
Stereo-Based Region-Growing using String

I / ) J "

,/

Matching

Robert Mandelbaum and Max Mintz

General Robotics and Aciive Sensory Perception (GRASP) Laboratory

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

October 7, 1995

Abstract

We present a novel stereo algorithm based on a coarse texture segmentation preprocess-

ing phase. Matching is performed using string comparison. Matching substrings correspond

to matching sequences of textures. Inter-scanline clustering of matching substrings yields

regions of matching texture. The shapes of these regions yield information concerning ob-

jects' height, width and azimuthal position relative to the camera pair. Hence, rather than

the standard dense depth map, the output of this algorithm is a segmentation of objects in

the scene. Such a format is useful for integration of stereo with other sensor modalities on

a mobile robotic platform. It is also useful for localization: height and width of a detected

object may be used for landmark recognition, while depth and relative azimuthal location

determine pose.

The algorithm does not rely on the monotonicity of order of image primitives. Occlu-

sions, exposures, and foreshortening effects are not problematic. The algorithm can deal

with certain types of transparencies. It is computationally efficient and very amenable to

parallel implementation. Further, the epipolar constraints may be relaxed to some small but

significant degree. A version of the algorithm has been implemented and tested on various

types of images. It performs best on random dot stereograms, on images with easily filtered

backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

1 Introduction

1.1 Motivation

A common deficiency among standard stereo algorithms is that they do not provide a segmented

representation of the scene, with each region corresponding to a distinct object in the scene. This

reduces the potential usefulness of such algorithms within the context of a mobile robotic system.

A common assumption is that if a mobile robot is to use a stereo system as a sensing modality, it

*Portions of this research were supported by the following grants and contracts: ARPA Contracts N00014-92-

J-1647, and DAAH04-93-G-0419; ARO Contracts DAAL03-89-C-0031PPd, and DAAL03-92-G0153; NSF Grants
CISE/CDA-88-22719, IRI92-10030, IRI92-09880, IRI93-03980, and IRI93-07126.

https://ntrs.nasa.gov/search.jsp?R=19960054118 2020-06-16T03:43:18+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42775998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is the task of other modulesfurther along in the dataflow pipeline to segmentthe output (usually
a densedepth-map) and extract from it whatever information is requiredby the system.

In contrast, wedesignedthe stereoalgorithm describedin this paperwith the specific intention

of using the output on a mobile robot to aid in localization of the agent. Furthermore, we wished

to use stereo in conjunction with other sensor modalities. In essence, we addressed the design of

a stereo processing technique by (a) deciding what type of output would be most useful for the

task of localization, and (b) taking into consideration how the modality would be integrated into
the system as a whole.

For these reasons, we stressed the following attributes:

1. Computational efficiency.

. predictive power: If the data representation allows prediction of expected sensor measure-

ments, then correspondence matching between extracted and stored features is facilitated.

This supports localization. The dense depth-map output by standard stereo algorithms does

not facilitate this prediction.

3. Robustness: The stereo algorithm should work well on real, uncontrived indoor images with

ordinary high-textured backgrounds.

This paper describes a stereo algorithm which is computationally highly efficient, performs well

on real scenes with highly textured backgrounds, and produces output in a form which is very

compatible with other sensor modalities. In particular, the output of height, width, azimuthal

location and range of an object in the scene is very useful for landmark recognition and localization.

1.2 Overview

In [5] it is pointed out that there are three major components of any stereo algorithm: prepro-

cessing, matching and 3-D structure determination. This is based on the assumption that the

data-flow consists of (i) an input of two or more images of the same scene from different vantage

points, and (ii) an output of a dense depth-map of the scene. Algorithms differ in the type of

preprocessing performed, and hence in the nature of the primitives upon with the matching is

executed, in the type of matching, as well as in the post-matching 3-D reconstruction.

Many trade-offs are made. Several algorithms extract features from the images. Examples of

typical features are single-edge points (often extracted by finding the zero-crossings of the con-

volution of the image with the L o G operator) 1 [2, 7, 15], and linear edge segments extracted

using some edge detector [1, 13]. Feature extraction reduces the number and ambiguity of the

primitives to be matched, thus reducing the complexity of the matching problem. Feature-based

methods also lead potentially to great accuracy since features can be located in each image to

sub-pixel precision. On the other hand, feature extraction can itself be computationally expen-

sive. Furthermore, the product of matching features is a sparse depth-map, which must then be

interpolated. Not only can the interpolation be a difficult and computationally expensive task,

but it can also lead to ambiguities in reconstruction and the blurring of the very edges which were

used for matching.

Area-based correlation methods compare windows surrounding points in both images. Various

metrics are used to evaluate how well the windows are correlated [6, 8, 14]; the windows around

points on epipolar lines with greatest correlation values are deemed to match. While such an

1where L is some discretized form of the Laplacian (second derivative) and G is a Gaussian smoothing operator.



approach leads to a dense disparity map (in theory, all non-occluded pixels have associated dis-

parities), the correlation process is very computationally intensive. In effect, the set of primitives

is the set of all windows. A large set of primitives (i) necessitates a large amount of matching, and

(ii) leads to frequent occurrences of ambiguities. A trade-off exists in selecting the window size:

the window size must be large enough to include enough intensity variation for reliable matching,

but small enough to avoid the effects of projective distortion [9]. Also, the larger the window size,

the greater the computational expense. For n x n images and a window size of w x w, the naive

correlation-based stereo algorithm has complexity O(n3w2). An effective adaptive windowing

technique is discussed in [9]. Being pixel-based, the precision of area-based correlation methods

is limited to pixel-sized discretization [3].

