7,126 research outputs found

    Geometric potential of cartosat-1 stereo imagery

    Get PDF
    Cartosat-1 satellite, launched by Department of Space (DOS), Government of India, is dedicated to stereo viewing for large scale mapping and terrain modelling applications. This stereo capability fills the limited capacity of very high resolution satellites for three-dimensional point determination and enables the generation of detailed digital elevation models (DEMs) not having gaps in mountainous regions like for example the SRTM height model.The Cartosat-1 sensor offers a resolution of 2.5m GSD in panchromatic mode. One CCD-line sensor camera is looking with a nadir angle of 26' in forward direction, the other 5' aft along the track. The Institute "Area di Geodesia e Geomatica"-Sapienza UniversitĂ  di Roma and the Institute of Photogrammetry and Geoinformation, Leibniz University Hannover participated at the ISPRS-ISRO Cartosat-1 Scientific Assessment Programme (CSAP), in order to investigate the generation of Digital Surface Models (DSMs) from Cartosat-1 stereo scenes. The aim of this work concerns the orientation of Cartosat-1 stereo pairs, using the given RPCs improved by control points and the definition of an innovative model based on geometric reconstruction, that is used also for the RPC extraction utilizing a terrain independent approach. These models are implemented in the scientific software (SISAR-Software per Immagini Satellitari ad Alta Risoluzione) developed at Sapienza UniversitĂ  di Roma. In this paper the SISAR model is applied to different stereo pairs (Castelgandolfo and Rome) and to point out the effectiveness of the new model, SISAR results are compared with the corresponding ones obtained by the software OrthoEngine 10.0 (PCI Geomatica).By the University of Hannover a similar general satellite orientation program has been developed and the good results, achieved by bias corrected sensor oriented RPCs, for the test fields Mausanne (France) and Warsaw (Poland) have been described.For some images, digital height models have been generated by automatic image matching with least squares method, analysed in relation to given reference height models. For the comparison with the reference DEMs the horizontal fit of the height models to each other has been checked by adjustment

    From ”Sapienza” to “Sapienza, State Archives in Rome”. A looping effect bringing back to the original source communication and culture by innovative and low cost 3D surveying, imaging systems and GIS applications

    Get PDF
    Applicazione di tecnologie mensorie integrate Low Cost,web GIS,applicazione di tecniche di Computational photography per la comunicazione e condivisione dei dati, sistemi di Cloud computing.Archiviazione Grandi DatiHigh Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360°shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    Enhancment of dense urban digital surface models from VHR optical satellite stereo data by pre-segmentation and object detection

    Get PDF
    The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing the 3D point list is triangulated to the resulting DSM. In urban areas this approach fails due to the size of the correlation window, which smoothes out the usual steep edges of buildings. Also missing correlations as for partly – in one or both of the images – occluded areas will simply be interpolated in the triangulation step. So an urban DSM generated with the classical approach results in a very smooth DSM with missing steep walls, narrow streets and courtyards. To overcome these problems algorithms from computer vision are introduced and adopted to satellite imagery. These algorithms do not work using local optimisation like the area-based matching but try to optimize a (semi-)global cost function. Analysis shows that dynamic programming approaches based on epipolar images like dynamic line warping or semiglobal matching yield the best results according to accuracy and processing time. These algorithms can also detect occlusions – areas not visible in one or both of the stereo images. Beside these also the time and memory consuming step of handling and triangulating large point lists can be omitted due to the direct operation on epipolar images and direct generation of a so called disparity image fitting exactly on the first of the stereo images. This disparity image – representing already a sort of a dense DSM – contains the distances measured in pixels in the epipolar direction (or a no-data value for a detected occlusion) for each pixel in the image. Despite the global optimization of the cost function many outliers, mismatches and erroneously detected occlusions remain, especially if only one stereo pair is available. To enhance these dense DSM – the disparity image – a pre-segmentation approach is presented in this paper. Since the disparity image is fitting exactly on the first of the two stereo partners (beforehand transformed to epipolar geometry) a direct correlation between image pixels and derived heights (the disparities) exist. This feature of the disparity image is exploited to integrate additional knowledge from the image into the DSM. This is done by segmenting the stereo image, transferring the segmentation information to the DSM and performing a statistical analysis on each of the created DSM segments. Based on this analysis and spectral information a coarse object detection and classification can be performed and in turn the DSM can be enhanced. After the description of the proposed method some results are shown and discussed

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec

    Open source tool for DSMs generation from high resolution optical satellite imagery. Development and testing of an OSSIM plug-in

