implement for multiscopic rendering.

It does not provide a lot of performance increase but the super sampling

anti-aliasing that could be achieved with it really helps the visual fidelity of the

virtual world when viewed on an automultiscopic screen. It should be considered

for situations where the current frame rate exceeds the targeted frame rate as the

perceived quality would greatly benefit from super sampling.

0

5

10

15

20

25

30

Multiscopic- Dynamic resolution. Target fps: 20

w w w

57

5. Conclusion and future work

This section outlines the findings of this thesis and provides suggestions for future

work.

5.1 Conclusion

Both foveated rendering and dynamic resolution performance optimisations proved

to be viable solutions for traditional, stereoscopic and multiscopic rendering.

The dynamic resolution method proposed in this project works just as well as other

implementations and can even provide a smoother experience in some occasions.

The depth reuse optimisation technique could potentially be used to increase the

performance of stereoscopic and multiscopic rendering but only with special care

to enable it when needed. Foveated rendering provides great performance increase

and should be utilized for future head-mounted displays. It could be used to

substantially increase the visual fidelity of future mobile virtual reality headsets and

is important for real-time multiscopic rendering.

All of the performance optimisations discussed in this project can be implemented

together and provide great performance benefits for multiscopic and stereoscopic

rendering. They could also enable the future use of mobile virtual reality devices

for performance intensive tasks.

This project fulfils its aim and objectives and provides additional functionality.

It is a good starting point for future developments of the performance optimisation

techniques and will be useful for both commercial and academic purposes.

58

5.2 Future work

Future implementations of foveated rendering could use multiple shaders to

combine the render textures. This will enable the use of more than one foveated

region for multiscopic rendering as well as proper masking of the region. A circular

mask could be specified with additional texture which would make the foveated

region harder to locate and differentiate and provide better immersion.

A custom blurring solution could be implemented for the low resolution region that

falls outside of the foveated regions. This could help with the blending between the

regions.

Depth reuse should only be enabled when it could be beneficial for the performance

and therefore a custom system that tracks the visible geometry amount can be

implemented. Only when the geometry in the distance exceeds a predetermined

amount would the depth optimisation system be enabled.

Different rendering rates could be implemented for the different parts of the depth

reuse system. The near render texture could have a refresh rate of 60 frames per

second while the far render texture has a refresh rate of 30 frames per second.

This would greatly increase the performance by reducing the amount of geometry

rendered every frame.

A combination of multiple performance optimisations discussed in this project

could be implemented in conjunction to greatly increase frame rate. The dynamic

resolution could be used for the far render texture of the depth reuse system.

Foveated rendering could be implemented with numerous foveated regions, each

one with dynamic resolution and a different target frame rate.

59

References

Adobe, 2015. Previewing/Fast Previews. [Online]

Available at: https://helpx.adobe.com/after-effects/using/previewing.html#id_66718

[Accessed 02 05 2015].

Anstis, S. M., 1974. A chart demonstrating variations in acuity with retinal position.

Vision Research, Issue 14, pp. 589-592.

Archos VR, 2015. Archos VR headset makes any phone virtual reality before your very

eyes. [Online]

Available at: http://www.cnet.com/uk/news/archos-vr-headset-turns-any-phone-

virtual-reality-before-your-very-eyes/

[Accessed 2015].

Baudisch, P., DeCarlo, D., Duchowski, A. . T. & Geisler, W. S., 2003. Focusing on the

essential: considering attention in display design. Communications of the ACM, March,

46(3), pp. 60-66 .

brainhq, n.d. How Vision Works. [Online]

Available at: http://www.brainhq.com/brain-resources/brain-facts-myths/how-vision-

works

[Accessed 07 09 2015].

Burr, D. C., Morrone, M. C. & Ross, J., 1994. Selective suppression of the magnocellular

visual pathway during saccadic eye movements. Nature, Volume 371(6497), pp. 511-51.

Cardboard, 2015. Android VR und Cardboard: Mehr soll es zur Google I/O geben. [Online]

Available at: http://www.smartdroid.de/android-vr-und-cardboard-mehr-soll-es-zur-

google-io-geben/

[Accessed 2015].

Chen, R. & Kalinli, O., 2011. Interface using eye tracking contact lenses. United States,

Patent No. US20120281181 A1.

Clark, J. H., 1976. Hierarchical geometric models for visible surface algorithms.

Association for Computing Machinery, Volume 19, pp. 547 - 554.

crsltd, 2015. BlueGain EOG Biosignal Amplifier. [Online]

Available at: http://www.crsltd.com/tools-for-vision-science/eye-tracking/bluegain-eog-

biosignal-amplifier/

[Accessed 07 08 2015].

Curico, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E., 1990. Human Photoreceptor

Topography. THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 292, pp. 497-523.

dualshockers.com, 2013. www.dualshockers.com. [Online]

Available at: http://www.dualshockers.com/2013/10/03/battlefield-4-is-the-game-with-

60

the-most-scalable-graphics-in-history/

[Accessed 06 09 2015].

Dubuc, B., 2002. THE RETINA. [Online]

Available at: http://thebrain.mcgill.ca/flash/i/i_02/i_02_cl/i_02_cl_vis/i_02_cl_vis.html

[Accessed 2015].

Durgin, F. H., Tripathy, S. P. & Levi, D. M., 1995. On the Filling in of the Visual Blind Spot:

Some Rules of Thumb. Perception , Volume 24, pp. 827-840.

Ebisawa, Y. & Suzu, K., 1994. Dynamics of saccades occuring during smooth pursuit eye

movement. Baltimore, Maryland, Institute of Electrical and Electronics Engineers, pp.

