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Abstract 
 

This project evaluates different performance optimisation techniques applied to 

stereoscopic and multiscopic rendering for interactive applications. The artefact 

features a robust plug-in package for the Unity game engine. The thesis provides 

background information for the performance optimisations, outlines all the 

findings, evaluates the optimisations and provides suggestions for future work.  

Scrum development methodology is used to develop the artefact and quantitative 

research methodology is used to evaluate the findings by measuring performance.  

This project concludes that the use of each performance optimisation has specific 

use case scenarios in which performance benefits. Foveated rendering provides 

greatest performance increase for both stereoscopic and multiscopic rendering but 

is also more computationally intensive as it requires an eye tracking solution. 

Dynamic resolution is very beneficial when overall frame rate smoothness is needed 

and frame drops are present.  Depth optimisation is beneficial for vast open 

environments but can lead to decreased performance if used inappropriately.   
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1. Introduction 
 
 

Modern video games rely on a wide variety of optimisation techniques in order to 

reach the photo realistic rendering quality expected by the users. With the increase 

of available computational power the demand of more beautiful, bigger and denser 

virtual worlds also increases. Use of techniques such as occlusion culling, 

tessellation, mipmapping and level of detail switching is vital for the smooth 

performance and photorealism, but such techniques are mainly designed to work 

for traditional rendering of one view. With the constant increase of available 

stereoscopic enabled hardware such as head-mounted displays and also future 

trends like multiscopic displays the use of old performance optimisation techniques 

is not nearly enough to meet the demands. The utilisation of more advanced 

performance optimisation techniques is required. The techniques evaluated in this 

project can provide additional performance increase for specific game situations. 

The first section of this report provides some academic and commercial background 

information on techniques that could be beneficially used for applications that 

require rendering of multiple views. Scrum development methodology is used to 

implement all the performance optimisations in the Unity game engine. 

Quantitative research methodology is utilized to design numerous experiments that 

measure the performance of the optimisation techniques. This thesis report provides 

an evaluation of the data measured as well as a summary of all the different 

performance optimisations and their appropriate uses.  The end of this report 

features a section that provides some recommendations for future work. 
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1.1 Aims and Objectives  

 

The aim of this project is to implement a number of optimisation techniques for 

multiscopic rendering and evaluate their performances. This project has two end 

products: an artefact and a thesis report. The artefact is open sourced and is intended 

to be a good starting point for the implementation of any of the performance 

optimisations discussed. The thesis documents the development process, analyses 

the commercial and academic viability and evaluates the performance optimisation 

techniques.   

The objectives for both the thesis and the artefact are as follows: 

Thesis: 

- Outline multiple performance optimisation techniques that could be 

potentially beneficial for multiscopic rendering. 

- Explain how each performance technique is implemented and how it works. 

- Outline the benefits, requirements, cost of implementation and practicability 

for each optimisation technique. 

- Evaluate the optimisation techniques by measuring and comparing their 

performance benefits. 

- Suggest future work. 

 

Artefact: 

- Implement the performance optimisations discussed in the thesis and create 

a Unity plug-in. 

- Follow good development practices and provide additional functionality.  

- Create a system for performance measurement. 
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1.2 Motivation 

   

The main goal of this project is to bring value for both academic and commercial 

applications. Some of the performance optimisations discussed in this thesis have 

never been evaluated for stereoscopic and multiscopic rendering and their 

application for such situations is novel. The artefact of this project will enable 

developers to implement such optimisation techniques in both commercial and 

academic applications.  

The development of this project was motivated by the lack examples of such 

techniques implemented and openly available. The optimisations evaluated in this 

thesis are implemented with the Unity game engine and C# code. Since the artefact 

is open sourced the performance optimisations could also easily be adapted for 

game engines other than Unity and can even be used within custom development 

environments.  

The artefact is designed to be easy to use and modify. The code is fully commented 

and provides additional tooltips in the Unity user interface for ease of use.  

This thesis is freely available online to further aid future works on the optimisation 

techniques and is designed to be a useful starting point for anyone interested in 

implementing them. It also evaluates all the performance optimisations and 

provides suggestions on best use scenarios for each optimisation.   

 

 

 

 

 

 

 

 



10 

 

2. Contextual review and market research  
 

 

This chapter outlines the findings after academic and market research was 

conducted for each performance optimisation technique. 

 

2.1 Foveated Rendering   
 

People have a field of view of 135° vertically and 160° horizontally (NASA , 1964),  

but the human eye does not have uniform distribution of optic nerves (Figure 2). 

A small region of the human eye called “fovea” and located in the middle of the 

retina (Figure 1) contains half of the optic nerves (Figure 2) and a field of view of 

5° (Guenter, et al., 2012). As seen in Figure 3 the ability to perceive information is 

rapidly decreasing away from the gaze location in the middle of the image and in 

order to accommodate for this the size of the letters in the outer region of the image 

is increased. People use motions called “saccades” (Ebisawa & Suzu, 1994)  to 

perceive their environment in high field of view. The quality of the peripheral vision 

gradually degrades in areas further from the fovea. These areas, called “parafovea” 

and “perifovia”, have far fewer cone receptors and more rod cells (Figure 1).  

Cone cells are good at perceiving colour while rod cells are better at distinguishing 

motion. People are good at detecting motion with their peripheral vision but fail at 

distinguishing colours or shapes as the quality of vision degrades outside of the 

foveated region.  

Traditional displays are created with the assumption that the user can perceive every 

region of the screen at the same time, which is clearly not the case. When only one 

user is interacting with the screen a small fraction of the pixels is fully 

comprehended (Guenter, et al., 2012) at any given moment. 
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FIGURE 1 HUMAN EYE ROD: 

CONE RECEPTOR RATIO 

(CURICO, ET AL., 1990) 

 

FIGURE 2 THE DISTRIBUTION OF 

RODS AND CONES IN THE RETINA 

(DUBUC, 2002) 

 

FIGURE 3 ALL THE LETTERS 

SHOULD BE EQUALLY 

READABLE (ANSTIS, 1974) 

 

As seen in Figure 1, the retina has a small area that lacks photoreceptors called a  

“blind spot” (Durgin, et al., 1995). The brain recreates the “blind spot” as well as 

other missing parts of the vision by combining the information of both eyes and a 

person cannot perceive the lack of information in that region. If we can discard the 

portion of the screen that is hidden from the user’s perception and gradually 

decrease quality and resolution towards the parts of the screen that are not 

comprehended with the fovea we can increase the overall performance. In order to 

create such effect we need to know the location of the user gaze at real-time, 

therefore a robust eye tracking solution is required. 

 

 

 

FIGURE 4 APARATUS FROM 

(YARBUS, 1960). IMAGE FROM 

(YARBUS EYETRACKER , 1960) 

 

 

FIGURE 5 BLUEGAIN EOG  

(CRSLTD, 2015) 

 

FIGURE 6 TOBII TX300  

EYE TRACKER  

(TOBII TECHNOLOGY, 2011) 

 

For the last half a century gaze tracking has been a widely researched field  

(Yarbus, 1960). The eye tracker hardware used to be bulky (Figure 4), expensive 

(Figure 6) and very intrusive for the user (Figure 5), but modern solutions solve 
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these issues and currently available eye tracking hardware is cheap, compact and 

versatile. Eye tracking hardware usually works in one of three ways.  

The most intrusive method is the eye-attached tracking with a special contact lens 

that reflects infrared light (Chen & Kalinli, 2011). Eye tracking with contact lenses 

is not an applicable solution for a commercial product as it requires the user to apply 

eye lenses. This form of eye tracking provides accuracy and is used for research 

purposes. 

Eye tracking can also be achieved with electrooculography (crsltd, 2015).  

This approach is good at measuring rapid eye saccade movements and is not an 

accurate solution when measuring slow eye movements such as tracking an object 

on the screen (Ebisawa & Suzu, 1994).  

The last and most widely used approach is to use infrared light, cameras and image 

processing to determine the eye rotation and gaze position. The use of infrared light 

source is needed because the human eye can perceive light that falls in the visible 

spectrum and infrared light is mostly unperceivable (Palczewska, et al., 2014).  