There are several algorithms which are pixel-based and yet do not rely on windowing techniques

[4]. This allows them both to yield a dense disparity map and to be faster since no features need

be extracted, nor are window comparisons necessary. Indeed, the algorithm described in this

paper is of this type.

In general, the greater the di_tinctlveness of the features extracted, the less matching is required,

but also the more time has to be spent in feature extraction, and the sparser the resultant disparity

map.

In many streo algorithms, assumptions are made regarding the nature of the scene:

1. Many algorithms rely on the monotonicity assumption, i.e. that the ordering of primitives

along epipolar lines is the same in both images. In fact, not only does this assumption not

always hold, but it is violated in cases where the effects of taking two different views of a

scene are greatest; it would seem that an algorithm exploiting stereo effects should utilize

rather than avoid these cases.

2. In the interests of computational efficiency, many stereo algorithms limit the search for

matches to small disparities. This is, in effect, assuming that all objects of interest are far

enough away that disparities will not be large. Once again, it would seem such algorithms

are avoiding the very effects upon which stereo is based. By limiting themselves to small

disparities, such algorithms constrain the area of interest to relatively great depths, where

errors are greatest [12, 3].

3. Most stereo algorithms have difficulty dealing with occlusions and exposures. In actual fact,

any object which stands out from the background and thus differs from its background in

disparity will cause part of that background to be occluded in one of the images. Moreover,

any occlusion in one image corresponds to an exposure in the other. Once again, it would

seem that occlusion and exposures are necessary and expected artifacts of stereopsis, and

should be manageable, if not exploited, by stereo algorithms.

4. Many stereo algorithms assume a frontal planar nature to detected surfaces. This arises

from the assumption of orthogonal rather than perspective projection, combined with a

parallel-axis stereo geometry: under these conditions, the projections of a surface onto the

two image planes are identical, regardless of the orientation of the surface; therefore, upon

reconstruction, nothing more complex than frontal planar surfaces is justified. In reality,

some information may be gleaned from the effects of foreshortening and the use of perspective

projection in stereo.

5. During 3D reconstruction, some algorithms interpolate a dense depth-map from a sparse

disparity map. Many such algorithms assume a continuous underlying "rubber" surface,



which has been stretched to pass through the detected depth points. Such a reconstruction

model blurs and smooths the edges between objects in the scene; rather than facilitating

the segmentation of the scene, clustering of points of similar depth into "objects" is made
more difficult.

While these assumptions may indeed be valid in certain environments, the invocation of these

assumptions detracts from the versatility and applicability of an algorithm. Moreover, it seems

the previous assumptions all arise from a single underlying requirement: that the product of a

stereo system should be a dense depth-map. It is assumed that if a system is to use a stereo

system as a sensing modality, it is the task of other modules further along in the dataflow pipeline

to segment this dense depth-map and extract from it whatever information is required by the

system.

In this paper we present a stereo algorithm whose output is not a dense depth-map of the

scene. In fact, the stereo modality is not used to yield depth information at all. In this work,

we move in the opposite direction to the standard data-flow. Our stereo algorithm makes use of

depth information acquired from ultrasound sensors to guide the search for correspondences. The

output of our algorithm is a partial segmentation of the scene: at the very least, the algorithm

yields information regarding the extents and azimuthal position in the scene of the particular

"segment" (i.e. object) which reflected the ultrasonic energy. We believe the output of clustered,

segmented data to be a novel aspect of stereo algorithm design. Such a format has proved to be

very useful for the integration of stereo with other sensor modalities, especially for the purposes

of landmark recognition and localization.

Several other attributes of the stereo algorithm presented in this paper are:

1. The monotonicity constraint is not inherently necessary: a string-matching algorithm which

handles transposition can be used. However, in our current implementation, we do not make

use of this capability.

2. Highly textured, or easily filtered backgrounds (as in synthetic images) are preferred.

3. Since the output of the algorithm is not a dense depth-map, occlusions and exposures do

not, in general, hinder the operation of the algorithm.

4. Foreshortening effects can be detected by the algorithm, and may, therefore, be exploited

for the reconstruction of surfaces at a non-zero angle to the image plane. We do not look

for forshortening effects in our implementation.

5. The algorithm can deal with certain types of transparencies.

6. The algorithm is computationally efficient.

7. The algorithm is very amenable to parallel implementation.

8. Preliminary experimentation has shown the approach to be qualitatively robust to slight

relaxation of the epipolar constraints.

1.3 Basic operation

The basic operation of the algorithm is described in detail in Section 2.

rithms, it is divided into three stages:

Like most stereo algo-



. In the pre-processing phase, each image is segmented very coarsely according to texture.

Texture-segmentation here includes color-segmentation and intensity-based segmentation,

among others. Each texture region is then labeled with a letter from the alphabet of possible
textures T.

2. In the matching phase, the two strings of texture labels associated with epipolar scan-

lines in the two images are compared. Matching substrings are extracted. Each substring

corresponds to a sequence of texture labels, regardless of whether members of that sequence

have been foreshortened or not. In fact, once matches have been established, the pixel widths

of corresponding texture regions may be compared; a change in region width indicates

either foreshortening or occlusion. Some higher-level reasoning system may be used to

disambiguate the two cases.

