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Abstract

Abstract

In many real world situations, we make decisions in the presence of multiple,

often conflicting and non-commensurate objectives. The process of optimizing

systematically and simultaneously over a set of objective functions is known as

multi-objective optimization. In multi-objective optimization, we have a (pos-

sibly exponentially large) set of decisions and each decision has a set of alter-

natives. Each alternative depends on the state of the world, and is evaluated

with respect to a number of criteria. In this thesis, we consider the decision

making problems in two scenarios. In the first scenario, the current state of

the world, under which the decisions are to be made, is known in advance. In

the second scenario, the current state of the world is unknown at the time of

making decisions.

For decision making under certainty, we consider the framework of multi-

objective constraint optimization and focus on extending the algorithms to solve

these models to the case where there are additional trade-offs. We focus espe-

cially on branch-and-bound algorithms that use a mini-buckets algorithm for

generating the upper bound at each node of the search tree (in the context of

maximizing values of objectives). Since the size of the guiding upper bound

sets can become very large during the search, we introduce efficient methods

for reducing these sets, yet still maintaining the upper bound property. We

define a formalism for imprecise trade-offs, which allows the decision maker

during the elicitation stage, to specify a preference for one multi-objective util-

ity vector over another, and use such preferences to infer other preferences.

The induced preference relation then is used to eliminate the dominated utility

vectors during the computation.

For testing the dominance between multi-objective utility vectors, we present

three different approaches. The first is based on a linear programming ap-

proach, the second is by use of distance-based algorithm (which uses a measure

of the distance between a point and a convex cone); the third approach makes

use of a matrix multiplication, which results in much faster dominance checks

with respect to the preference relation induced by the trade-offs. Furthermore,

we show that our trade-offs approach, which is based on a preference inference

technique, can also be given an alternative semantics based on the well known

Multi-Attribute Utility Theory. Our comprehensive experimental results on com-

mon multi-objective constraint optimization benchmarks demonstrate that the

viii



Abstract

proposed enhancements allow the algorithms to scale up to much larger prob-

lems than before.

For decision making problems under uncertainty, we describe multi-objective

influence diagrams, based on a set of p objectives, where utility values are vec-

tors in Rp, and are typically only partially ordered. These can be solved by a

variable elimination algorithm, leading to a set of maximal values of expected

utility. If the Pareto ordering is used this set can often be prohibitively large. We

consider approximate representations of the Pareto set based on ε-coverings, al-

lowing much larger problems to be solved. In addition, we define a method for

incorporating user trade-offs, which also greatly improves the efficiency.
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Chapter 1

Introduction

1.1 Background

In many real world situations, we make decisions in the presence of multi-

ple, often conflicting and non-commensurate objectives. For instance, when we

book a hotel for a holiday, we would ideally like a less expensive hotel with a

good star rating. Clearly, the objectives relating to price and rating in this case

conflict with each other. The process of optimizing systematically and simulta-

neously over a set of objective functions is known as multi-objective optimization
or vector optimization.

In a multi-objective optimization problem, we have a (possibly exponentially

large) set of decisions and each decision is associated with a set of actions (also

known as alternatives or options). Each action is evaluated on a number of

criteria. That means, an outcome of an action is a vector of objective values,

that depends on the state of the world, also commonly referred to as a state of
nature. If the world state is known prior to making decisions, then each chosen

action leads to a specific outcome. For instance, in the hotel booking example,

an outcome (e300, 3) could be associated with a particular action, representing

a hotel which costs three hundred Euros for a selected week and has rated three

stars.

In general, the multi-objective decision problems under certainty can be rep-

resented by using the multi-objective constraint optimization framework. A

multi-objective constraint optimization problem consists of a set of decision

variables, where each decision variable takes a finite values subject to a set of

1



1. INTRODUCTION 1.2 Problem Statement

constraints expressed by the decision maker; and an objective function, which

is the sum of all the utility (or cost) functions in the problem domain, where

each utility (or cost) function is defined on some subset of decision variables.

A complete assignment to the decision variables is referred to as a solution and

has an associated multi-objective utility value. The comparison between solu-

tions then reduces to the comparison between outcomes. The task of solving

a multi-objective constraint optimization problem is to determine the solutions

that are not dominated by any other existing solution, known as the optimal or

best solutions.