One potential issue when using eye tracking is the rapid saccades a human eye 

makes. The eye tracking solution needs to work with fast frequency in order to track 

the eye wile in a saccade. The human brain selectively discards most of the 

information received during rapid saccades in a process called saccadic masking 

(Burr, et al., 1994). It is therefore not imperative to track the eye location while in 

saccadic movement. As long as the eye tracking solution calculates the new gaze 

point fast enough after the saccade no delay will be perceivable by the user.  

The use of eye tracking for distribution of visual fidelity, foveated rendering, has 

been researched extensively, with some very promising results (Guenter, et al., 

2012), but such research leads to the conclusion that current generation of eye 

tracking solutions cannot be used commercially for foveated rendering as the 

required eye tracking hardware is too expensive or does not provide the required 

tracking speed. Recent commercial products have made eye tracking cheap and 

widely available and this project tries to review the use of eye tracking for foveated 

rendering with currently available and affordable eye tracking solutions.  

Foveated rendering has many applications, some of which include virtual reality, 

remote piloting and video teleconferencing (Baudisch, et al., 2003). 
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In foveated rendering eye tracking hardware is used to track the gaze point of the 

user eyes and multiple layers of degrading quality and increasing size are rendered.  

When foveated rendering is used successfully it could increase the performance and 

reduce the required bandwidth. In the context of real-time computer graphics we 

are not concerned with the bandwidth but are interested in the increase of 

performance. An estimated performance increase after a successful implementation 

of foveated rendering is a factor of five (Guenter, et al., 2012). This could lead to a 

breakthrough in the smart phone rendering and instead of devices with more 

processing power phones with low latency eye tracking and displays could be 

developed. The mobile market may not seem to be a suitable medium for foveated 

rendering due to the smaller screen size, but smart phones are front runners for the 

current revolution of virtual reality. As the devices feature both very good 

gyroscopes, high definition screens and their computational power continues to 

grow, it is possible to use them for wireless virtual reality headsets.  

Head-mounted displays are traditionally very bulky systems that are connected to a 

computer and sharing the virtual reality experience with other people is difficult 

due to their form factor.  

 

 

FIGURE 7 GEAR VR (GEAR 

VR, 2015) 
 

 

FIGURE 8 GOOGLE CARDBOARD 

(CARDBOARD, 2015) 
 

 

FIGURE 9 ARCHOS VR 

(ARCHOS VR, 2015) 
 

 

Virtual reality headsets specifically designed to work in conjunction with smart 

phones, such as Gear VR (Figure 7), Google Cardboard (Figure 8) and many other 

solutions (Figure 9) have emerged on the market. The two major reasons why these 

devices are not competitive with the tethered virtual reality experiences provided 

by Oculus Rift, HTC Vive and other similar HMDs is the lack of positional tracking 

for the head as well as the device performance. This project aims to solve the 

performance problem by proposing the use of foveated rendering in conjunction 

with eye tracking for smart phones. 
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The head position tracking problem could be solved in the near future with the 

addition of a variety of sensors. Technologies such as Project Tango (Google 

ATAP, 2015) feature depth sensors akin to the ones found in Kinect. There are also 

technologies that can not only scan the environment for 3D point cloud but also 

understand different hand gestures (Microsoft HoloLens, 2015).  

Since the vast majority of the population already own smart phones and a gyroscope 

sensor is the only requirement for the phone to be used as a virtual reality headset, 

it is cheaper to use a phone as a head-mounted display than to invest in a tethered 

alternative that also requires a powerful computer. The wide adoption of sensors for 

depth and gestures is very important for the future of mobile virtual reality. 

 

 

FIGURE 10 THE EYE TRIBE 

TRACKER FOR TABLET (THE 

EYE TRIBE, 2015) 

 

FIGURE 11 FOVE EYE 

TRACKING HEADSET (FOVE 

INC, 2015) 

 

FIGURE 12 STARVR HEADSET 

(STARBREEZE STUDIOS, 2015) 

 

There are multiple eye tracking solutions available for mobile devices (Figure 10) 

but they usually target a form factor larger than a smart phone and are not suitable 

for use in a head-mounted display. A hypothetical eye tracking solution that works 

at a frequency fast enough to permit the use of foveated rendering for such device 

could lead to more robust widely available virtual reality devices that are not 

tethered to a PC and with the requirement of just a fraction of the computational 

power of current mobile virtual reality.  

One relevant head-mounted display that was recently backed on Kickstarter is 

FOVE (Figure 11). It is tethered and therefore does not provide the benefits of smart 

phone virtual reality, but it features an eye tracking solution. FOVE will be the first 

commercially available head-mounted display with the ability to use foveated 

rendering.  
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Another future head-mounted display that will use eye tracking extensively is 

StarVR (Figure 12). It will feature two high definition screens and offer 210° field 

of view and 5K resolution. 

Other custom eye tracking modifications of the development version of Oculus Rift 

are also available but are expensive (SensoMotoric Instruments, 2015) and mainly 

used for academic research. It is possible to create a very cheap custom eye tracking 

solution by using a PlayStation Eye camera (Sony , 2007) in a low resolution mode 

which works at 120Hz, but this solution is mainly used by enthusiasts and is not 

compact.  

In order to eliminate the popping effect in foveated rendering perceived by the user 

a low latency system is required. A 60Hz display is not a viable solution and for 

successful implementation of foveated rendering both the display and the  

eye-tracker need to work at 90Hz or more (Thunström, 2014).  

For the development and testing of the foveated rendering the Tobii EyeX  

(Tobii Technology, 2015) tracker was used. It is an affordable tracker targeting 

video games audience. The original frequency of the eye tracker is not fixed but it 

works at 30Hz or more. Custom build of the eye tracking engine was provided by 

Tobii for the foveated rendering testing. It increased the Tobii EyeX frequency to 

90Hz, but the tracking accuracy deteriorated. Even with reduced accuracy the 

system works well for foveated rendering, but due to the lack of a high frequency 

monitor available for this research popping effects were still perceivable.  

The displays used for testing are 22-inch normal monitor, 42-inch automultiscopic 

monitor and a Commander 3D tablet with autostereoscopic capabilities.  

Current computer systems are capable of rendering for multiple 4K monitors, but 

expensive graphics hardware is necessary. Existing game engines are capable of 

rendering realistic scenes, but with stereoscopy and multiscopy the hardware needs 

to render the scene from more than one view, which is computationally intensive.  

Foveated rendering enables a wide adoption of multiscopic displays for personal 

and commercial use as it reduces the required performance. 
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2.2 Dynamic Resolution  

 

Since the dawn of 3D accelerated graphics researchers have been trying to increase 

rendering performance. Numerous rendering optimisations that increase visual 

fidelity or reduce processing power requirements have been produced.   

Some techniques worth mentioning include level of detail switching (Clark, 1976), 

tessellation (Microsoft Developer Network, 2013), occlusion culling (Oded 

Sudarsky, 1999). Most performance techniques provide performance increase in 

scenes that feature large amount of geometry by decreasing the overall quality of 

the geometry the further it is from the camera. This usually leads to perceptibly bad 

geometrical quality into the distance and object popping. Most performance 

optimisations do not take into account the current situation and are either always 

enabled or always disabled, but most of the games have a stable performance until 

a graphically intensive scene is reached. In these situations artefacts such as object 

popping could be avoided with smarter performance optimisation techniques that 

only optimise the rendering when it is needed. One such technique that adapts to 

performance to increase or decrease graphical fidelity is dynamic resolution.   

Dynamic resolution (Intel, 2011) features a real-time adaptive change of the internal 

resolution of the application. Traditionally the resolution in video games takes a lot 

of time to change and can only be set in the options menu. The difference between 

the traditional resolution settings and the dynamic resolution scaling is that the 

resolution change affects the graphics user interface of the game while the dynamic 

resolution changes the internal rendering resolution without any change to the user 

interface.  