A string matching approach has several advantages: By the nature of string matching, the

uniqueness constraint 2 is propagated automatically. If long substrings are searched for first,

cohesivity is stressed, possibly at the expense of the number of total matches. Occlusions

and exposures in the scene correspond to string deletions and insertions respectively, and

cause no problems. Non-monotonicity of order of image primitives corresponds to substring

transposition, and is manageable by most sophisticated string matching algorithms. Any

of a host of new string matching algorithms developed for use with genetic data may be

called upon for the efficient execution of this phase. Finally, since each scanline is processed

independently, this phase is amenable to parallel implementation.

3. In the 3D reconstruction phase, we cluster matching substrings over multiple adjacent scan-

lines. Substrings beginning or ending at approximately the same horizontal location in

the image plane over multiple scanlines are clustered together.In this way, objects consist-

ing of similar texture patterns are segmented. Since we are interested in properties of the

multi-scanline segment and not each scanline, the algorithm allows for a certain amount of

relaxation of the epipolar constraint. Misalligned scanlines will simply result in the top or

bottom of a region being in error.

1.4 Domain of applicability

The algorithm described in this paper has been implemented and tested on various types of images

including:

• random dot stereograms,

• synthetic "blocks world" images with controlled backgrounds,

• real images of indoor scenes with controlled (low texture) backgrounds, and

• real images of indoor scenes with uncontrived (highly textured) backgrounds.

Several of the image pairs and the resultant output of the algorithm are shown in Section 3.

In general, since the algorithm treats the background in exactly the same way as the foreground

objects, it performs better on more highly textured backgrounds. For cases where the background

is less textured than the foreground objects of concern, and where foreground objects are sparse,

2The uniqueness constraint states that each primitive in the left image can be matched to only one primitive

in the right image.



most of the matching is performedon the background,and the foreground objects do not stand
out in the resulting set of matches.Matcheson a low-texture backgrounddo not generallyyield
accuratedisparity estimatessince there are no texture changeson which to fixate; background
pixels match backgroundpixels with many different disparities. Note that low texture causes
problemsonly for the background; low-textured foreground objects will still result in reliable

string matches.

For this reason, the algorithm seems to perform best on random dot stereograms, on syn-

thetic images for which the background can be filtered out, and on real scenes with uncontrived

backgrounds. See Section 3 for examples. We are currently investigating the application of this

algorithm to mobile robot localization.

1.5 Related work in stereo

Reference [5] presents a comprehensive survey of recent developments in establishing stereo cor-

respondence for the extraction of the 3D structure of a scene. In particular, we mention here the

work of Lim and Binford [10], Ohta and Kanade [15], and Cox et al [4], with which our work

shares some similarities.

In [10], preprocessing of each image consists of edgel (edge elements) detection. Edges are

linked into connected edges and curves. Surfaces are identified by boundary-tracing, and bodies

are identified as groups of surfaces that share edges. Matching is attempted at the highest level.

Results of matching are propagated to each successive lower level (surfaces, curves, edgels) [5].

As is pointed out in [5], "the advantage of this hierarchical stereo system is that the depth-map

obtained is already segmented and ready for surface interpolation." The algorithm described in

this paper shares this desireable property. One of the differences, however, is that in this work,

stereo matching is used in the region-growing phase.

In [15], the search for matches "is formulated as a path-finding problem in a 2D search space

in which vertical and horizontal axes are the right and left scanlines, respectively" [5]. Dynamic

programming is used to find the path which minimizes a cost function "based upon variances of

gray-level intensities of the scanline intervals being matched." The results of the intrascanline

search "are used to establish global consistency among matches achieved in neighboring scanlines

using an interscanline search." Edge connectivity is used to impose a consistency constraint.

Dynamic programming is also used in [4], though in that work a mazimum likelihood cost function

is optimized. Certain assumptions are made about underlying probability distributions. Several

cohesivity constraints are imposed to guarantee "that solutions minimize the original cost function

and preserve discontinuities" [4]. "The constraints are based on minimizing the total number of

horizontal and/or vertical discontinuities along and/or between adjacent epipolar lines, and local

smoothing is avoided."

There are several correspondences between the work described in this paper and those in [4]

and [15]:

. String matching is similar to the dynamic programming approach. A fundamental difference,

however, is that for string matching, no cost or regularization function need be defined;

rather, specific behavior can be guaranteed by the appropriate selection of string matching

criteria. As an example, in [4], it is shown that more accurate results are obtained if

the sum of horizontal discontinuities is minimized. The cost function is then modified to

incorporate this criterion. Using string matching, this cohesivity constraint may be satisfied

more directly by simply searching for long substring matches first; in effect, a set of matches



involving rn= adjacent pixels is deemed superior to a set of rnnc non-contiguous matches,

even if mnc > rn=.

. Differences exist in the approach taken for inter-scanline clustering. In [15] the problem

is posed as that of finding the least-cost path in a 3-D search space [5]. In [4], the prob-

lem is formulated as that of minimizing the sum of horizontal and vertical discontinuities.

Since "minimizing vertical discontinuities between epipolar lines cannot be performed by

dynamic programming" [4], an approximation is obtained by using a relaxation technique

to "minimize the local discontinuities between adjacent epipolar lines." In our implementa-

tion, matching substrings over multiple scanlines are compared; those with similar starting

or ending locations in the image plane are deemed to belong to the same cluster.

