5 research outputs found

    Automatic 3DS Conversion of Historical Aerial Photographs

    Get PDF
    In this paper we present a method for the generation of 3D stereo (3DS) pairs from sequences of historical aerial photographs. The goal of our work is to provide a stereoscopic display when the existing exposures are in a monocular sequence. Each input image is processed using its neighbours and a synthetic image is rendered, which, together with the original one, form a stereo pair. Promising results on real images taken from a historical photo archive are shown, that corroborate the viability of generating 3DS data from monocular footage

    Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion

    Get PDF
    We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity

    Single View Modeling and View Synthesis

    Get PDF
    This thesis develops new algorithms to produce 3D content from a single camera. Today, amateurs can use hand-held camcorders to capture and display the 3D world in 2D, using mature technologies. However, there is always a strong desire to record and re-explore the 3D world in 3D. To achieve this goal, current approaches usually make use of a camera array, which suffers from tedious setup and calibration processes, as well as lack of portability, limiting its application to lab experiments. In this thesis, I try to produce the 3D contents using a single camera, making it as simple as shooting pictures. It requires a new front end capturing device rather than a regular camcorder, as well as more sophisticated algorithms. First, in order to capture the highly detailed object surfaces, I designed and developed a depth camera based on a novel technique called light fall-off stereo (LFS). The LFS depth camera outputs color+depth image sequences and achieves 30 fps, which is necessary for capturing dynamic scenes. Based on the output color+depth images, I developed a new approach that builds 3D models of dynamic and deformable objects. While the camera can only capture part of a whole object at any instance, partial surfaces are assembled together to form a complete 3D model by a novel warping algorithm. Inspired by the success of single view 3D modeling, I extended my exploration into 2D-3D video conversion that does not utilize a depth camera. I developed a semi-automatic system that converts monocular videos into stereoscopic videos, via view synthesis. It combines motion analysis with user interaction, aiming to transfer as much depth inferring work from the user to the computer. I developed two new methods that analyze the optical flow in order to provide additional qualitative depth constraints. The automatically extracted depth information is presented in the user interface to assist with user labeling work. In this thesis, I developed new algorithms to produce 3D contents from a single camera. Depending on the input data, my algorithm can build high fidelity 3D models for dynamic and deformable objects if depth maps are provided. Otherwise, it can turn the video clips into stereoscopic video

    Automatic 2D-to-3D conversion of single low depth-of-field images

    Get PDF
    This research presents a novel approach to the automatic rendering of 3D stereoscopic disparity image pairs from single 2D low depth-of-field (LDOF) images. Initially a depth map is produced through the assignment of depth to every delineated object and region in the image. Subsequently the left and right disparity images are produced through depth imagebased rendering (DIBR). The objects and regions in the image are initially assigned to one of six proposed groups or labels. Labelling is performed in two stages. The first involves the delineation of the dominant object-of-interest (OOI). The second involves the global object and region grouping of the non-OOI regions. The matting of the OOI is also performed in two stages. Initially the in focus foreground or region-of-interest (ROI) is separated from the out of focus background. This is achieved through the correlation of edge, gradient and higher-order statistics (HOS) saliencies. Refinement of the ROI is performed using k-means segmentation and CIEDE2000 colour-difference matching. Subsequently the OOI is extracted from within the ROI through analysis of the dominant gradients and edge saliencies together with k-means segmentation. Depth is assigned to each of the six labels by correlating Gestalt-based principles with vanishing point estimation, gradient plane approximation and depth from defocus (DfD). To minimise some of the dis-occlusions that are generated through the 3D warping sub-process within the DIBR process the depth map is pre-smoothed using an asymmetric bilateral filter. Hole-filling of the remaining dis-occlusions is performed through nearest-neighbour horizontal interpolation, which incorporates depth as well as direction of warp. To minimising the effects of the lateral striations, specific directional Gaussian and circular averaging smoothing is applied independently to each view, with additional average filtering applied to the border transitions. Each stage of the proposed model is benchmarked against data from several significant publications. Novel contributions are made in the sub-speciality fields of ROI estimation, OOI matting, LDOF image classification, Gestalt-based region categorisation, vanishing point detection, relative depth assignment and hole-filling or inpainting. An important contribution is made towards the overall knowledge base of automatic 2D-to-3D conversion techniques, through the collation of existing information, expansion of existing methods and development of newer concepts
    corecore