Dynamic resolution scaling is rarely used in console games when the targeted 

performance could not be met. Sometimes video games render the content at lower 

and upscale it to larger resolutions. In other times rendering is set to target a specific 

frame rate and the resolution is changed at run-time to accommodate the frame rate 

target. Some Xbox One game titles such as “The Witcher 3: Wild Hunt” 

(extremetech.com, 2015) and “Call of Duty: Advanced Warfare” (engadget.com, 

2014) feature such resolution scaling system, but they render at pre-set width and 

only scale the height resolution.  
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Other games provide a more passive settings option to change the resolution 

scaling. One such game is Battlefield 4 (dualshockers.com, 2013) which features 

an option called “Resolution Scale” available from the options menu. This only 

applies to the PC version of the game and the value can be set between 25% and 

200%. It is a separate option from the resolution of the game and it is effectively a 

multiplier of the internal rendering resolution. Changing this value does not change 

the user interface scaling. Figure 13 illustrates the difference of quality perceived 

by the user. 

 

FIGURE 13. BATTLEFIELD 4 RESOLUTION SCALING (DUALSHOCKERS.COM, 2013) 

 

Changing the “Resolution Scaling” option to a lower value greatly deteriorates the 

perceived quality but the amount of frames that can be rendered each second 

increases. Resolution Scaling does not provide the benefits of dynamic resolution 

but it is very useful for older rendering hardware.  

Dynamic resolution is also used in some video editing software solutions  

(Adobe, 2015) to display a preview of the final footage. Some 3D renderers  

(VRay, 2011) are capable of showing a lower fidelity version of the final ray traced 

scene, but instead of changing the resolution of the view they render a smaller 

number of pixels for preview. One benefit of dynamic resolution is a smoother 

overall experience due the reduction of frame per second drops. This project is an 

opportunity to test dynamic resolution against other performance optimisation 

techniques. The expected result for dynamic resolution is to have a great 

performance benefit but to affects immersion in a negative manner. It needs to be 

capped so that the performance quality does not deteriorate more than a pre-set 

quality.  
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2.3 Depth Reuse 
 

When rendering stereoscopic or multiscopic content the scene needs to be rendered 

multiple times, the number of which corresponds to the number of views.  

The human brain uses the difference of two views supplied from the eyes, called 

“stereopsis” (University of Cambridge, 2003), to determine the distance from 

objects (Figure 14). 

 

 

FIGURE 14 DEPTH PERCEPTION (BRAINHQ) 

 

Stereopsis decreases for objects that are far away from the eye. When rendering 

virtual scenes that feature vast open areas some objects are far into the distance and 

even though they are rendered for each view they do not contribute to the stereopsis.  

It is possible to render the objects that are further than the distance of perceived 

depth and reuse the rendering for all of the views in stereoscopy and multiscopy. 

There are a number of ways in which this could be achieved. The depth buffer could 

be reused and combined with other depth buffers for each view or extensive use of 

“render textures” could be utilized. The “render texture” method was selected for 

the implementation and evaluation of this technique due to it being easier to 

implement and understand. It also works with existing image effects and provides 

the ability to change the refresh rate of the two “render textures” which could further 

be beneficial to performance. The first step is to render the distant objects in a 

“render texture”. The next step is to render the close objects for each view into 

another “render texture”. The final result for each view is achieved by combining 

the “render texture” of the view with the “render texture” of the depth.   
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It is expected that this will be beneficial for vast scenes with a lot of geometry, 

especially for multiscopic rendering where the depth will be reused multiple times. 

It is very important to choose a distance from the camera that does not jeopardize 

the stereopsis. For Oculus Rift a distance at which depth cues between the two eyes 

are smaller than one pixel is 52 meters (SlowRiot, 2013). Such depth optimisation 

is not viable for use in traditional rendering and is expected to decrease the overall 

performance, but its benefits should scale up with the number of different views 

rendered. Even at more than eight views it is possible to combine different views in 

pairs and render depth only once for each pair. This is expected to provide a large 

increase of performance and could work well in conjunction with other performance 

optimisations discussed in this project. As this performance optimisation is limited 

to multi-view rendering it is not widely researched or evaluated and this project will 

feature one of the first implementations of such system. To the best of the author’s 

knowledge no similar system has been implemented or evaluated in an academic or 

commercial environment. 
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3. Artefact Design, Development and Testing 
 

 

This chapter describes the use of the artefact as well as the development process. 

 

3.1 Development and research methodology 

 

The Scrum development methodology was used throughout the development of the 

project. Each new feature was implemented in a different sprint. The length of each 

sprint was between a few days and two weeks. Smaller features that are relevant to 

each other were combined and implemented in one sprint. In some occasions such 

as the dynamic resolution optimisation specifications changed after the original 

sprint and a shorter sprint was needed to accommodate the changes.  

Testing was done mostly at the end of the development cycle. Manual integration 

testing was utilized to make sure that the components work and the user cannot 

provide awry values and break them. Additional care was taken to make sure that 

all of the custom cameras could work with a variety of field of view and culling 

settings. The Unity profiler was used to confirm that there are no memory leaks and 

unusual bottlenecks.  After the testing period all the detected problems were fixed 

and the final performance tests were executed.  

Git was used for version control and the private repository hosting was provided by 

Bitbucket. Microsoft Word was used for the writing of this thesis and Dropbox was 

used for backup and synchronisation. 

Quantitative research methodology was utilized in the performance evaluation as it 

is more suitable for the purposes of this project than a qualitative approach.  

Performance was measured and evaluated in the thesis and used to determine the 

best use cases for each performance optimisation technique.  
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3.2 Use of the artefact 

 

The artefact is a tool for evaluation of different rendering optimisations for 

traditional, stereoscopic and multiscopic rendering. It also consists of the 

implementation of all the optimisations and is set up to be as simple to implement 

to existing Unity projects as possible. As the artefact is also a plug-in, in order to 

reduce its size there will be no example scenes included. The user has to import the 

plug-in to an existing Unity project in order to properly utilize and measure the 

performance optimisations.  

The artefact will be both shared as a Unity project repository on Github as well as 

downloadable “.unitypackage” file that can be imported and used in an existing 

project.  

The rendering optimisations are split in three categories: traditional, stereoscopic 

(interlaced) and multiscopic rendering.  

 

For each category there are four prefabs: 

- Default rendering 

- Foveated Rendering 

- Depth Optimisation 

- Dynamic resolution 

 

The prefabs act as cameras when added to the scene. The user can edit different 

options for the rendering optimisations using the “inspector” tab in Unity.  

The artefact also features a system that can track, measure and save the performance 

information into a file that can be opened with Microsoft Excel. The evaluation 

graphs in this thesis are generated using the information from those files. 
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3.3 Design and implementation of the performance 

optimisations 
 

This subsection provides additional information on the implementation and use of 

the performance optimisation techniques. 

3.3.1 Foveated rendering system   

 

Each foveated rendering view requires at least two cameras. One of the camera is 

readjusting based on the user gaze point and renders a small portion of the screen.  

The other camera renders the whole screen, but with a reduced resolution.  

To further increase performance it is possible to have two level of detail versions 

of every model. The foveated camera should render the high-poly version of the 

models while the camera that renders the whole screen should only use the  

low-poly objects. The cameras render to “render textures” and the “render textures” 

are then displayed to the screen with their proper location and order. This enables 

us to change the rendering resolution at will. The user can provide the parameters 

for the rendering resolutions for both of the cameras, as well as additional rendering 

settings.  

The parameters that can be adjusted include: 

- Change resolution multiplier for each region. The resolution of the scene is 

multiplied to the resolution multiplier. In order for a region to have a resolution of 

half the normal resolution the multiplier should be set to 0.5. In order to use super 

sampling  

anti-aliasing the user can choose a resolution multiplier of 2 or more. 

- Antialiasing level of the render texture. This value should be either 1, 2, 4 or 8.  

It is available for every region. 

- The location of the foveated rendering on screen. The foveated rendering can be 

used with both gaze location, mouse location or it could be placed in the centre of 

the screen. In order for gaze location to be used the user needs to implement an eye 

tracking solution and provide the location to the foveated rendering. 
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- The user can apply image processing effects for each region. The foveated 

rendering can work in conjunction with other full screen image processing effects. 

- The user can change the drawing order of the render textures or even use the output 

render textures for the needs of the application.  