Though the algorithm described in this paper is pixel-based, it differs from area-based corre-

lation or sum of squared differeces (SSD) approaches such as those in [6, 8, 9, 14] in that no

windowing is used. Similarly, though the preprocessing phase of coarse texture segmentation may

be seen as a form of feature detection, this approach does not really fall within the genre of

feature-based stereo algorithms such as those in [1, 2, 7, 13, 15], since we are using strings of these

features for matching.

2 Stereo based on string matching

Our approach for extracting segmentation information using stereopsis comprises three phases:

texture segmentation, string matching and inter-scanline clustering.

2.1 Texture segmentation

In the pre-processing phase, each image is segmented very coarsely according to texture. The

purpose of the stereo algorithm is to "grow" these coarse segments into regions of similar texture

patterns in both images. Possible types of texture-segmentation here include color-segmentation

and intensity-based segmentation, among others. Each texture patch is then classified and labeled

with a letter from the alphabet of possible textures T. Ideally, each texture segment would

correspond to a part of an object in a scene. Since foreshortening of texture patches is expected,

ideally texture classification should also be invariant under scaling in the horizontal direction.

Similarly, the texture classification should be invariant under small changes in illumination. See

Figure 1 for an example image and the desired type of segmentation.

Let P be a texture-based segmentation operator which partitions an image into patches accord-

ing to texture. Let T denote a texture classifier assigning one of ITt labels to each patch. Let

R be a binary relation over elements of T, R C_ T x T, such that for any textures t_, tj C T,

(ti, tj) E R implies that texture ti is similar to texture tj. In other words, t_, tj C T, (t_, tj) E R

implies that a patch of texture ti in one image may be considered to correspond to a patch of

texture tj in the other image.

Hence, an implementation of this phase of the algorithm consists of

• a texture segmentation algorithm T o P capable of reliably segmenting a scene into texture

patches and classifying each patch into one of T textures, and

• a similarity relation R defined below.



Figure 1: (Left) Example of scene to be analyzed using stereopsis. (Right) Idealized

example of the type of texture segmentation suitable for stereo analysis by string

matching (as described in this paper). This segmentation was obtained manually.

Since efficient region-growing based on texture is still an open problem, in our implementation

we simplify the texture-segmentation phase and rely on the string-matching phase to "grow" the

texture segments. We consider each pixel to be its own texture patch, and we discretize the

only information we have about the pixel's "texture", i.e. its intensity, into ITI levels. Each

texture patch (i.e. each pixel in our implementation) is therefore assigned one of ITI labels.

Represent these labels with the first ITI letters of the alphabet. In our implementation, ITI = 16.

The coarseness of the discretization makes the texture classification robust in the face of small

foreshortening and illumination effects. Though this is a simple "segmentation" requiring very

little computation, the trade-off is that, for n x n images, each scanline consists of long strings

of n texture patches, making the string matching phase more computationally intensive. The

stereo algorithm is not inherently pixel-based, and the use of any reliable texture-segmentation

algorithm yielding texture patches larger than a single pixel would enhance the performance of

the string matching greatly. The specification of such a texture-segmenter is beyond the scope of
this work.

Due to the simplicity of the texture space we selected for our implementation, the similarity

relation R we chose is also simple: each texture is considered to match its immediate neighboring

textures in the alphabet, and to be dissimilar to all other textures. A binary matrix representing

R is shown in Figure 2.

If color images are available, a possible "texture" classification would consist of the discretiza-

tion of 3-dimensional (Red x Green x Blue) color space into appropriately sized bins. A possible

similarity relation R would then be

R= {(ti, tj) : tiis26-adjacent totj, ti, tjcT} U {(ti, ti) : tiET}

The crucial attribute of any such (T o P) - R combination is that T discretizes the space of

textures sufficiently finely to distinguish textures, and yet R is sufficiently rich to allow matches

among non-identical texture patches. This is necessary since noise in each image, foreshortening
and illumination effects often result in the same surface in the scene being classified differently in

the two images. In other words, if p_ and pr are corresponding texture patches in the left and right

images respectively, we do not insist that T(p_) = T(pr), but merely that (T(pl), T(p_)) C R. This

is a much easier criterion to meet since R may be designed with knowledge of the behavior of T o P

and the types of scenes involved. Indeed, R may be changed for various scene and illumination

types.



R a b c d e f -..

a 1 1 0 0 0 0

b 1 1 1 0 0 0

c 0 1 1 1 0 0

d 0 0 1 1 1 0

e 0 0 0 1 1 1

f 0 0 0 0 1 i

Figure 2: Simple similarity relation R between elements of the texture alphabet T. A

"1" in position (i, j) indicates that the texture designated by the ith character in the

texture alphabet T is deemed "similar" to the texture designated by the jth character.

In this instantiation of R, all texture are considered similar only to themselves and

to their immediate neighbors in the alphabet.

Area-based correlation approaches to stereo may be thought of as consisting of a classifier

T which assigns a texture label to each pixel based on the surrounding window. Matches are

determined by finding the closest point in texture space on the corresponding epipolar scanline.

This relies on the underlying assumption that texture is numerically quantifiable, and that the

distance metric used over texture space imposes a topology which adequately reflects reality. In

our approach, the use of the binary relation R as the metric results in a very different topology.

