208 research outputs found

    Near real-time stereo vision system

    Get PDF
    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging

    Dynamic programming for multi-view disparity/depth estimation

    Get PDF

    Constraint-based stereo matching

    Get PDF
    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency

    Stereo-Based Region-Growing using String Matching

    Get PDF
    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds

    Fast Stereo Matching by Iterated Dynamic Programming and Quadtree Subregioning

    Get PDF
    The application of energy minimisation methods for stereo matching has been demonstrated to produce high quality disparity maps. However the majority of these methods are known to be computationally expensive, requiring minutes or even hours of computation. We propose a fast minimisation scheme that produces strongly competitive results for significantly reduced computation, requiring only a few seconds of computation. In this paper, we present our iterated dynamic programming algorithm along with a quadtree subregioning process for fast stereo matching

    A New Approach for Stereo Matching Algorithm with Dynamic Programming

    Get PDF
    Stereo matching algorithms are one of heavily researched topic in binocular stereo vision. Massive 3D information can be obtained by finding correct correspondence of different points between images captured from different views. Development of stereo matching algorithm is done for obtaining disparity maps i.e. depth information. When disparities computed for scan lines then dense reconstruction becomes time consuming for vision navigation systems. So for pair of stereo images proposed method extracts features points those are at contours in images and then a dynamic program is used to find the corresponding points from each image and calculates disparities. Also to reduce the noise which may lead to incorrect results in stereo correspondence, a new stereo matching algorithm based on the dynamic programming is proposed. Generally dynamic programming finds the global minimum for independent scan lines in polynomial time. While efficient, its performance is far from desired one because vertical consistency between scan lines is not enforced. This method review the use of dynamic programming for stereo correspondence by applying it to a contour instead to individual scan lines. Proposed methodology will obtain the global minimum for contour array in linear time using Longest Common Subsequent (LCS) dynamic programming method with no disparity space image (DSI). DOI: 10.17762/ijritcc2321-8169.15025

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Design of a Real-time Image-based Distance Sensing System by Stereo Vision on FPGA

    Get PDF
    A stereo vision system is a robust method to sense the distance information in a scene. This research explores the stereo vision system from the fundamentals of stereo vision and the computer stereo vision algorithm to the final implementation of the system on a FPGA chip. In a stereo vision system, images are captured by a pair of stereo image sensors. The distance information can be derived from the disparities between the stereo image pair, based on the theory of binocular geometry. With the increasing focus on 3D vision, stereo vision is becoming a hot topic in the areas of computer games, robot vision and medical applications. Particularly, most stereo vision systems are expected to be used in real-time applications. In this thesis, several stereo correspondence algorithms that determine the disparities between stereo image pair are examined. The algorithms can be categorized into global stereo algorithms and local stereo algorithms depending on the optimization techniques. The global algorithms examined are the Dynamic Time Warp (DTW) algorithm and the DTW with quantization algorithm, while the local algorithms examined are the window based Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD) and Census transform correlation algorithms. With analysis among them, the window based SAD correlation algorithm is proposed for implementation on a FPGA platform. The proposed algorithm is implemented onto an Altera DE2 board featuring an Altera Cyclone II 2C35 FPGA. The implemented module of the algorithm is simulated using ModelSim-Altera to verify the correctness of its functionality. Along with a pair of stere image sensors and a LCD monitor, a stereo vision system is built. The entire system realizes a real-time video frame rate of 16.83 frames per second with an image resolution of 640 by 480 and produces disparity maps in which the objects are clearly distinguished by their relative distance information

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies
    • …
    corecore