- The user can change the rendering layer of the camera. When each LOD level is 

in a different layer the user can specify the LOD layer for each region. 

- The resulting foveated region is a square.  

The foveated rendering system is applied in a different way depending on whether 

the rendering is in 2D, stereoscopic or multiscopic. 

The traditional (2D) foveated rendering camera consists of a prefab game object 

with three game objects as children (Figure 15). 

 
FIGURE 15 2D RENDERING CAMERA PREFAB 

 

The prefab is called “2D Foveated Rendering” and has only one component called 

“RenderTexturesDrawingOrder” (Figure 16). 

 

 
FIGURE 16 DRAWING ORDER OF THE RENDER TEXTURES 

 

As the name implies the script is used to display the “render textures” of the 

foveated regions as well as the whole screen before them. An array of 

“CreateRenderTexture” objects is used to provide connection to the “render 

textures” to be rendered. The order of the objects in the array is used to determine 

the rendering order of the render textures. The current implementation of 2D 

foveated rendering is the only implementation of foveated rendering in the artefact 

that provides the possibility of having more than one foveated region.  

The stereoscopic and multiscopic foveated renderings are implemented with only 
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one foveated region in mind due to limitations in the maximum amount of textures 

in a shader.  

The “RenderTexturesDrawingOrder.cs” script draws the render texture on the 

screen based on the order of the “Rend Texture” and the “full screen” toggle for 

each ‘CreateRenderTexture” object. The first texture to be displayed before the 

foveated regions should always be a full screen “render texture”. 

The foveated regions are never full screen textures. They are displayed at the 

appropriate location on the screen using the focus point, which could be the  

gaze-point, mouse position or other position supplied to the “UpdateViewport” 

component. 

Every game objects that is a child of the “2D Foveated Rendering” is a camera.  

The user can manually add or remove cameras as each camera is another region of 

the foveated rendering. The prefab is by default set to draw the “render textures” of 

two cameras. There is only one foveated region and the other camera renders the 

whole screen. Another camera is available, called “HD foveated Region Camera”, 

but it is disabled by default. The purpose of this camera is to demonstrate that 

additional cameras could be added and it was originally used to render a foveated 

region with super-sampled resolution in a configuration of two foveated regions.  

In order to activate this foveated region the user has to enable the “HD foveated 

Region Camera” game object and place it as the last element of the “rendTextures” 

array in the “RenderTexturesDrawingOrder” component. 

Every camera has its own components that determine multiple rendering attributes.  
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“Whole Screen Camera” renders the whole screen before the foveated rendering is 

applied on top. 

 

 
FIGURE 17 WHOLE SCREEN CAMERA FOR FOVEATED RENDERING 

 

The “Whole Screen Camera” game object has two components attached  

(Figure 17). The first component is a standard Unity camera component. The culling 

mask field is important as it provides additional performance increase. It is possible 

to set the “Whole Screen Camera” to render the low resolution version LOD level 

while the cameras that render the foveated regions could render the high resolution 

LOD level.  

The field of view value of the “Whole Screen Camera” is used as the basis for the 

calculation of the field of view of the foveated regions. All of the performance 

optimisations are designed and implemented in a way to accommodate the use of 

any field of view and aspect ratio. 
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The “CreateRenderTexture” component has multiple fields. Each field does as 

follows: 

- “Rend Tex” is exposed in the inspector for debugging purposes. The render 

texture is going to be created on start.  

- “Resolution multiplier” is a float variable that is going to determine the 

resolution of the render texture. 

- Full screen toggle specifies whether the render texture is full screen or not. 

- The “Current mode” field can be set to “Traditional”, “Stereoscopic” or 

“Multiscopic” 

- “Uviewport” is a field that should be given a reference to the  

“Update Viewport” component only if the camera is used for a foveated 

region. If the camera renders the whole screen this reference will not be used 

and can be ignored. 

- “Anti-Aliasing Power of Two” is used to specify the antialiasing value of 

the render texture. It can hold a value of 1, 2, 4 or 8. This will be ignored if 

there are image processing effects added to the camera or the camera has 

enabled high dynamic range. 

 

The current mode is used to determine the resolution of the created render texture.  

If the mode is set to stereoscopic the width of the render texture will be half of the 

width of the screen. Each mode requires render textures with different sizes. 

Every camera used in a foveated region has “UpdateViewport” component attached 

(Figure 18). The “UpdateViewport” component is used to update the viewport 

according to the focus position value. 
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FIGURE 18 FOVEATED REGION 

 

The exposed fields of the “UpdateViewport” are as follows: 

- “Base Cam Ref” is a reference to the “base camera”, which is the camera 

that renders the whole screen. In this example that camera is called  

“Whole Screen Camera”. The field of view of this camera determines the 

field of view of the foveated cameras. 

- “Region Resolution Multiplier” determines the size on screen of the 

foveated region. It is a float variable multiplied to the screen height 

resolution to determine the size of the foveated region. A 0.25 “Region 

Resolution Multiplier” would result in a foveated region that is 25% the 

screen height. 

- “Multiscopic” is a Boolean toggle and should be enabled if the camera is 

used for multiscopic foveated rendering.   

- The “Region Resolution Multiplier” should be changed according to the eye 

tracking latency, the display latency and the screen size and distance from 
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the user. The longer the delay the bigger the “Region Resolution Multiplier” 

should be. If the screen is large and is far from the observer the  

“Region Resolution Multiplier” should be large. Head-mounted displays 

can have a very small foveated region. 

 

As the name implies the “UpdateViewport” changes the viewport of the cameras 

every frame.  

In order for foveated rendering to work at different field of views the field of view 

of the foveated region camera needs to be calculated from the field of view of the 

“whole screen” camera. A standard frustum size at distance formula  

(Unity Technologies, 2015) is used to calculate the field of view of the foveated 

region camera.  

Other variables calculated are the “helperValX” and “helperValY”. They are used 

for properly shifting the vanishing point of the cameras.  

If the multiscopic toggle is enabled the code is almost the same with the only 

difference that the camera aspect ratio is explicitly set to “1” and another variable 

helper “multiscopicHelper” is calculated. The code is fully commented and 

provides additional information regarding the implementation of each system. 

The “SetFocusPoint” function is called every time the foveated region needs to 

move. The “focusPoint” variable is used to determine the new position of the 

foveated region. A new vanishing point (Unity Technologies, 2015) for the camera 

is set using the new “focusPoint” and the helper variables. This only happens if the 

“focusPoint” is somewhere in the application window.  

The camera prefabs for Stereoscopic and Multiscopic foveated rendering work in a 

different way from the traditional foveated rendering with one view. Instead of 

displaying the render texture on the screen, shaders are needed to combine the views 

appropriately. 

The “Multiscopic Foveated Rendering” and the “Stereoscopy Interlaced Foveated 

Rendering” prefabs consist of only one game object each. This is due to the fact 
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that they use additional helper prefabs for each view. The helper prefabs are 

instantiated in the right locations and each one represents a different view. 

The “Stereoscopy Interlaced Foveated Rendering” prefab consists of two 

components. A standard camera and a custom “InterlacedFoveatedCameraSetup” 

component (Figure 19). 

 
FIGURE 19 STEREOSCOPY INTERLACED FOVEATED RENDERING 

 

- “Interlaced One View Prefab” is a helper prefab with a camera set for 

foveated rendering that will be used for each of the two views. 

- “Cam Distance” determines the distance between the two cameras. 

- “Focus Distance” - the cameras will point at a location that is at this distance 

in front of this game object. 

- “Foveated Interlaced Mat” is the material with the shader set for foveated 

interlaced rendering. 

 

The “Interlaced Foveated One Camera” helper prefab consists of only one camera 

and is a copy of the “2D Foveated Rendering” prefab with small changes.  

The “RenderTexturesDrawingOrder” component is disabled and a new component 

called “Ref Helper” is attached to it. This component provides references to the two 

render textures.  
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The “InterlacedFoveatedCameraSetup” component is used to set up the 

stereoscopic foveated rendering cameras. In the “Start” function two camera 

systems for stereoscopy are instantiated and set up accordingly. In the 

“SetMatProperties” the material that will interlace the textures is provided.  