In effect the metric is of the 0 - 1 type, and two textures are considered either to match or not.

The relation R gives us much greater control over the topological neighborhoods of texture space,

and hence over the model of reality it reflects.

2.2 String matching for each scan-line

In the matching phase, the two strings of texture labels associated with epipolar scan-lines in

the two images are compared. Matching sequences of texture patches are extracted, even if some

of those patches have undergone foreshortening; a difference in patch widths of corresponding

textures indicates either occlusion or foreshortening.

The field of efficient string-matching alogrithms has received extensive attention in recent years

in the context of genetics and the human genome project. Any of a host of new algorithms may be

utilized for this phase of the stereo algorithm. Desireable properties of a selected string-matching

algorithm are:

• Efficient handling of deletions and insertions. These correspond to occlusions and exposures

in the image scanlines respectively.

• Efficient handling of substring transpositions. This corresponds to non-monotonicity in the

order of matching primitives in the scene.

In our implementation, we use an algorithm which does not explicitly look for transpositions, but

does produce substring matches in a form which is easily amenable to a search for transpositions.

The string matching algorithm begins by looking for long substring matches, and if no such

matches are found, progressively shorter and shorter substring matches are searched for. In this

way, cohesivity rather than high pixel-match count is stressed.

Let left and right represent corresponding epipolar strings of texture labels in the left and

right images respectively. Let the length of left and right be n. Let string_ denote the



substringof string beginningat the ith location and ending at the ruth. Denote the kth character

of string by string[k]. Note that string['[k] denotes the same character as string_[i + k - 1].

If a matching substring is found, say between the first p characters of left[' and right_, then

the algorithm recursively searches for matches of length smaller than p between the substrings

lefti1-1 and rigi_t_ -1, as well as for matches of length p and smaller between substrings left_.+p

and right}'+p. The algorithm used to compare two strings left and right in our implementation

is shown in Figure 3.

The output of the algorithm consists of the two strings with various substrings designated as

matches. Transpositions may be taken into'account in a second pass: matches may searched for

among unmatched portions of left and right which have not yet been compared.

If a naive approach is used for the string comparison function string_match, the complexity of

algorithm in Figure 3, per scanline, ranges from O(n) in the best case (complete match) to O(n 3)

in the worst case (no matches found). In our implementation, we employ a dynamic programming

approach in order to expedite the string_match function in the worst case scenario.

Let M be a n x n matrix such that Mij contains the length of the longest common prefix of

left_ and right]. In other words, for R as in Figure 2,

right2[k]) CR
and (left_[Mi,j + 1], right2[Mij + 1]) _R

As an example, consider the strings left = 'aaddbbe' and right = 'gcdbbdd'. Then

left] = 'ddbbe', and right] = 'cdbbdd'. Since (d, c) E R and (e, d) C R, the longest matching

prefix of these substrings has length 5. Hence M3,2 = 5. For this example,

M

0004100

0001300

0510021

0140011

0103100

0201200

0010011

Note that if Mi,j > 0, then Mi+l,j+l = Mi,j - 1. It is this property of M that we exploit to

expedite the search for substring matches. If the matrix M for two strings left and right was

known a priori, then the comparison of two p-length substrings of left and right would consist

of a simple table look-up rather than the O(p) character-by-character comparison naive approach;

the overall complexity of a scanline match would drop to O(n 2) in the worst case, a significant

improvement. Unfortunately, the matrix M is not known a priori. In our implementation, however,

we partially construct M as string matching progresses.

We begin by setting all values of M to -1. When searching for a substring match of length p

between ieft'i +q and right_ +r, where q, r > p, we consult the current value of Mij. If this is still

-1, then these substrings have not been compared before. We therefore compare the substrings

and find the true value of Mi,j. Mi,j cannot be larger than p since if it was, then we would have

found a match while searching for longer substring matches. If Mi,.i = p, then we have located a

match. If Mi,j < p, we update M as follows: for each value of 0 _< k <_ p, set Mi+k,j+k = Mid - k.

If upon consulting the current valuc of Mi,j, we find that it is not equal to -1, then these

substrings have been compared before; there is no need to compare them again. Hence, though

the update of M requires O(M,,j) operations, it potentially saves O(M_j) character comparisons



match_strings (left, right, left_length, right_length)

max_length = rain(left_length, right_length) ;

if (max_length == O) {

/* Base case */

record_match(left, right, 0);

return (0);

/* 0 matches found */ }

else {

p = max_length;

while (p > minimum_match_size) {

i = O;

while (i <= left_length - p) {

j =0;

while (j <= right_length - p) {

if (string-match(leftl +p, righti +p, P) == TRUE) {

/* Recursively search for matches between left_ -1 and right1-1 */
• i-1

pre_match = match-strlngs(leftl , right j-l, i-l, j-l);

record_match(leftl +p, right} +_, p) ;

/* Recursively search for matches between left_+p and right2+p */

post_match = match_strings(left_+p, rightj_+p, n-i-p+l, n-j-p+1);

return (pre_match + 1 + post_match);

/* Number of matches found */ }

j --j+i;}
i = i+l; }

p:p-1, }}

Figure 3: The algorithm used to compare two strings left and right in our im-

plementation. The ranges over which i, j and p vary may be changed to take into

account minimum possible disparities between the left and right images.



