362 research outputs found

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    A new data embedding method for mpeg layer III audio steganography

    Get PDF
    A new method of MP3 steganography is proposed with emphasis on increasing the steganography capacity of the carrier medium. This paper proposes a data embedding algorithm to hide more information for compressed bitstream of MP3 audio files. The sign bits of Huffman codes are selected as the stego-object according to the Huffman coding characteristic in region of Count1. Embedding process does not require the main MP3 audio file during the extraction of hidden message and the size of MP3 file cannot be changed in this step. Our proposed method caused much higher information embedding capacity with lower computational complexity compared with MP3Stego tools. Experimental results show an excellent imperceptibility for the new algorithm

    Wavelet-Based Audio Embedding & Audio/Video Compression

    Get PDF
    With the decline in military spending, the United States relies heavily on state side support. Communications has never been more important. High-quality audio and video capabilities are a must. Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several highly effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit plane coding, first difference coding, and Huffman coding. To demonstrate the potential of this audio embedding audio/video compression system, an audio signal is embedded into a video signal and the combined signal is compressed. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33dB. Finally, the audio signal is extracted with out error

    Self-Authentication of Audio Signals by Chirp Coding

    Get PDF
    This paper discusses a new approach to ‘watermarking’ digital signals using linear frequency modulated or ‘chirp’ coding. The principles underlying this approach are based on the use of a matched filter to provide a reconstruction of a chirped code that is uniquely robust in the case of signals with very low signal-to-noise ratios. Chirp coding for authenticating data is generic in the sense that it can be used for a range of data types and applications (the authentication of speech and audio signals, for example). The theoretical and computational aspects of the matched filter and the properties of a chirp are revisited to provide the essential background to the method. Signal code generating schemes are then addressed and details of the coding and decoding techniques considered. Finally, the paper briefly describes an example application which is available on-line for readers who are interested in using the approach for audio data authentication working with either WAV or MP3 files

    Theoretical Analysis of Information Watermarking in Wavelet-Based Video Compression

    Get PDF
    Embedding audio bits into images for transmission of video data alleviates the synchronization problem common in video transmission techniques. We continue work combining audio or other information bits and images into one file using digital watermarking techniques to correct the synchronization problem. The system compresses the file by using wavelet image coefficients and implementing bit plane coding. Our research encompasses incorporating five free variables into the watermark/compression technique. These variables are watermark robustness, number of coding iterations, number of image coefficients, number of watermarked information bits, and number of watermarked error correcting bits. By altering these variables, four measurements of the output change. The measurements are the information bit error rate, the image quality, the bit rate, and the amount of watermarked data. We theoretically demonstrate how the variables impact these measurements. Experimental results on real video data support our theoretical findings. By analyzing each video frame, an automated system is able to choose optimal values of the five variables to meet 5 specified measurement constraints

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Joceli Mayer

    Get PDF

    Méthodes de tatouage robuste pour la protection de l imagerie numerique 3D

    Get PDF
    La multiplication des contenus stéréoscopique augmente les risques de piratage numérique. La solution technologique par tatouage relève ce défi. En pratique, le défi d une approche de tatouage est d'atteindre l équilibre fonctionnel entre la transparence, la robustesse, la quantité d information insérée et le coût de calcul. Tandis que la capture et l'affichage du contenu 3D ne sont fondées que sur les deux vues gauche/droite, des représentations alternatives, comme les cartes de disparité devrait également être envisagée lors de la transmission/stockage. Une étude spécifique sur le domaine d insertion optimale devient alors nécessaire. Cette thèse aborde les défis mentionnés ci-dessus. Tout d'abord, une nouvelle carte de disparité (3D video-New Three Step Search- 3DV-SNSL) est développée. Les performances des 3DV-NTSS ont été évaluées en termes de qualité visuelle de l'image reconstruite et coût de calcul. En comparaison avec l'état de l'art (NTSS et FS-MPEG) des gains moyens de 2dB en PSNR et 0,1 en SSIM sont obtenus. Le coût de calcul est réduit par un facteur moyen entre 1,3 et 13. Deuxièmement, une étude comparative sur les principales classes héritées des méthodes de tatouage 2D et de leurs domaines d'insertion optimales connexes est effectuée. Quatre méthodes d'insertion appartenant aux familles SS, SI et hybride (Fast-IProtect) sont considérées. Les expériences ont mis en évidence que Fast-IProtect effectué dans la nouvelle carte de disparité (3DV-NTSS) serait suffisamment générique afin de servir une grande variété d'applications. La pertinence statistique des résultats est donnée par les limites de confiance de 95% et leurs erreurs relatives inférieurs er <0.1The explosion in stereoscopic video distribution increases the concerns over its copyright protection. Watermarking can be considered as the most flexible property right protection technology. The watermarking applicative issue is to reach the trade-off between the properties of transparency, robustness, data payload and computational cost. While the capturing and displaying of the 3D content are solely based on the two left/right views, some alternative representations, like the disparity maps should also be considered during transmission/storage. A specific study on the optimal (with respect to the above-mentioned properties) insertion domain is also required. The present thesis tackles the above-mentioned challenges. First, a new disparity map (3D video-New Three Step Search - 3DV-NTSS) is designed. The performances of the 3DV-NTSS were evaluated in terms of visual quality of the reconstructed image and computational cost. When compared with state of the art methods (NTSS and FS-MPEG) average gains of 2dB in PSNR and 0.1 in SSIM are obtained. The computational cost is reduced by average factors between 1.3 and 13. Second, a comparative study on the main classes of 2D inherited watermarking methods and on their related optimal insertion domains is carried out. Four insertion methods are considered; they belong to the SS, SI and hybrid (Fast-IProtect) families. The experiments brought to light that the Fast-IProtect performed in the new disparity map domain (3DV-NTSS) would be generic enough so as to serve a large variety of applications. The statistical relevance of the results is given by the 95% confidence limits and their underlying relative errors lower than er<0.1EVRY-INT (912282302) / SudocSudocFranceF

    Best Fit Method of Sample Selection in Data Hiding and Extraction

    Get PDF
    Today data security and its transmission over the wireless network need special attention. Intruder always has a watch on sensitive data transmitted over a wireless network. This work proposes an approach that minimizes the quantization error between the original and result carrier by selecting optimize samples during Data Hiding. Propose work find out best matching carrier components during the data hiding process. Results also imply that achieved results are far better than any other steganographic method
    corecore