Each of its properties will be set-up in order for the shader to interlace all of the 

render textures into stereoscopic foveated rendering. The final function of the 

“InterlacedFoveatedCameraSetup” component displays the shader pass on the 

screen. 

As previously mentioned the “Foveated Interlaced Mat” is a reference to the 

material with a shader that can combine the two foveated views into one. The shader 

is called “FoveatedInterlaced” and requires four render textures. Each foveated 

view has two textures and there are two views for stereoscopy. As shaders do not 

work with pixels the screen and resolution also need to be provided to the shader. 

The fragment segment of the shader determines the pixel location of the current 

texel and returns the appropriate texture.  

In order to support other types of stereoscopic rendering such as “side by side” the 

shader needs to be edited accordingly. For the artefact of this project the only 

targeted stereoscopic implementation is horizontally interlaced with each pixel row 

being either perceived by the left eye or the right. Later a more powerful system 

could be implemented that enables the user to edit the interlaced type between 

horizontal and vertical as well as side by side stereoscopy. 

The “Multiscopic Foveated Rendering” prefab (Figure 20) works in a very similar 

manner.  

A helper prefab is used for each view of the multiscopic foveated rendering.  

The helper prefab is very similar to the helper prefab for foveated stereoscopic 

rendering but all of the modes in its “CreateRenderTexture” component are set to 

multiscopic.  

 

 



31 

 

 
FIGURE 20 MULTISCOPIC FOVEATED RENDERING 

 

The shader used to combine the views is called “FoveatedMultiscopy” and requires 

sixteen textures, two for each of the eight views. It first determines the pixel and 

then the views of every subpixel. It also determines if the pixel is part of the 

foveated region or not and returns a texel accordingly. Since the Unity texture limit 

per shader is sixteen the implementation of foveated rendering with more than one 

region is not possible with the current implementation. Other implementations with 

multiple shaders may enable the use of many foveated regions.  

 

3.3.2 Dynamic resolution system  

 

Dynamic resolution is rarely used in video games as it generally decreases the 

overall experience quality of the user. It is questionable whether dynamic resolution 

is very beneficial for the performance and the first part of this subsection will try to 

answer this question by evaluating data gathered from conducting an experiment. 

One of the test scenes called “Viking Village” was used to conduct the experiment 

and it consists of running the same walk-through scene at different resolutions.  

The expected result is a sufficient increase of performance with resolution reduction 

to justify implementation of the system. Another expected result is scalability with 
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very predictable increase factor when the resolution is reduced. The experiment was 

conducted for both traditional rendering as well as multiscopic rendering and the 

resolutions evaluated were four of the most used resolutions. 

 

Performance test – Viking Village – traditional 

 

Resolution: Average fps 

1280x720 267.22 

1366x768 259.19 

1600x900 241.16 

1920x1080 218.02 
 

 

 

 

Performance test – Viking Village – Multiscipic 

 

Resolution: Average fps 

1280x720 48.45 

1366x768 48.17 

1600x900 44.79 

1920x1080 41.91 
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As seen in the comparison chart rendering at reduced resolution increases 

performance and the performance increase is very predictable. A reduction of the 

resolution from 1080p to 720p results in an increased performance by 20.27% for 

traditional rendering and 14.47% for multiscopic rendering. It is therefore a viable 

performance optimisation technique and it is going to be evaluated in this project. 

The dynamic resolution (Figure 21) system does not track performance but it needs 

the performance information to properly function. The “PerformanceManager” 

component attached to prefab with the same name measures the performance.  

It has some additional functionality and can display the performance information 

on either the left or the right corner of the screen. The “PerformanceManager.cs” 

script is also a singleton and only one instance should be enabled in the scene at any 

given moment. 

 

FIGURE 21 PERFORMANCE MANAGER 

  

The overall performance of the scene is tracked by tracking two variables.  

The “Fps” is the frames per second of the application. Bigger “Fps” numbers mean 

smoother gameplay experience. The “Ms” is the milliseconds each frame takes to 

render. One of the variables can easily be calculated from the other, but both of 

them are displayed in the Unity inspector for the convenience of the user. 

The Performance Manager was compared to other performance tracking solutions 

such as “Fraps” and “GeForce Experience” and proved to be a robust performance 

tracking solution with fast response. 

As with the other performance optimisations, adding any of the dynamic resolution 

camera prefabs would result in a proper implementation of the camera in the scene, 

but all of them still need an instance of the “PerformanceManager” prefab to 

function properly. If there is no instance of the “PerformanceManager” in the scene 

it will be instantiated when needed. 
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The dynamic resolution prefab for traditional rendering is called “2D Dynamic 

Resolution” and it has two components attached. One of the components is a 

standard camera and the other component is the “DynamicResolutionManager” 

script. 

  
FIGURE 22 DYNAMIC RESOLUTION MANAGER 

The user has a large variety of options to edit:  

- “Resolution Multiplier Width” and “Resolution Multiplier Height” are the 

starting resolution multipliers for the width and height.  

- If “Only Set at Start” toggle is enabled the initial resolution multipliers will 

be used at the start to set the resolution and the resolution will not be 

changed based of performance.  

- “Resolution Width Multiplier Min Max” and “Resolution Height Multiplier 

Min Max” are used to specify the minimum and maximum values of the 

resolution multiplier.  

- “Target FPS” is the currently targeted frames per second the dynamic 

resolution system will try to achieve. 

- “Dynamic Resolution Mode” selects the dynamic resolution mode.  

There are two different versions of dynamic resolution implemented and 

this field changes between them.  

- “Rate of Change” specifies the “wait time” of the coroutine that calls the 

functions that changes the resolution dynamically. 

- When “Gui Info Display” toggle is enabled a gui text appears at the top right 

corner of the screen. The text shows some information regarding the 

dynamic resolution system.  
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With dynamic resolution the user specifies a target frame rate and the application 

changes resolution at run time in order to meet the frame rate target. The difference 

between current frame rate and targeted frame rate is evaluated once in a while and 

the resolution multiplier variable is changed based on that. The resolution multiplier 

variable is multiplied by the screen resolution and the resulting value is the new 

resolution. When performance is needed the resolution could be very low and when 

the frame rate exceeds targeted frame rate the resolution multiplier variable is 

increased and an anti-aliasing super sampling is achieved. Sometimes in video 

games there are scenes in which a major event happens with a lot of geometry and 

effects displayed on the screen at the same time. This leads to reduced performance 

and lagging.  

With a dynamic resolution system such event would reduce the rendering resolution 

in order to keep the application playable and the user experience smooth. In order 

to only benefit from super-sampling the dynamic resolution could be set up to only 

increase the resolution and never decrease it beneath the monitor screen resolution.  

Instead of trading quality for performance this is a trade of frames per seconds for 

super sampled resolution. At rare performance intensive scenery the super sampling 

effect would be disabled in order to increase performance as needed. 

As the change of the resolution multipliers leads to generating new render texture 

it is performance intensive in itself and should not happen every frame. A coroutine 

called “AdaptResolution” is utilized. Its rate of change value could be set from the  

“Rate of Change” field. Different applications may require different coroutine 

execution times and therefore experimentation is advisable.  

The dynamic resolution system has two different modes implemented. The first 

mode, called “Custom”, is designed to reduce the amount of times the resolution 

changes.  

 

The user experience deteriorates when the resolution changes frequently and if this 

happens only when needed it could be very beneficial for the overall immersion. 

The “Custom” mode only adapts the resolution when the current frame rate and the 

target frame rate have a difference greater than two frames. The “Custom” mode 
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features a novel implementation that was designed and created for this project and 

its purpose is to provide an alternative to the widely adapted “Intel” method (Intel, 

2011). The “Intel” mode features a standard implementation of dynamic resolution 

first proposed by Intel. 

The dynamic resolution for stereoscopic and multiscopic rendering have very 

similar implementations but they also have additional fields exposed in the Unity 

“inspector”. These fields are intended for setting up the stereoscopic and 

multiscopic rendering. The fields of the components that control the dynamic 

resolution system are the same for traditional, stereoscopic and multiscopic 

rendering. 