string_match(leftl +q, righti +_, length)

if (Mi,3 > -1) {

/* We have already tried a match starting at these points before */

if (Mi,j >_ length) return (TRUE);

else return (FALSE) ; }
else {

/* Must do the comparison. If successful, there is no need to update

M since we will not be accessing these portions of the strings again */
count = 0;

while (count < length AND (lefti+q[count+1], righti+_[count+1])

count = count + i; }

if (count == length) return (TRUE);

else {

/* Update M */

m= O;

while (m __ count) {

Mi+m,j+m = count - m;

m = m+1; },

return (FALSE) ; } }

E R)

Figure 4: An efficient algorithm for the string_match function which checks whether

strings leftl +q and right} +_ share a common prefix of length length.

in subsequent (shorter) substring comparisons. Efficiency is improved significantly. Hence, an

efficient algorithm for the string_match function is shown in Figure 4.

2.3 Inter-scanline clustering

Once matching substrings, and their associated disparities, have been found, a 3D reconstruction

of parts of the scene may be performed: each substring match corresponds to a horizontal strip

of an object in space. By analyzing the distortion in pixel width of each "character" (i.e. texture

patch) in the match, foreshortening or partial occlusion may be inferred. In our implementation,

however, since each primitive texture patch is a single pixel, foreshortening is more difficult to
detect.

In our implementation, we choose to cluster matching substrings over multiple scanlines by

examining their disparities, as well as their beginning and ending points: substrings with similar

disparities and beginning or ending at approximately the same horizontal location in the image

plane over multiple scanlines are clustered together. The output is a polygon in the image plane

circumscribing all contributing substrings. The polygon is assigned a disparity corresponding to

the average disparity of the contributing substrings. Thus, each polygon corresponds to a region

of corresponding texture patterns of similar disparity in the left and right images. For calibrated

cameras, the polygon may be projected back into 3D space, and corresponds to a section of a

frontal planar surface. This approach blurs information concerning disparity variation within each

region. However, for our purposes -- the extraction of objects' extents and azimuthal position



within the scene-- suchinformation is not necessary.
One advantageof this approachto inter-scanlineclustering is that it can handle certain types

of transparencies. Consider, for example, a scene comprising an object behind a Venetian blind.

Each scanline either contains the object, or one of the blades of the Venetian blind. In either case,

matching substrings are extracted, though the set of disparities will be easily partitioned into two

subsets: those corresponding to the depth of the object, and those corresponding to the depth of

the Venetian blind. The output of the algorithm in this case will consist of two polygor_s: one

circumscribing the object, the other outlining the Venetian blind. Rotation of the Venetian blind

by 90 degrees will cause a completely different effect: Each blade of the Venetian blind will now

be segemented into its own region, and the object will similarly be dissected into "vertical strips"

See Section 3.2 and Figure 7 for experiments involving synthetic images of Venetian blind scenes.

3 Experiments

The algorithm described in this paper has been implemented and tested on various types of images

including:

• random dot stereograms,

• synthetic "blocks world type" images with controlled backgrounds,

• real images of indoor scenes with controlled (low texture) backgrounds, and

• real images of indoor scenes with non-contrived (highly textured) backgrounds.

In general, since the algorithm treats the background in exactly the same way as the foreground

objects, it performs better on more highty textured backgrounds. For cases where the background

is less textured than the foreground objects of concern, and where foreground objects are sparse,

most of the matching is performed on the background, and the foreground objects do not stand

out in the resulting set of matches. Matches on a low-texture background do not generally yield

accurate disparity estimates since there are no texture changes on which to fixate ; background

matches background with many different disparities. For this reason, random dot stereograms,

synthetic images for which the background can be filtered out, and real scenes with uncontrived

backgrounds are most suitable for application of our algorithm.

3.1 Random dot stereograms

In order to test the correctness of the stereo matching algorithm, the algorithm was tested on a

random dot stereogram pair. Figure 5 shows the output generated. The output is in the form of a

polygon circumscribing the region deemed to match. Note the jagged vertical edges on both sides

of the polygon. Since the algorithm detects matches by way of string comparison, "extra" pixels

on either end of the "genuine" shifted string will often be included in the match: there is a 50%

chance of a single random pixel matching, a 25% chance of two consecutive pixels matching, etc.

Once these random artifacts of random dot stereograms are taken into account, the algorithm is

seen to perform flawlessly, correctly matching 100% of the shifted pixels.



,A,

Figure 5: A random dot stereogram pair and the output of the algorithm in the

form of a polygon circumscribing the matching region. The jagged vertical edges

are a result of random "extra" matching pixels adjacent to the shifted region. 100%

of actual shifted pixels are identified. Processing time for these 125 × 120 images,

including the clustering into the polygon, is approximately 20 seconds on a $parc 10.

3.2 Synthetic images

Figure 6 shows a pair of blocks world images of an assortment of objects. Directly below the

images is the output of the algorithm where no distinction has been drawn between background

and objects; the longest matching strings therefore comprise mostly background, and swamp the

output. The next image illustrates the output once the algorithm has been instructed to filter

out the dark background and black "floor". Regions correspond very well to the objects. The last

pair of images shows the polygons thus found superimposed on the original images to show how

the regions match the underlying images.