If the world state is unknown or hidden, then probability theory, in general, is

used to quantify the uncertainty over world state. Unlike the case of certainty,

under uncertainty each action maps to a set of outcomes, where each outcome

occurs with a known probability. Influence diagrams [Howard and Matheson,

1981] are the standard modelling tools for representing and solving sequen-

tial decision making problems under uncertainty. An influence diagrams is a

directed graphical model with different types of nodes representing the uncer-

tain quantities, decision variables and utility information of the decision maker.

Solving an influence diagram amounts to finding the optimal policy for each

decision, i.e., the aim is to find the decision alternatives with the highest (or

maximal) expected utility. Each optimal policy then maximizes the expected

utility, resulting in an optimal strategy for the influence diagram. However, if

there are several objectives involved in the decision making process, then the

associated utility will be a vector of objective values, and there will no longer

necessarily be a unique maximal expected utility value, but a set of them.

1.2 Problem Statement

Several algorithms have been proposed for solving multi-objective constraint

optimization problems including search-based (e.g., depth-first Branch-and-

Bound search) and inference-based (e.g., Variable Elimination, Tree Cluster-

ing) algorithms. For solving multi-objective influence diagrams several exact

algorithms have been proposed over the past decade, which mainly adopt the

classical variable elimination techniques. However, in both deterministic deci-

sion making and the decision making under uncertainty problem solving, the

key issue is ordering the multi-objective utility vectors.

The two most common approaches are using the Pareto ordering (or product

2



1. INTRODUCTION 1.2 Problem Statement

ordering), or a weighted coefficients model. In general, the Pareto ordering

(denoted with >) leads to a weak pre-order on multi-objective utility vectors

and hence on the decisions. For instance, in a bi-objective decision making

problem, with the Pareto ordering, which is defined by ~u > ~v ⇐⇒ u1 >

v1 and u2 > v2, two outcomes (5, 3) and (4, 5) are incomparable. In particular, if

there are several objectives and many available options, the Pareto ordering on

the decisions may lead to extremely large number of optimal outcomes, which

is unhelpful for the decision maker.

With the weighted coefficients model, the decision maker has to assign different

weights for the objectives. For example, a weight 0.7 for the first objective and

a weight 0.3 for the second objective, evaluates to a utility value of 0.7 × 5 +
0.3× 3 = 4.4 for (5, 3), and a utility value of 0.7× 4 + 0.3× 5 = 4.3 corresponds

to (4, 5), thus (5, 3) is preferred to (4, 5). In a weighted coefficients model, the

weights determine the trade-offs between different objectives, i.e., how much

the decision maker is willing to lose one objective in order to gain one unit of

another objective.

However, with the weighted coefficients model, determining the appropriate

weights for the objectives is a difficult task because eliciting weights from the

decision maker is time-consuming; the reason could be that the decision maker

might not have clear idea about the weights that fit exactly with their pref-

erences; or there can be a group of experts involved in the decision making

process, and each one of them has different ideas about the relative importance

of the objectives. It can be undesirable to force the decision maker to define

precise trade-offs between the objectives since they may not have clear idea

about them, and it may lead to somewhat arbitrary decisions.

Search-based algorithms for constraint optimization problems, such as depth-

first branch-and-bound generate an upper bound, which is a set in the multi-

objective context, during the search for optimal solutions. The other issue when

considering these algorithms is that the guiding upper bound sets can become

large and therefore can have a dramatic impact on the performance of the al-

gorithms.
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1.3 Research Aim

The aim of this research is: to help the decision maker in expressing his pref-

erences (or trade-offs) in a multi-objective context; to develop the dominance

relation between the multi-objective utility vectors with respect to the input

preferences; and to integrate this dominance relation (with respect to input

preferences) in the algorithms for solving multi-objective decision making prob-

lems under certainty and uncertainty.

1.4 Research Objectives

Specific objectives of this research are:

• To reason about the partial preferences of the decision maker.

• To construct a systematic procedure for testing the consistency of the input

preferences because, in many cases, the decision maker may be inconsis-

tent while expressing his preferences in this form.