 

3.3.3 Depth reuse system  

 

The camera frustum of the depth reuse system is made out of two different frustums 

from two cameras. One of the cameras renders the closer part of the frustum and 

the other one renders the further part. The camera that renders the closer frustum 

has its “Clear flags” set to “Solid Colour” and the background colour alpha channel 

set to 0.  The alpha channel is used in the shader to stitch the two textures together. 

The goal of the depth reuse system is to render the distant objects of the scene only 

once and reuse them in all of the views for stereoscopy and multiscopy.  

The resolution of the depth texture can be changed to further increase performance. 

This performance optimisation is not expected to increase the performance of 

traditional rendering of one view unless the render texture resolution multipleir of 

the far camera is set to a low value.  

Having two frustums for close and far objects also gives us the possibility to change 

their rendering rate. Even though this is not implemented in the artefact it is possible 

to set the far camera to render at thirty or fifteen frames per second and the closer 

camera to render at sixty. Just like in real world the further an object is from the 

camera the slower its movement is perceived. In some cases high frame rates for 

distant objects is not needed. 



37 

 

The implementation of depth optimisation in the artefact can render two LOD levels 

with the two cameras to further increase performance.  

The frustum culling for the two cameras is set to 0.1 to 30 for the camera that 

renders near objects and 27 to 1000 for the camera that renders far objects.  

The two frustums should overlap, otherwise artefacts appear. Occlusion culling 

should also be disabled for the camera that renders far objects for the proper 

functioning of the system. 

In order to add a depth optimised camera to an existing screen the user has to add 

the appropriate prefab to the scene. Depth optimisation camera prefabs exist for 

traditional, stereoscopic and multiscopic rendering.  

The “2D Depth Optimisation” prefab provides depth optimised camera for 

traditional rendering of one view. The game object has three child objects.  

- “Near” is the camera that renders game geometry that is close to the camera. 

- “Far” is the camera that renders far objects. 

- “ScriptHolderCam” is another camera that does not render anything, but is 

required for the combination process.  

The “ScriptHolderCam” has a component called “Combine Depth” (Figure 23). 

 

FIGURE 23 SCRIPT HOLDER CAM GAME OBJECT 

 

The fields exposed to the user are as follows: 

- “Shader” is a reference to the shader used for combining the render textures. 

- “Far Cam” is a reference to the camera that renders far geometry 

- “Near Cam” is a reference to the camera that renders near geometry 

- “Far Render Texture resolution” is float value multiplier used to determine 

the resolution of the output render texture of the far camera. 
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The “CombineDepth.cs” derives from “ImageEffectBaseCustom.cs” which is a 

modification of the “ImageEffectBase.cs” script from Unity.  

 The shader that combines the two render textures tests if the alpha colour value of 

each texel is smaller than “1”. If the value is smaller the output is set to the far 

texture and if the value is “1” the output is set to the near texture. 

The stereoscopic and multiscopic implementations are similar to the traditional 

implementation, but instead of having two cameras for one viewport there are two 

cameras for each.  

 

 

 

FIGURE 24 STEREOSCOPIC AND MULTISCOPIC IMPLEMENTATIONS DEPTH OPTIMISATION 

 

The scripts from stereoscopic and multiscopic depth optimisation both derive from 

their appropriate base scripts and therefore reuse the code. The difference from the 

traditional depth optimisation implementation is that instead of a shader a material 

reference is required. The shaders are attached to the materials and have very similar 

implementation to the “CombineDepth” shader, but for multiple views. In order to 

provide more realistic results the depth render texture is shifted horizontally for 

each view. Different scenarios require different shifting value and therefore an 

experimentation is required until a good result is reached. 
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3.4 Design and implementation of additional systems 

 

This section examines the other systems and techniques utilized in the artefact. 

3.4.1 Automultiscopic rendering  

 

Multiscopic rendering plug-in for Unity is not available and the creation of a custom 

solution for the purposes of this project was required.  

After extensive research in multiscopic rendering, shaders and the workings of the 

Alioscopy monitor that was available the end product was a small and robust  

plug-in that lets the user combine multiple views into an output texture suitable for 

lenticular automultiscipic screens.  

The Alioscopy monitor works by combining subpixels of different views. Each new 

pixel is a combination of three subpixels from three different views. This is a  

trade-off between width and height resolution.   

Subpixel rendering is not a new concept and has been used as an anti-aliasing effect 

for text when rendered on screens that have separated red, green and blue subpixels. 

When using subpixel rendering it increases the width resolution by three times and 

decreases the height resolution by three times.  

The lenticular sheet of the automultiscopic Alioscopy monitor is placed at an angle 

in which every subpixel in a row of pixels is a part of a different view. Each pixel 

consists of three different views. Each subpixel of the original pixel becomes a part 

of another pixel. Different subpixel configurations, varying lenticules per inch and 

different rotations of the lenticular sheet can lead to different amounts of views 

displayed on the screen. The Alioscopy monitor that was used for testing consists 

of eight different views and a resolution of 1920 by 1080 pixels. After the subpixels 

are combined the new resolution becomes 5760 by 360. Since there are 8 views the 

resolution for each view is 720 by 360. 

This is a resolution that is not viable for commercial or home use, but with the 

creation of displays with higher resolution this technology will become more viable.  
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As of 2015 4K “Ultra High Definition” screens are widely available with a standard 

resolution of 3840 by 2160. If such screen is used for eight view automultiscopic 

monitor the resolution of each view would be 1440 by 720 pixels. 

Future technologies such as the 11K Samsung display announced to be released in 

2018  (Hardawar, 2015) would have a resolution of 11264 by 6336 pixels and if 

used for eight view multiscopic rendering each view would be with a resolution of 

4224 by 2112 pixels.  

Traditional 

Resolution: 

Subpixel rendering 

resolution: 

Resolution per 

view (8 views) 

Total amount of 

pixels: 

1280x720 3840x240 480x240 921600 

1920x1080 5760x360 720x360 2073600 

3840x2160 11520x720 1440x720 8847360 

11264x6336 33792x2112 4224x2112 71368704 

 

When a rendering output for multiscopic screen is viewed on a traditional screen 

the image appears blurred. Only after the image is displayed on the specialised 

monitor with the appropriate pixel distribution, lenticules per inch and angle of 

lenticular lens the automultiscopy is perceived. Figure 25 demonstrates the 

difference between rendering for a traditional screen and the output of combining 

eight views for automultiscopic screen.  

 

  

FIGURE 25 TRADITIONAL AND MULTISCOPIC RENDERING 

Currently available multiscopic displays have a small amount of views and even 

though they provide more freedom of movement then autostereoscopic screens, the 

user cannot move more than a few centimetres horizontally. One solution for this 

problem is the use of head tracking to move the virtual cameras based of the user 

head position, but it would also require a more active parallax barrier. 
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3.4.2 Performance measuring system  

 

When performance was measured the frames per second and the milliseconds per 

frame values were saved into an excel file. The values were used for the creation of 

numerous graphs that can be seen in the “Evaluation” section of this thesis. 

 The “PerformanceManager” can only track performance but does not save it to a 

file. In order for the system to save the performance information into a file a 

“SavePerfDataToFile” component needs to be added to the scene. There are two 

types of  “SavePerfDataToFile” components. The base version is the one that saves 

the frames per second and the milliseconds per frame to file (Figure 26). The second 

component that also inherits all the features of the “SavePerfDataToFile_Base” is 

called “SavePerfDataToFile_DynamicResolution” and can save additional 

information for the dynamic resolution current values to the file.  

 
FIGURE 26 PERFORMANCE MANAGER SET TO SAVE DATA TO FILE 

 

The “SavePerfDataToFile_Base”component has multiple fields: 

- “Record Interval” is the interval at which performance information will be 

recorded.  

- “Record for Seconds” is the length of the recording. The information is 

recorded for this amount of time and at the end of the recording the 

performance information file is generated. 

- “File name” is a string of letters that are used as the beginning of the 

recording file name.  
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- “Perf Manager” is a reference to the performance manager. As multiple 

“SavePerfDataToFile” instances can possibly be added to the same scene 

they could be attached to game objects different to the “Performance 

manager” game object, but they all need a reference to the “Performance 

manager” game object to record performance. 