Figure 7 illustrates the ability of the stereo algorithm to handle certain restricted types of

transparency. The top figure shows a rectangular block behind a horizontal Venetian blind. The

output of the algorithm is shown below it: two regions are found, each corresponding to one of

the objects in the scene. The numbers next to each polygon are the disparities associated with

the region: The Venetian blind has a disparity of 18 pixels, whereas the more distant block has

been successfully segmented at a lower disparity of 8 pixels, despite the foreground occlusion by
the Venetian blind.

When the Venetian blind is placed vertically, the algorithm fails to cluster all portions of the

block into a single region. The block has been "dissected" into three vertical strips. Due to large

perspective differences between the two images, the blades of the Venetian blind are not found.

3.3 Real images

3.3.1 Non-textured background

Figure 8 shows two sets of real images involving a chair against a relatively low-texture background.

In the first set of images, the illumination was from above; in the second set of images, an additional

illumination source was placed facing the chair so that a shadow of the chair was cast on the

background wall. In both sets of images, the output polygons of the algorithm are superimposed

on the images.

In both sets of images, the non-textured background is seen to swamp the output: the largest

polygons correspond to the background wall or curtain, or to the floor. Since these are real images,



(a)

(b)

(c)

(d)

Figure 6: (a) Left and right blocks world images of an assortment of objects. (b)

Output of algorithm on images including background and floor. (c) Output of algo-

rithm on objects only (background and floor filtered out). Numbers represent average

disparity for each region: more distant cylinder has lower disparity than front two

objects. (d) Corresponding regions superimposed on the images.



(a)

(b)

Figure 7: Example illustrating ability to handle certain types of transparency. (a)

Left and right images of block behind horizontal Venetian blind, and corresponding

output: two regions are found, one corresponding to the Venetian blind (average

disparity 18), and the other to the more distant block (average disparity 8). (b) Left

and right images of block behind vertical Venetian blind, and corresponding output:

the block has been "dissected" into three vertical strips of average disparities 8, 9 and

9. Large perspective differences between the two images precludes the matching of

the blades of the Venetian blind.



(a)

(b)

Figure 8: (a) Real left and right images of a chair against a controlled (low-texture)

background, and the associated output. Though the shape of the chair is segmented,

the largest regions correspond to the background. Since the intensities of objects and

background are similar in real images, it is much more difficult to filter out background

before processing than in synthetic images. (b) Real left and right images of a chair

against a controlled (low-texture) background, and the associated output. Additional

illumination from the front casts a shadow of the chair on the wall. Both chair and

shadow are segmented, though the output is swamped by matches of the background.



28G

Figure 9: Output for a pair of real images with a non-contrived background. All

.regions are found to be portions of a frontal planar surface at distance 286 centime-

ters. Most notable region corresponds to the column. Examine the distances of the

extracted region from the portion around the checker-board pattern at the lower left

of the column: the algorithm has matched corresponding portions of the column,

despite changes in perspective between the two images.

it is much more difficult to filter out the background and floor without also removing parts of the

foreground objects of interest. Nevertheless, in the first set of images, the back and seat of the

chair are segmented. Similarly, in the second set of images, both the chair and its shadow are

clustered well into regions.

The errors in matching which are labelled "A" in the first set of images are due to noise in the

images and differences in illumination between the left and right image. Those labelled "B" are

due either to image noise, illumination effects, or to a misalignment of epipolar lines. The upper

error occurs at a horizontal junction between dark and light areas, while the lower error is caused

by a a small spot (electric socket) on the rear wall. The additional illumination in the second set

of images creates greater contrast, and hence exacerbates these effects.

3.3.2 Textured background

Finally, Figure 9 shows the algorithm operating on a real set of images involving an non-contrived,

textured background. Most of the regions corresponding to background objects do not exceed the

minimum size requirement to be considered interesting. In fact, only five regions are displayed:

two correspond to carpet, one to a patch of the side wall, one to the light fixture (matched with

incorrect disparity), and one to the foreground column. The scene is similar to that of Figure 1,
except that no chair is present.

The quality of the region corresponding to the column is significant: at first glance, it may

appear that the algorithm has matched different portions of the column: in the left image, the

region is aligned with the right-hand edge of the column, whereas in the right image, the region is

aligned with the left edge of the column. However, the algorithm has, in fact, matched correspond-

ing portions of the column very well. This can most easily be checked by examining the portion

around the checker-board pattern on the lower left of the column: the polygon weaves around

the pattern at approximately the same distance in both images. The reason for the apparent

misalignment is that the two images show different perspectives of the column. The numbers in

the image represent approximate depths; all regions were found with the same approximate dis-

parity, and hence are shown with the same approximate depth of 286 centimeters. As mentioned

in Section 2.3, each region is deemed to correspond to a portion of a frontal planar surface in



space.

4 Conclusions

We have presented a novel stereo algorithm based on a coarse texture segmentation preprocessing

phase. We selected a very simple texture segmentation preprocessing phase for our implementa-

tion: each pixel defines its own texture patch, and its intensity level is used to infer a texture

label. More sophisticated texture segmentation would enhance the performance of the algorithm

considerably. The use of texture labels rather than values allows greater versatility in the choice

of the similarity relation between textures, and hence in the choice of topology in texture space:

instead of the relation imposed by the usual metric on real numbers, any similarity relation may

be specified.

Matching is performed using string comparison. A string matching approach has several advan-

tages: By the nature of string matching, the uniqueness constraint is propagated automatically.