• To develop mathematical model(s) based on the consistent input prefer-

ences to test the dominance relation between multi-objective vectors.

• To integrate the preference based dominance relation in the multi-

objective constraint optimization algorithms and the algorithms that solve

the multi-objective influence diagrams to eliminate the dominated utility

vectors during the computation.

1.5 Contributions

The following are the list of contributions in this thesis:

• We define a simple formalism for representing imprecise trade-offs of the

decision maker, which allows the decision maker, during the elicitation

stage, to specify a preference for one multi-objective utility vector over

another.

For instance, in the hotel booking example, it is quite easy for a decision

maker to specify that outcome (e300, 3) is better than outcome (e200, 2),

4
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which implies a constraint on the possible weights vector, but without

specifying the weights vector precisely.

• We show that the consistent set of input preferences induce a preference

relation, which can be used to eliminate the dominated multi-objective

utility vectors during the computation of multi-objective optimization

problems.

• We show that our approach for preference handling can be given as an al-

ternate semantics based on the well known Multi-Attribute Utility Theory

(MAUT).

• We develop a computational method based on the linear programming

approach for checking the resulting dominance condition, which can be

determined by using a linear programming solver (e.g., lpsolve [Berkelaar

et al., 2006]) and we show that the (incomplete) algorithm of [Zheng

and Chew, 2009] can be used as an alternative approach for testing the

dominance between multi-objective utility vectors.

• Since the multi-objective optimization algorithms need to make many

dominance checks with respect to the preference relation induced by the

imprecise trade-offs, we construct a matrix that represents the preferences

of the decision maker. We then compile the dominance check by use of

this matrix and show that it can achieve an order of magnitude speed up

over the linear programming approach.

• When using the branch-and-bound algorithms, we propose efficient meth-

ods for reducing the guiding upper bound sets, yet still ensuring the upper

bound property for both the Pareto and trade-offs case.

• We demonstrate empirically on a variety of multi-objective constraint op-

timization benchmarks that our improved algorithms outperform the cur-

rent state-of-the-art solvers by a significant margin and therefore they can

scale up to much larger problems than before.

• The Pareto ordering on multi-objective utility is a rather weak one; the

effect of this is that the set of maximal values of expected utility can often

become huge. We make use of the notion of ε-covering, which approxi-

mates the Pareto set, for the case of multi-objective influence diagrams,

and we experimentally demonstrate that the ε-covering has the major ef-

fect on the size of the maximal values of expected utility and hence on the
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computational efficiency and feasibility for larger problems.

1.6 Outline of the Thesis

In this section, we present the brief outline of this thesis.

Chapter 2: Definitions and Concepts

In this chapter, we give background material on probability theory, probabilistic

networks and discuss in detail Bayesian networks. For decision making with

certainty, we introduce the concepts of multi-objective constraint optimization.

For decision making under uncertainty, we present the frameworks of influence

diagrams, which is a generalization of Bayesian network augmented with deci-

sion variables and utility functions, and we describe decision trees.

Chapter 3: Related Work

In this chapter, we define a preference relation and discuss different preference

relations and closely look into their properties. We also describe the notion of

convex cones which we explore in Chapters 4 and 5 for testing the dominance

relation between multi-objective utility vectors. We discuss cardinal represen-
tation and relational representation of preferences and present related work on

these models. On the other hand, we study the multi-objective AND/OR branch-

and-bound and variable elimination algorithms for solving multi-objective con-

straint optimization problems, and discuss the work related to these algorithms.

We also discuss different algorithms for solving multi-objective influence dia-

grams, which include transformation based, variable elimination and arc rever-

sal and node removal algorithms. Finally, we discuss the method for approxi-

mating the Pareto set, which will be presented in detail in Chapter 5.