    Get PDF
    The fully automatic generation of digital surface models (DSMs) is still an open research issue. From recent years, computer vision algorithms have been introduced in photogrammetry in order to exploit their capabilities and efficiency in three-dimensional modelling. In this article, a new tool for fully automatic DSMs generation from high resolution satellite optical imagery is presented. In particular, a new iterative approach in order to obtain the quasi-epipolar images from the original stereopairs has been defined and deployed. This approach is implemented in a new Free and Open Source Software (FOSS) named Digital Automatic Terrain Extractor (DATE) developed at the Geodesy and Geomatics Division, University of Rome ‘La Sapienza’, and conceived as an Open Source Software Image Map (OSSIM) plug-in. DATE key features include: the epipolarity achievement in the object space, thanks to the images ground projection (Ground quasi-Epipolar Imagery (GrEI)) and the coarse-to-fine pyramidal scheme adopted; the use of computer vision algorithms in order to improve the processing efficiency and make the DSMs generation process fully automatic; the free and open source aspect of the developed code. The implemented plug-in was validated through two optical datasets, GeoEye-1 and the newest PlĂ©iades-high resolution (HR) imagery, on Trento (Northern Italy) test site. The DSMs, generated on the basis of the metadata rational polynomial coefficients only, without any ground control point, are compared to a reference lidar in areas with different land use/land cover and morphology. The results obtained thanks to the developed workflow are good in terms of statistical parameters (root mean square error around 5 m for GeoEye-1 and around 4 m for PlĂ©iades-HR imagery) and comparable with the results obtained through different software by other authors on the same test site, whereas in terms of efficiency DATE outperforms most of the available commercial software. These first achievements indicate good potential for the developed plug-in, which in a very near future will be also upgraded for synthetic aperture radar and tri-stereo optical imagery processing

    Improvement of Spatial Resolution with Staggered Arrays As Used in The Airborne Optical Sensor Ads40

    Get PDF
    Using pushbroom sensors onboard aircrafts or satellites requires, especially for photogrammetric applications, wide image swaths with a high geometric resolution. One approach to satisfy both demands is to use staggered line arrays, which are constructed from two identical CCD lines shifted against each other by half a picel in line direction. Practical applications of such arrays in remote sensing include SPOT, and in the commercial environment the Airborne Digital Sensor, or ADS40, from Leica Geosystems. Theoretically, the usefulness of staggered arrays depends from spatial reslution, which is defined by the total point spread function of the imaging system and Shannon's sampling theorem. Due to the two shifted sensor lines staggering results in a double number of sampling points perpendicular to the flight direction. In order to simultaneously double the sample number in the flight direction, the line readout rate, or integration time, has to produce half a pixel spacing on ground. Staggering in combination with a high-resolution optical system can be used to fulfil the sampling condition, which means that no spectral components above the critical spatial frequency 2/D are present. Theoretically, the resolution is as good for a non-staggered line with half pixel size D/2, but radiometric dynamics should be twice as high. In practice, the slightly different viewing angle of both lines of a staggered array can result in a deteration of image quality due to aircraft motion, attitude fluctuations or terrain undulation. Fulfilling the sampling condition further means that no aliasing occurs. This is essential for the image quality in quasiperiodical textured image areas and for photogrammetric sub-pixel accuracy. Furthermore, image restoration methods for enhancing the image quality can be applied more efficently. The panchromatic resolution of the ADS40 opties is optimised for image collection by a staggered array. This means, it transfers spatial frequencies of twice the Nyquist frequency of its 12k sensors. First experiments, which were carried out some years ago, indicated alrady a spatial resolution improvement by using image restitution the ADS 40 staggered 12k pairs. The results of the restitution algorithm, which is integrated in the ADS image processing flow, has now been analysed quantitatively. This paper presents the theory of high resolution image restitution from staggered lines and practical results with ADS40 high resolution panchromatic images and high resolution colour images, created by sharpening 12k colour images with high resolution pan-chromatic ones

    Free global DSM assessment on large scale areas exploiting the potentialities of the innovative google earth engine platform

    Get PDF
    The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevada, Utah) and one Italian Region (Trentino Alto-Adige, Northern Italy) exploiting the potentiality of this platform. These are large areas characterized by different terrain morphology, land covers and slopes. The assessment has been performed using two different reference DSMs: the USGS National Elevation Dataset (NED) and a LiDAR acquisition. The DSMs accuracy has been evaluated through computation of standard statistic parameters, both at global scale (considering the whole State/Region) and in function of the terrain morphology using several slope classes. The geometric accuracy in terms of Standard deviation and NMAD, for SRTM range from 2-3 meters in the first slope class to about 45 meters in the last one, whereas for ASTER, the values range from 5-6 to 30 meters. In general, the performed analysis shows a better accuracy for the SRTM in the flat areas whereas the ASTER GDEM is more reliable in the steep areas, where the slopes increase. These preliminary results highlight the GEE potentialities to perform DSM assessment on a global scale
    • 

    corecore