420 - 421.

engadget.com, M. S. -., 2014. Call of Duty: Advanced Warfare scales up to 1080p on Xbox

One. [Online]

Available at: http://www.engadget.com/2014/11/03/call-of-duty-advanced-warfare-

scales-up-to-1080p-on-xbox-one/

[Accessed 02 09 2015].

extremetech.com, G. B. -., 2015. Witcher 3 uses dynamic resolution scaling on Xbox One

to hit 1080p. [Online]

Available at: http://www.extremetech.com/gaming/205487-witcher-3-uses-dynamic-

resolution-scaling-on-xbox-one-to-hit-1080p

[Accessed 01 09 2015].

FOVE Inc, 2015. The World's First Eye Tracking Virtual Reality Headset. [Online]

Available at: http://www.getfove.com/

[Accessed 10 08 2015].

Gear VR, 2015. Gear VR. [Online]

Available at: http://www.lakento.com/products/es/gafas-de-realidad-virtual-samsung-

gear-vr-oculus.html

[Accessed 2015].

Google ATAP, 2015. A mobile device that can see how we see. [Online]

Available at: https://www.google.com/atap/project-tango/

[Accessed 07 07 2015].

Guenter, B. et al., 2012. Foveated 3D Graphics. s.l., ACM SIGGRAPH Asia.

Hardawar, D., 2015. Samsung is building an 11K mobile display that can mimic 3D.

[Online]

Available at: http://www.engadget.com/2015/07/10/samsung-11k-display/

[Accessed 13 09 2015].

Intel, D. B., 2011. Dynamic Resolution Rendering Article. [Online]

Available at: https://software.intel.com/en-us/articles/dynamic-resolution-rendering-

article

[Accessed 17 07 2015].

61

Microsoft Developer Network, 2013. Tessellation Overview. [Online]

Available at: https://msdn.microsoft.com/en-us/library/ff476340

[Accessed 12 08 2015].

Microsoft HoloLens, 2015. Holographic computing is here.. [Online]

Available at: www.microsoft.com/microsoft-hololens

[Accessed 18 08 2015].

NASA , 1964. SP-3006 Bioastronautics Data Book, Washington D. C.: s.n.

Oded Sudarsky, C. G., 1999. Dynamic Scene Occlusion Culling. IEEE Transactions on

Visualization and Computer Graphics, 5(1), pp. 13-29.

Palczewska, G. et al., 2014. Human infrared vision is triggered by two-photon

chromophore isomerization. Berkeley, California, Proceedings of the National Academy

of Sciences of the United States of America.

Schoen, M., 2013. Spline Controller. [Online]

Available at: http://wiki.unity3d.com/index.php?title=Spline_Controller

[Accessed 16 06 2015].

SensoMotoric Instruments, 2015. Eye tracking HMD upgrade package for Oculus Rift

DK2. [Online]

Available at: http://www.smivision.com/en/gaze-and-eye-tracking-

systems/products/eye-tracking-hmd-upgrade.html

[Accessed 15 06 2015].

SlowRiot, 2013. When there's no need to render twice. [Online]

Available at: https://forums.oculus.com/viewtopic.php?t=4155

[Accessed 15 09 2015].

Sony , 2007. PlayStation Eye. [Online]

Available at:

http://uk.playstation.com/ps3/accessories/detail/item78698/PlayStation%C2%AEEye/

[Accessed 06 02 2015].

Starbreeze Studios, 2015. Starbreeze in collaboration with Tobii to integrate its world-

leading eye tracking technology into the unique 210-degree, 5K resolution StarVR HMD.

[Online]

Available at: http://starbreeze.com/2015/09/starbreeze-in-collaboration-with-tobii-to-

integrate-its-world-leading-eye-tracking-technology-into-the-unique-210-degree-5k-

resolution-starvr-hmd/

[Accessed 23 09 2015].

The Eye Tribe, 2015. The Eye Tribe Tracker. [Online]

Available at: https://theeyetribe.com/products/

[Accessed 01 08 2015].

Thunström, R., 2014. Passive gaze-contingent techniques relation to system latency.

Karlskrona: Blekinge Institute of Technology.

62

Tobii Technology, 2011. Tobii TX300 Eye Tracker for reading studies. [Online]

Available at: http://www.mynewsdesk.com/us/tobii_technology/images/tobii-tx300-

eye-tracker-for-reading-studies-76565

[Accessed 12 09 2015].

Tobii Technology, 2015. Seeing is doing with Tobii EyeX. [Online]

Available at: http://www.tobii.com/en/eye-experience/eyex/

[Accessed 10 09 2015].

Unity Technologies, 2015. OffsetVanishingPoint. [Online]

Available at: http://wiki.unity3d.com/index.php?title=OffsetVanishingPoint

[Accessed 12 03 2015].

Unity Technologies, 2015. The Size of the Frustum at a Given Distance from the Camera.

[Online]

Available at: http://docs.unity3d.com/Manual/FrustumSizeAtDistance.html

[Accessed 16 02 2015].

University of Cambridge, 2003. Principles of three-dimensional vision. [Online]

Available at: http://www-g.eng.cam.ac.uk/3d-displays/princip.htm

[Accessed 02 08 2015].

VRay, 2011. Vray Quick-Render. [Online]

Available at: https://www.youtube.com/watch?v=hGqoVh5rfRk

[Accessed 19 09 2015].

Yarbus eyetracker , 1960. Yarbus eyetracker photograph. [Online]

Available at:

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Yarbus_eye_tracker.jpg

/626px-Yarbus_eye_tracker.jpg

[Accessed 10 08 2015].

Yarbus, A. L., 1960. Eye Movement and Vision. Moscow (later translated and published in

New York): Plenum Press.

	Front cover template
	Thesis - Grigor