Chapter 4: Multi-objective Constraint Optimization with Trade-offs

In this chapter, we present our approach for preference handling, which al-

lows a decision maker to express his preferences in the form of comparison

between multi-objective utility vectors. For testing the dominance relation be-

tween multi-objective utility vectors, we describe three different approaches,

the first is based on convex cones (or linear programming); the second is based

6
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on matrix multiplication, where we construct the matrix with the help of input

preferences; and the third is based on the distance algorithm that computes

distance between a point and a convex cone. We extend the multi-objective

AND/OR branch-and-bound and variable elimination algorithms for the case

where there are additional imprecise trade-offs. Since the upper bound sets

generated during branch-and-bound search are sets of multi-objective utility

vectors, these sets can become extremely large, and we introduce some simple

and effective techniques for both no trade-offs and trade-offs cases to handle

the cardinality of these sets. We present experimental results illustrating the

effects of all our proposed methods on the standard benchmarks.

Chapter 5: Multi-objective Influence Diagrams with Trade-offs

In this chapter, we extend the variable elimination algorithm to solve multi-

objective influence diagrams for the case of additional trade-offs. We implement

three approaches defined in the previous chapter for testing the dominance

relation between multi-objective utility values. We describe an approach for

approximating the expected utility sets based on the notion of ε-covering. We

present the experimental results describing the impact of imprecise trade-offs

and approximation techniques on randomly generated multi-objective influence

diagrams.

Chapter 6: Conclusion and Future Directions

In this chapter, we summarize the achievements of the thesis and briefly discuss

distributed constraint optimization framework and limited memory influence

diagrams as a possible future directions of this research.

1.7 Publications

The original work presented in this thesis has been done in collaboration with

Dr. Nic Wilson and Dr. Radu Marinescu. Parts of this thesis have been published

in the proceedings of international conferences, which have been subject to peer

review. We list them below.

• Multi-objective Influence Diagrams. Radu Marinescu, Abdul Razak and

Nic Wilson.
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In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence
(UAI 2012), 2012.

• Multi-objective Constraint Optimization with Trade-offs. Radu Marinescu,

Abdul Razak and Nic Wilson.

In Proceedings of the 19th International Conference on Principles and Prac-
tice of Constraint Programming (CP 2013), 2013.
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Chapter 2

Definitions and Concepts

2.1 Introduction

This chapter gives the basic definitions, concepts and background needed to

study decision making problems under certainty and under uncertainty, which

are the two main areas of focus of this dissertation. In particular, we study

the concepts of Multi-objective Constraint Optimization, which is a very well-

known mathematical model for representing many real-world decision making

problems without uncertainty. For reasoning problems under uncertainty we

present the very famous and powerful framework of Bayesian Networks, and

discuss in detail the influence diagram which is a graph based formalism and an

extension of a Bayesian network, for representing and solving decision making

problems under uncertainty.

The chapter is organized as follows: Section 2.2 gives the basic concepts of

probability theory which are the foundation for Bayesian networks and influ-

ence diagrams, Section 2.3 defines probabilistic networks and explains Bayesian

network model. Section 2.4 introduces decision theory and utility theory,

the notion of multi-objective constraint optimization for deterministic decision

making is presented in Section 4.2, whereas, decision making under uncertainty

and framework of influence diagram is presented in Sections 2.4.2 and 2.4.2.1,

respectively.
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2. DEFINITIONS AND CONCEPTS 2.2 Probability Theory

2.2 Probability Theory

Probabilistic networks, such as Bayesian network is a qualitative and quanti-

tative probabilistic knowledge representations. The qualitative knowledge is

modelled into a directed acyclic graph (DAG), which represents the depen-

dence and independence relation between variables. A DAG is derived using

basic axioms of the probability theory.

In this section we present some basic concepts and axioms of probability theory

such as joint and conditional probability, which play a key role in reasoning and

decision making under uncertainty.

2.2.1 Events

Probability theory is a study of random experiments, whose outcomes or results

are unpredictable. Examples of such experiments are tossing a coin and rolling

a dice. Even though we know the outcomes of a random experiment in ad-

vance, we cannot predict exactly which of them is going to happen during the

experiment. The process of performing a random experiment is called a trial
and the set of all possible outcomes of a random experiment is known as sam-
ple space and it is denoted with the letter s. For instance, in an experiment of

rolling a die the sample space is the set of all its six faces, i.e., s = {1, 2, . . . , 6}.
In this case, the sample space s is called discrete.