In order to properly evaluate different optimisation techniques all of the cameras 

have to follow the same movement path. A spline editor (Schoen, 2013) was used 

for each performance experiment. The spline system is not a part of the artefact and 

is not available in the plug-in.  

 

3.5 Problems encountered  

 

The first performance optimisation implemented was foveated rendering.  

Dynamic resolution and depth optimisation followed afterwards. Through the 

development process there were multiple problems encountered. Some of the most 

persistent ones are as follows: 

- The first problem was the proper implementation of subpixel rendering.  

This proved to be a hard task and required custom shader that combines 

eight views into one. Each view is rendered at its proper resolution and 

therefore no pixels are lost in the conversion. This complicates the task even 

furthered and therefore the first version implemented rendered each view at 

the resolution of the screen. Since no open source solution for multiscopic 

rendering was available there was no starting point and extensive research 

in stereoscopy, multiscopy and shaders was required. 

- Properly shifting the foveated rendering camera matrix was an issue. In the 

original implementation the foveated region was rendered with the 

resolution of the screen due to shifting of the camera viewport in Unity. 

With the new implementation that relies on render textures such shifting is 

not needed and the render textures could be at the exact size required, which 

increases performance.  
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- Since the size of the available alioscopy screen exceeds the maximum 

monitor size for the eye tracking hardware the only way to test foveated 

rendering on the multiscopic screen is to use mouse location instead of the 

user gaze. Even though foveated rendering is currently not applicable for 

large multiscopic screens future high resolution displays for smart phones 

could be used with eye tracking for foveated rendering in head-mounted 

displays. The artefact is intended to be a starting point for future 

developments of foveated rendering for such head-mounted displays. 

- The multiscopic foveated rendering could now work well with aspect ratios 

other than 16 by 9 and field of view other than 70. This issue was later 

solved by incorporating the field of view and aspect ratio values to the 

calculation of the vanishing point shift. 

- It was not possible to fully test the capabilities of foveated rendering.  

In order to have a system with unperceivable latency a screen with refresh 

rate of 120Hz is required and such screen was not available for the 

development of the artefact. The eye tracker also needs to be with a very 

low latency and such eye trackers are very expensive and not commercially 

available.  

A custom build of the eye tracking engine was provided by Tobii.  

It increased the frequency of the eye tracker to 90Hz which makes it 

applicable for commercial foveated rendring use, but this mode is still being 

testing and may never be released for the consumers as it reduces the 

tracking quality. 

- The dynamic resolution performance optimisation had a very persistent bug 

that disabled the shadows of the scenes after a while. It also restarted the 

computer after prolonged use. The bug was a memory leak due to the 

generation of the new render texture without destroying the old one. 

- The current method of combining views in the depth optimisation does not 

work well with scenes that have transparent objects. White or pink lines 

could appear on transparent objects or water. This bug is the result of the 

current implementation of the depth reuse shader. 

 



44 

 

3.6 Testing 
 

Testing was conducted shortly after the development of the artefact. Each of the 

components is thoroughly tested with different settings to make sure that the user 

cannot break any of the performance optimisation cameras. Multiple bugs were 

detected and fixed and the overall stability of the system increased.  

The Unity profiler was used to check for unexpected bottlenecks and the windows 

task manager was used to test for memory leaks.  

After the testing period the detected problems were fixed. It was important to fix 

the issues and polish the code before the evaluation of each performance 

optimisation was conducted as the data gathering process takes a lot of time and 

small changes in the code would require to repeat the process additional times.  
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4. Evaluation 

 

 

In order to evaluate the performance optimisation techniques appropriately multiple 

experiments were conducted. A custom performance tracking script 

“SavePerfDataToFile.cs” was implemented. The script has access to the 

“PerformanceManager.cs” script and logs the current frame rate as well as the 

milliseconds per frame value. At the end of the performance tracking period the 

logs are combined into an .xml file that is compatible with Microsoft Excel.  

The experiments are conducted for the performance optimisations as well as the 

“Default Rendering” for comparison.  

The main goal of the experiments is to illustrate when each performance 

optimisation increases performance enough to be a viable solution. 

The experiments were executed on the same machine and the Unity scenes had the 

same settings applied in order to minimize the differences between them.  

The only difference was the scene geometry and the amount of time it took to 

execute the test. In order to further minimise any differences a waypoint system 

was used to create a path for the camera. For the foveated rendering performance 

optimisation the foveated region was locked at the centre of the screen and no eye 

tracking was used.  

The settings used in Unity for the experiments are as follows: 

- All cameras have a field of view set to 70. 

- The clipping planes of the cameras are set to: 0.1-1000.  

- The cameras are set to render the appropriate LOD layers. 

- Forward rendering was used. 

- No anti-aliasing. Texture quality set to “Full Resolution”.  

- The performance was logged once every 0.1 seconds. “The Viking Village” 

scene walk-through takes 101 seconds. The Museum scene walk-through 

takes 22 seconds. The Blacksmith scene walk-through takes 65 seconds. 

- Due to Unity bug another “dummy” camera was placed. That camera does 

not render any layer and is solely used to fix a Unity bug. Without this fix 
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the custom cameras fail to start rendering when the executable is built and 

played. 

Performance optimisation specific settings for the Foveated rendering experiments: 

- Low Definition camera set to 0.3 (0.3 of the resolution). 

- Foveated region was set to 0.3 (0.3 of the height of the screen). 

Performance optimisation specific settings for the Depth rendering experiments: 

- Near camera clipping set to: 0.1-30 

- 2D Far camera clipping set to: 29-1000 

- 3D Far camera clipping set to: 27-1000 

For the multiscopic experiments: 

- Distance between the cameras: 0.04 

- Focus distance: 10 

 

The machine used for the experiments: 

GPU GeForce GTX 750 Ti 
CPU Intel i7 – 3770 3.40GHz 

Hard drive: ATA Crucial CT240M50 SCSI 

RAM 8.00GB 

OS Windows 7 Home Premium SP1 64-bit 

Resolution 1920x1080 

GPU Drivers 355.60 (Release date 13.08.2015) 

 

The three scenes used for the evaluation experiments are chosen for their varying 

degree of complexity. The “Museum” scene is a closed environment while the 

“Viking Village” and the “Blacksmith” scenes are large vast areas. 
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4.1 Traditional rendering 

 

Viking Village scene: 

 

 
Average Values: 
  Default 222.5fps 5.59ms  
  Foveated 315.4fps 3.99ms 41.75% 

  Depth 234.8fps 5.34ms  5.53% 

 

 

Museum scene: 

 

 
Average Values: 
  Default 265.8fps 3.80ms  
  Foveated 772.2fps 1.32ms 190.6% 

  Depth 208.8fps 4.82ms 21.44% 
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Blacksmith scene: 

 

 
Average Values: 
  Default 85.68fps 11.91ms  
  Foveated 114.9fps 9.08ms 34.1% 

  Depth 70.08fps 14.51ms 18.21% 

 

 

The foveated rendering optimisation proves to be very beneficial for traditional 2D 

rendering. It increases the average frame rate of the “Museum” scene by 190.6% 

and also provides a substantial boost in performance for both the “Blacksmith” and 

the “Viking Village” scenes. Both the “Viking Village” and the “Museum” scenes 

feature foveated rendering with different level of detail levels which greatly 

increases the overall performance. The “Blacksmith” scene does not have different 

level of detail levels implemented and therefore does not benefit from additional 

performance increase.  