If long substrings are searched for first, cohesivity is stressed, possibly at the expense of the

number of total matches. Occlusions and exposures in the scene correspond to string deletions

and insertions respectively, and cause no problems. The monotonicity constraint is not inherently

necessary: a string-matching algorithm which handles transposition can be used. Any of a host

of new string matching algorithms developed for use with genetic data may be called upon for

the efficient execution of this phase. Finally, since each scanline is processed independently, this

phase is amenable to parallel implementation.

Matching substrings correspond to matching sequences of textures, even in the presence of

foreshortening. By analyzing the widths in the image plane of matching members of a sequence,

foreshortening effects can be detected. In theory, these effects may be exploited for the recon-

struction of surfaces at a non-zero angle to the image plane. In practice, however, it is difficult to

disambiguate foreshortening from occlusion.

Inter-scanline clustering of matching substrings yields regions of matching texture. The shapes

of these regions yield information concerning objects' heights, widths and azimuthal positions

relative to the camera pair, while the average disparity of pixels in these regions may be used to

estimate the objects' distances. Hence, rather than the standard dense depth map which must

still be segmented and further processed, the output of this algorithm is a partial description

of objects in the scene. We believe the output of clustered, partially segmented data by a stereo

algorithm to be novel. Such a format has proved to be very useful for the integration of stereo with

other sensor modalities. In particular, we are currently investigating the utility of this approach,

in conjunction with other modalities, for pose estimation and mobile robot localization Ill].

The algorithm can deal with certain types of transparencies. Further, the nature of the approach

permits a slight realxation of the epipolar constraints. Furthermore, the algorithm is computation-

ally efficient: the particular version of the algorithm which was implemented for the experiments

in this paper uses a dynamic programming approach to keep the complexity somewhere between

O(n 2) (best case) and O(n 3) (worst case) for an n x n image, including the time required for

intra-scanline clustering. This compares favorably with the complexity for window-based corre-

lation or SSD methods (O(naw 2) for w-sized windows and for unclustered output). Comparison

of efficiency with feature-based approaches is difficult, since the complexity of a feature-based

approach depends on the type of feature detection performed.

The speed of the algorithm may be greatly enhanced by integration with other sensing modal-

ities. In our implementation, for example, the ultrasound modality is used to measure depth of

an object of interest. This measurement is used as to infer approximate disparity, and hence to



guide the searchfor substring matches. The output of the stereoalgorithm is not the depth of

the object, which has already been measured accurately by the ultrasound modality. The output

is, instead, the physical extents (width and height) and azimuthal location (relative to the cam-

era pair) of that object of interest. This information, in conjuction with data from other sensor

modalities, is very useful for landmark recognition and localization of a mobile robot. We are

currently investigating this area of application.

The version algorithm has been tested on random dot stereograms, synthetic "blocks world" im-

ages with controlled backgrounds, indoor real images with controlled (low texture) backgrounds,

and indoor real images with uncontrived (highly textured) backgrounds. The results are encour-

aging, with 100% successful matching on shifted pixels in the random dot stereogram, and good

qualitative segmentation of images with easily filtered backgrounds (such as in synthetic images).

Perhaps most significant, however, is the successful segmentation of foreground objects against a

highly textured backgound in real uncontrived scenes.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

N. Ayache and B. Faverjon. Efficient registration of stereo images by matching graph de-

scriptions of edge segments. International Journal of Computer Vision, pages 107-131, 1987.

H. Baker and T. Binford. Depth from edge and intensity based stereo. Proc. of 7th Int. Joint

Conf. Artificial Intell., pages 631-636, August 1981.

S. Blostein and T. Huang. Error analysis in stereo determination of 3-d point positions. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 9(6):752-765, November 1987.

I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. A maximum likelihood stereo algorithm.

Submitted to CVGIP, 1994.

U. R. Dhond and J. K. Aggarwal. Structure from stereo -- a review. IEEE Transactions on

Systems, Man, and Cybernetics, 19(16), November/December 1989.

D. Gennery. Object detection and measurement using stereo vision. In Proceedings of the

1980 Image Understanding Workshop, pages 161-167, April 1980.

W. Crimson. Computational experiments with a feature-based stereo algorithm. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 7(1):17-34, January 1985.

M. Hannah. Bootstrap stereo. In Proceedings of the 1980 Image Understanding Workshop,

pages 201-208, April 1980.

T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: The-

ory and experiment. [EEE Transactions on Pattern Analysis and Machine Intelligence,

16(9):920-932, September 1994.

H. S. Lim and T. O. Binford. Stereo correspondence: A hierarchical approach. In Proceedings

of the i987 Image Understanding Workshop, pages 234-241, February 1987.

R. Mandelbaum. Sensor Processing for Mobile Robot Localization, Ezploration and Naviga-

tion. PhD thesis, University of Pennsylvania, 1995.



[12] L. Matthies and S. Sharer.Error modeling in stereonavigation. IEEE Journal of Robotics

and Automation, 3(3):239-248, June 1987.

[13] G. Medioni and R. Nevatia. Segment-based stereo matching. Computer Vision, Graphics,

Image Processing, 31:2-18, 1985.

[14] H. Moravec. Towards automatic visual obstacle avoidance. Proc. of 5th Int. Joint Conf.

Artificial Intell., page 584, 1977.

[15] Y. Ohta and T. Kanade. Stered by intra- and inter-scanline search. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 7(2):139-154, March 1985.