Each possible collection of outcomes of a random experiment is called an event.
Events are subsets of the sample space of the corresponding random experi-

ment. If A is an event then A ⊆ s. For example, suppose that a box contains

50 tickets which have a unique number between 1 and 50 written on them. We

mix the tickets in the box thoroughly and draw a ticket randomly, and note

down the number on the ticket that has been drawn. The sample space of this

experiment will naturally be s = {1, 2, . . . , 50}. Now, let us define an event

A as ‘we draw a ticket that has prime number written on it’, then we have

A = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}, which is a subset of s.

In a random experiment, all possible events are collectively called exhaustive
events and their union is the entire sample space. If a random experiment is

conducted then at least one of them must occur. For instance, when we roll

a die then at least one of its six faces will show-up, thus all its six faces are
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2. DEFINITIONS AND CONCEPTS 2.2 Probability Theory

exhaustive.

Two eventsA andB are said to be disjoint or mutually exclusive, if the happening

of one of them prevents the other, i.e., if A happens then B cannot and vice-

versa. In the above example of drawing a ticket, if we define A to be ‘we draw

an odd numbered ticket’, B to be ‘we draw a prime numbered ticket’ and C

to be ‘we draw an even numbered ticket’ then A and C are mutually exclusive

events because they cannot happen at the same time. The events B and C

are not mutually exclusive because if we draw a ticket with number 2 written

on it, then it implies the happening of both of these events. Similarly, the

events A and B are not mutually exclusive because the tickets with numbers

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 on them imply the occurrence of A

and B in the same trial.

2.2.2 Definition of Probability

Probability is a widely used mathematical concept in the field of artificial intel-

ligence, particularly, it plays a major role in decision making under uncertainty

domain which is one of the main areas we focus in this dissertation. So, let us

define informally what exactly is meant by probability.

Consider s be the sample space of a random experiment, let A be an event such

that A ⊆ s. Then the probability of occurrence of A is denoted by P (A) and it

is defined as:

P (A) = n(A)
n(s)

where, n(A) and n(s) are the number of elements in A and s, respectively.

Clearly, for every A ⊆ s the probability function P assigns a real value between

0 and 1. If an element is selected randomly from s then P (A) denotes the chance

that the element is selected from A. Geometrically, P (A) is the percentage of

area occupied by the event A in the sample space s.

11
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Figure 2.1: Venn Diagram

Figure 2.2: Venn diagram for conditional probability

If A is the complement of A, then its probability is defined as:

P (A) = n(A)
n(s)

= n(s)− n(A)
n(s)

= 1− n(A)
n(s)

= 1− P (A)

In figure 2.1, the shaded region represents the area occupied by the event A

and the unshaded region is the area of the complement event A in s.

In an experiment, if A and B are two events as shown in figure 2.2, then the

probability of either of them happening is defined as:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

where, A ∩ B is the region common to both A and B. For example, in an

12
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experiment of rolling a dice, we want to know the probability of getting either

an even number or prime number. Let us assume A to be ‘getting even number’

then the set of favourable outcomes will be {2, 4, 6}, and B to be ‘getting prime

number’ then we have the favourable outcomes {2, 3}. Notice that, the outcome

{2} is common to both the events, i.e., 2 is favourable for the event A∩B. Then

the probability of happening of either A or B is:

P (A ∪B) = 3
6 + 2

6 −
1
6 = 2

3

2.2.3 Axioms

The probability function P , must satisfy the following axioms. These axioms of

probability are the base for the Bayes theory and thus foundation for Bayesian

network (Section 2.3.1), Influence diagram (Section 2.4.2.1) and Decision tree

(Section 2.4.3).

If s is a discrete sample space of a random experiment then we have:

Axiom 1 For any event A, 0 ≤ P (A) < 1. In particular, P (A) = 0 if and only if

A is impossible and P (A) = 1 if and only if A is certain.

Axiom 1 describes that the probability of any event is a positive real number

between 0 and 1, and it cannot be greater than 1. Also, if an event is impossi-

ble, meaning that it cannot occur, then its probability is 0. For example, in an

experiment of rolling a die, getting a number greater than 6 is an impossible

event. Whereas, the event which occurs for sure, always has the probability 1.

