6 research outputs found

    Ignorable Information in Multi-Agent Scenarios

    Get PDF
    In some multi-agent scenarios, identifying observations that an agent can safely ignore reduces exponentially the size of the agent's strategy space and hence the time required to find a Nash equilibrium. We consider games represented using the multi-agent influence diagram (MAID) framework of Koller and Milch [2001], and analyze the extent to which information edges can be eliminated. We define a notion of a safe edge removal transformation, where all equilibria in the reduced model are also equilibria in the original model. We show that existing edge removal algorithms for influence diagrams are safe, but limited, in that they do not detect certain cases where edges can be removed safely. We describe an algorithm that produces the "minimal" safe reduction, which removes as many edges as possible while still preserving safety. Finally, we note that both the existing edge removal algorithms and our new one can eliminate equilibria where agents coordinate their actions by conditioning on irrelevant information. Surprisingly, in some games these "lost" equilibria can be preferred by all agents in the game

    Reasoning with imprecise trade-offs in decision making under certainty and uncertainty

    Get PDF
    In many real world situations, we make decisions in the presence of multiple, often conflicting and non-commensurate objectives. The process of optimizing systematically and simultaneously over a set of objective functions is known as multi-objective optimization. In multi-objective optimization, we have a (possibly exponentially large) set of decisions and each decision has a set of alternatives. Each alternative depends on the state of the world, and is evaluated with respect to a number of criteria. In this thesis, we consider the decision making problems in two scenarios. In the first scenario, the current state of the world, under which the decisions are to be made, is known in advance. In the second scenario, the current state of the world is unknown at the time of making decisions. For decision making under certainty, we consider the framework of multiobjective constraint optimization and focus on extending the algorithms to solve these models to the case where there are additional trade-offs. We focus especially on branch-and-bound algorithms that use a mini-buckets algorithm for generating the upper bound at each node of the search tree (in the context of maximizing values of objectives). Since the size of the guiding upper bound sets can become very large during the search, we introduce efficient methods for reducing these sets, yet still maintaining the upper bound property. We define a formalism for imprecise trade-offs, which allows the decision maker during the elicitation stage, to specify a preference for one multi-objective utility vector over another, and use such preferences to infer other preferences. The induced preference relation then is used to eliminate the dominated utility vectors during the computation. For testing the dominance between multi-objective utility vectors, we present three different approaches. The first is based on a linear programming approach, the second is by use of distance-based algorithm (which uses a measure of the distance between a point and a convex cone); the third approach makes use of a matrix multiplication, which results in much faster dominance checks with respect to the preference relation induced by the trade-offs. Furthermore, we show that our trade-offs approach, which is based on a preference inference technique, can also be given an alternative semantics based on the well known Multi-Attribute Utility Theory. Our comprehensive experimental results on common multi-objective constraint optimization benchmarks demonstrate that the proposed enhancements allow the algorithms to scale up to much larger problems than before. For decision making problems under uncertainty, we describe multi-objective influence diagrams, based on a set of p objectives, where utility values are vectors in Rp, and are typically only partially ordered. These can be solved by a variable elimination algorithm, leading to a set of maximal values of expected utility. If the Pareto ordering is used this set can often be prohibitively large. We consider approximate representations of the Pareto set based on ϵ-coverings, allowing much larger problems to be solved. In addition, we define a method for incorporating user trade-offs, which also greatly improves the efficiency

    Contrôle intelligent de la domotique à partir d'informations temporelles multi sources imprécises et incertaines

    Get PDF
    La Maison Intelligente est une résidence équipée de technologie informatique qui assiste ses habitant dans les situations diverses de la vie domestique en essayant de gérer de manière optimale leur confort et leur sécurité par action sur la maison. La détection des situations anormales est un des points essentiels d'un système de surveillance à domicile. Ces situations peuvent être détectées en analysant les primitives générées par les étages de traitement audio et par les capteurs de l'appartement. Par exemple, la détection de cris et de bruits sourds (chute d'un objet lourd) dans un intervalle de temps réduit permet d'inférer l'occurrence d'une chute. Le but des travaux de cette thèse est la réalisation d'un contrôleur intelligent relié à tous les périphériques de la maison capable de réagir aux demandes de l'habitant (par commande vocale) et de reconnaître des situations à risque ou détresse. Pour accomplir cet objectif, il est nécessaire de représenter formellement et raisonner sur des informations, le plus souvent temporelles, à des niveaux d'abstraction différents. Le principale défi est le traitement de l'incertitude, l'imprécision, et incomplétude, qui caractérisent les informations dans ce domaine d'application. Par ailleurs, les décisions prises par le contrôleur doivent tenir compte du contexte dans lequel une ordre est donné, ce qui nous place dans l'informatique sensible au contexte. Le contexte est composé des informations de haut niveau tels que la localisation, l'activité en cours de réalisation, la période de la journée. Les recherches présentées dans ce manuscrit peuvent être divisés principalement en trois axes: la réalisation des méthodes d'inférence pour acquérir les informations du contexte(notamment, la localisation de l'habitant y l'activité en cours) à partir des informations incertains, la représentation des connaissances sur l'environnement et les situations à risque, et finalement la prise de décision à partir des informations contextuelles. La dernière partie du manuscrit expose les résultats de la validation des méthodes proposées par des évaluations amenées à la plateforme expérimental Domus.A smart home is a residence featuring ambient intelligence technologies in order to help its dwellers in different situations of common life by trying to manage their comfort and security through the execution of actions over the effectors of the house. Detection of abnormal situations is paramount in the development of surveillance systems. These situations can be detected by the analysis of the traces resulting from audio processing and the data provided by the network of sensors installed in the smart home. For instance, detection of cries along with thuds(fall of a heavy object) in a short time interval can help to infer that the resident has fallen. The goal of the research presented in this thesis is the implementation of an intelligence controller connected with the devices in the house that is able to react to user's commands(through vocal interfaces) and recognize dangerous situations. In order to fulfill this goal, it is necessary to create formal representation and to develop reasoning mechanism over informations that are often temporal and having different levels of abstraction. The main challenge is the processing the uncertainty, imprecision, and incompleteness that characterise this domain of application. Moreover, the decisions taken by the intelligent controller must consider the context in which a user command is given, so this work is made in the area of Context Aware Computing. Context includes high level information such as the location of the dweller, the activity she is making, and the time of the day. The research works presented in this thesis can be divided mainly in three parts: the implementation of inference methods to obtain context information(namely, location and activity) from uncertain information, knowledge representation about the environment and dangerous situations, and finally the development of decision making models that use the inferred context information. The last part of this thesis shows the results from the validation of the proposed methods through experiments performed in an experimental platform, the Domus apartment.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Incremental Computation of the Value of Perfect Information in Stepwise-Decomposable Influence Diagrams

    No full text
    To determine the value of perfect information in an influence diagram, one needs first to modify the diagram to reflect the change in information availability, and then to compute the optimal expected values of both the original diagram and the modified diagram. The valu
    corecore