The depth optimisation is only beneficial for the “Viking Village” scene and it 

reduces the performance in the two other scenes. The main goal of the depth 

performance optimisation is to reuse the same render texture for multiple views and 

as the traditional rendering only requires one view no reuse is utilized.  
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4.2 Stereoscopic rendering 

 

Viking Village scene: 

 

 
Average Values: 
  Default 139.37fps 9.44ms  
  Foveated 167.2fps 7.54ms 19.97% 

  Depth 181.2fps 7.07ms 30.01% 

 

 

Museum scene: 

 

 
Average Values: 
  Default 183.5fps 5.533ms  
  Foveated 547.4fps 1.874ms 198.3% 

  Depth 142.4fps 7.087ms 22.4% 
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Blacksmith scene: 

 

 
Average Values: 
  Default 50.09fps 20.14ms  
  Foveated 64.1fps 16.13ms 27.97% 

  Depth 46.62fps 21.45ms 6.93% 

 

 

Foveated rendering proves to be a very beneficial performance optimisation for 

stereoscopy by increasing the overall performance of the “Museum” scene by 

198%. The depth optimisation results are similar to the traditional rendering 

experiment. Depth optimisation should only be considered for stereoscopic 

rendering after careful consideration of the scene. Scenes with vast open areas could 

benefit from depth reuse, but only when the camera is rotated towards distant areas.  

Foveated rendering could be very useful for head-mounted displays and provide a 

large increase of performance. This experiment was conducted with relatively large 

foveated region and if such system is implemented for virtual reality the required 

region will be considerably smaller and the performance benefit will be greater. 
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4.3 Multiscopic rendering 

 

Viking Village scene: 

 

 
Average Values: 
  Default 42.17fps 32.77ms  
  Foveated 44.81fps 29.36ms 6.26% 

  Depth 66.14fps 18.66ms 56.84% 

 

 

Museum scene: 

 

 
Average Values: 
  Default 61.42fps 16.61ms  
  Foveated 121.6fps 8.50ms 97.98% 

  Depth 40.58fps 24.62ms 33.93% 
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Blacksmith scene: 

 

 
Average Values: 
  Default 17.44fps 57.09ms  
  Foveated 18.59fps 54.62ms 6.59% 

  Depth 20.11fps 49ms 15.31% 

 

 

With the increase of the amount of views the depth reuse technique proves to be a 

viable solution for performance increase. The “Museum” scene does not benefit 

from depth reuse because the scene features a small room and there are no objects 

far into the distance. If depth optimisation is used for commercial project it should 

only be enabled when there are objects far into the distance and it is beneficial for 

the performance. The foveated rendering does not provide large performance 

benefit for the “Blacksmith” and the “Viking Village” scenes with multiscopic 

rendering.  

As gaze tracking in itself is very performance intensive it could reduce the overall 

performance for multiscopic rendering, especially if it’s not used in conjunction 

with different level of detail levels.  
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4.4 Dynamic resolution 

 

The “Blacksmith” scene was used for the dynamic resolution experiments because 

it closely resembles an actual scene that could be found in a modern video game.  

The goal is to evaluate the default rendering against the two dynamic resolution 

modes implemented: Custom and Intel. The most important outcome of these 

experiments is the frames per second variable. The goal of the dynamic resolution 

is to keep the frames per second as close to the target frame rate and therefore the 

two implemented methods will be evaluated on their ability to keep the frame rate 

close to the set target. 

The dynamic resolution settings are as follows: 

- Minimum/Maximum multiplier values: 0.6 – 2 

- Rate of change: 0.1 

- Info GUI is disabled 

The frames per second targets are set to be slightly larger numbers than the 

averages: 

- 2D rendering targets 90 frames per second 

- Stereoscopic rendering targets 60 frames per second 

- Multiscopic rendering targets 20 frames per second 
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FIGURE 27 2D DYNAMIC RESOLUTION RENDERING 

 

    Default     Custom    Intel 

Average fps 85.68 89.65 89.61 

Average width 1920 1751.233 1720.41 

Average height 1080 985.06 967.73 

Average multiplier 1 0.9120 0.8960 

 

 

For traditional rendering the custom implementation is slightly better than the Intel 

implementation, but the improvement is negligible. Both custom and Intel 

implementations provide a stable adaptation to the targeted frame rate. As it can be 

seen in Figure 27 the Intel implementation has a few spikes while the Custom 

implementation is very stable and is therefore a better alternative for this particular 

scene.  
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FIGURE 28 STEREOSCOPY - DYNAMIC RESOLUTION 

 

    Default    Custom    Intel 

Average fps 50.08 59.30 59.49 

Average width 1920 1817.84 1766.88 

Average height 1080 1022.53 999.49 

Average multiplier 1 0.9467 0.9202 

 

 

For stereoscopic rendering with dynamic resolution the Intel implementation 

provides average frame rate that is closer to the targeted frame rate than the custom 

implementation. Even though the Intel implementation has better average values 

the custom implementation does not have as many spikes (Figure 28) and it 

therefore would provide a smoother overall experience. Dynamic resolution should 

be considered for use in stereoscopic application when the desired frame rate cannot 

be reached or when there are spikes of geometric quantity as it will make sure that 

the application runs smooth. Head-mounted displays would greatly benefit from 

dynamic resolution as even small decrease of frame rate leads to very bad 

experiences in virtual reality and breaks the user immersion.  
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FIGURE 29 MULTISCOPIC- DYNAMIC RESOLUTION 

 
 

    Default    Custom    Intel 

Average fps 17.43 19.03 19.28 

Average width 1920 1505.15 1464.76  

Average height 1080 846.64 835.17 

Average multiplier 1 0.7839 0.7628 

 

 

For multiscopic rendering the average value of Intel dynamic resolution 

implementation is closer to the targeted frame rate. As seen in (Figure 29) both of 

the implementations produce a lot of spikes, but as the Intel implementation 

provides closer frame rate to the target it is a better solution for multiscopic 

rendering.  

Dynamic resolution is very easy and cheap to implement for multiscopic rendering. 

It does not provide a lot of performance increase but the super sampling  

anti-aliasing that could be achieved with it really helps the visual fidelity of the 

virtual world when viewed on an automultiscopic screen. It should be considered 

for situations where the current frame rate exceeds the targeted frame rate as the 

perceived quality would greatly benefit from super sampling.  
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5. Conclusion and future work 
 

 

This section outlines the findings of this thesis and provides suggestions for future 

work. 

 

5.1 Conclusion 
 

Both foveated rendering and dynamic resolution performance optimisations proved 

to be viable solutions for traditional, stereoscopic and multiscopic rendering.  

The dynamic resolution method proposed in this project works just as well as other 

implementations and can even provide a smoother experience in some occasions.  

The depth reuse optimisation technique could potentially be used to increase the 

performance of stereoscopic and multiscopic rendering but only with special care 

to enable it when needed. Foveated rendering provides great performance increase 

and should be utilized for future head-mounted displays. It could be used to 

substantially increase the visual fidelity of future mobile virtual reality headsets and 

is important for real-time multiscopic rendering.  

All of the performance optimisations discussed in this project can be implemented 

together and provide great performance benefits for multiscopic and stereoscopic 

rendering. They could also enable the future use of mobile virtual reality devices 

for performance intensive tasks.  

This project fulfils its aim and objectives and provides additional functionality.  

It is a good starting point for future developments of the performance optimisation 

techniques and will be useful for both commercial and academic purposes. 
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5.2 Future work 
 

Future implementations of foveated rendering could use multiple shaders to 

combine the render textures. This will enable the use of more than one foveated 

region for multiscopic rendering as well as proper masking of the region. A circular 

mask could be specified with additional texture which would make the foveated 

region harder to locate and differentiate and provide better immersion.  

A custom blurring solution could be implemented for the low resolution region that 

falls outside of the foveated regions. This could help with the blending between the 

regions.  

Depth reuse should only be enabled when it could be beneficial for the performance 

and therefore a custom system that tracks the visible geometry amount can be 

implemented. Only when the geometry in the distance exceeds a predetermined 

amount would the depth optimisation system be enabled. 

Different rendering rates could be implemented for the different parts of the depth 

reuse system. The near render texture could have a refresh rate of 60 frames per 

second while the far render texture has a refresh rate of 30 frames per second.  

This would greatly increase the performance by reducing the amount of geometry 

rendered every frame. 

A combination of multiple performance optimisations discussed in this project 

could be implemented in conjunction to greatly increase frame rate. The dynamic 

resolution could be used for the far render texture of the depth reuse system. 

Foveated rendering could be implemented with numerous foveated regions, each 

one with dynamic resolution and a different target frame rate. 
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