In the above example, getting a number below 7 is a certain event.

Axiom 2 Probability of the sample space is 1, i.e., P (s) = 1.

Axiom 2 simply says that the sum of the probabilities of all possible outcomes

in a random experiment is 1.

Axiom 3 If A and B are mutually exclusive events then the probability of

either of them happen is:

P (A ∪B) = P (A) + P (B)

13
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In general, if A1, . . . , At are t mutually exclusive events, then

P (
t⋃
i=1

Ai) =
t∑
i=1

P (Ai).

Axiom 3 implies, if no pair of events occur together then probability of one of

them occurs is equal to the sum of their individual probabilities.

2.2.4 Conditional and Joint Probabilities

Let A and B be two events. Then the probability of A given evidence that B

has already occurred, is denoted by P (A|B), and it is defined as:

P (A|B) = P (A ∩B)
P (B) , provided P (B) 6= 0.

Similarly, the conditional probability of B given evidence that A is already oc-

curred, is defined as

P (B|A) = P (A ∩B)
P (A) , provided P (A) 6= 0.

where, A ∩ B denotes the area common to both A and B. For example, in an

experiment of rolling a die, we would like to find, the probability of getting

number 1 given that an odd number has showed up. Let us define the event A

to be ‘getting 1 on the dice’ and suppose that the evidence B is ‘odd number is

noticed’. Then we have:

s = {1, 2, . . . , 6}, A = {1} and evidence B = {1, 3, 5}

Then the probability of occurrence of event A is:

P (A|B) = 1
3

The real value P (A) is called the prior probability of A. Whereas, the real num-

ber P (A|B) is called the posterior probability of A, which is updated probability

of event A based on the observation that event B has already occurred.

We say that event A is independent of B, if P (A|B) = P (A). Similarly, B is
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independent of A, if P (B|A) = P (B). If A and B are independent of each other

then we can write, P (A ∩B) = P (A) · P (B).

Using the above definition, if A and B are two events of an experiment, then

their joint probability is defined as follows:

P (A ∩B) = P (B|A)P (A) or P (A ∩B) = P (A|B)P (B). (2.1)

In the following sections, P (A,B) is sometimes written as P (A ∩B).

2.2.5 Chance Variables and Probability Distributions

Chance variable (or Random variable) is a function X : s → R, where s is a

sample space and R is set of real numbers. In other words, a chance variable

is a function that assigns real values to the outcomes of a random experiment.

The sample space s is called the domain of X and it is denoted as dom(X) = s.
Every event in s is called state, level, value, choice, option, etc. of X.

Consider an experiment of tossing two coins then we have s =
{TT, TH,HT,HH}, and if we define the chance variable X to be ‘number of

heads’ then we have the following distribution.

s TT TH HT HH

X(s) 0 1 1 2

We say that the random number X takes values 0, 1, 2. In general, if X takes

finite values x1, . . . , xm and we define P (X = xi) = pi, i = 1, . . . ,m. Then we

say P is a probability function if the following conditions hold:

(i) pi ≥ 0, for all i and

(ii)
∑
i
pi = 1

In the above example we can define the probability function as P (X = 0) =
1
4 , P (X = 1) = 1

2 and P (X = 2) = 1
4 .

A Discrete Chance Variable is one that takes a finite or countably infinite number

of values. For instance, the chance variable in the above example is discrete.

A Continuous Chance Variable is one that takes an uncountable number of val-

ues. For example, if we define X to be a real number between 0 and 1 then

there exists infinitely many possible values for X, thus it is continuous.
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In this dissertation, we only consider the cases where chance variables are dis-

crete.

2.2.6 Chain Rule for Variables

If X and Y are two chance variables and P is a probability distribution then the

chain rule says that:

P (X, Y ) = P (X|Y )P (Y ) or P (X, Y ) = P (Y |X)P (X) (2.2)

In general, if X1, . . . , Xk be the k random variables, then

P (X1, . . . , Xk) = P (Xk|X1, . . . , Xk−1)P (X1, . . . , Xk−1)

= P (X1)P (X2|X1) . . . P (Xk|X1, . . . , Xk−1)

=
k∏
i=1

P (Xi|X1, . . . , Xi−1) (2.3)

2.2.7 Bayes Rule

If X and Y are two chance variables then it follows immediately from the chain

rule given in equation (2.2) that:

P (X|Y ) = P (Y |X)P (X)
P (Y ) (2.4)

which is known as Bayes Rule.

2.2.7.1 Rule of Total Probability and Marginalization

Let X and Y be two chance variables with domains dom(X) = {x1, . . . , xm} and

dom(Y ) = {y1, . . . , yn}, respectively and P (X, Y ) is the joint probability distri-

bution of X and Y . Suppose that dom(X) and dom(Y ) are sets of exhaustive

and mutually exclusive states of X and Y then the total probability rule is given

by:

P (X = xi) =
n∑
j=1

P (xi, yj), for all i = 1, . . . ,m (2.5)
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Using (2.5) we can calculate P (X) from P (X, Y ), which is given by:

P (X) =
 n∑
j=1

P (x1, yj), . . . ,
n∑
j=1

P (xm, yj)


=
n∑
j=1

P (X, yj)

=
∑
Y

P (X, Y ) (2.6)

In equation (2.6) we can see that Y is eliminated from P (X, Y ) by summing

over all domain values of Y , this elimination procedure is also called marginal-
izing out variable Y . This mariginalization operation plays an important role in

probabilistic networks such as Bayesian networks and influence diagrams.

Example 1 » Marginalization

Let X and Y be two chance variables with dom(X) = {x1, x2, x3} and dom(Y ) =
{y1, y2, y3}. Suppose that P (X = x1) = 2

10 , P (X = x2) = 3
10 and P (X = x3) = 5

10 .
The probability of Y conditioned on X is given by the following table:

P (Y |X) =

X = x1 X = x2 X = x3

Y = y1
1
9

2
9

2
9

Y = y2
3
9

2
9

3
9

Y = y3
5
9

2
9

4
9

Suppose that we want to compute P (Y ). First, we compute P (X, Y ), i.e., we
compute the joint probability distribution of X and Y then using equation (2.6)
we can eliminate X from P (X, Y ) to obtain P (Y ).

Using equation (2.2), we have:

P (X = x1, Y = y1) = P (Y = y1|X = x1)P (X = x1)

= 2
10 ·

1
9

= 1
45

Applying similar steps to calculate probability of the remaining combinations of
states of X and Y then we obtain the complete joint probability distribution
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Figure 2.3: A DAG representation of P (X|Y1 . . . , Yk).

P (X, Y ), which is given in the following table:

P (X, Y ) =

X = x1 X = x2 X = x3

Y = y1
1
45

1
15

1
9

Y = y2
1
15

1
15

1
6

Y = y3
1
9

1
6

2
9

Now, through the marginalization we get:

P (Y ) = P (X = x1, Y ) + P (X = x2, Y ) + P (X = x3, Y )

=


1
45
1
15
1
9

 +


1
15
1
15
1
6

 +


1
9
1
6
2
9

 =


1
5
3
10
1
2


That is, the probability of Y is: P (Y = y1) = 1

5 , P (Y = y2) = 3
10 and P (Y = y3) =

1
2 .

2.2.8 Graphical Representation

If X and Y1, . . . , Yk are the sets of variables then the conditional probability

of the form P (X|Y1, . . . , Yk) can be represented using a directed acyclic graph

(DAG) as shown in the figure 2.3

In figure 2.3, the nodes (circles) represent the chance variables and the di-

rected arcs between the nodes denotes the probability dependence relation.

The chance node X is called child and the nodes Y1, . . . , Yk are called parents of

X.
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2.3 Probabilistic Network

The performance of the intelligent systems [Rudas and Fodor, 2008] in real

world requires the ability to make decisions under uncertainty based on the

available evidence. Over the past decade, probabilistic networks [Kjærulff and

Madsen, 2005] became a primary method for reasoning and acting under un-

certainty [Binder et al., 1997]. Probabilistic network is a graphical language

for representing the interactions between a set of variables. The nodes in the

network denote the variables and the directed links (also called arcs or directed

edges) between the nodes indicate the interactions (direct dependences) be-

tween the variables associated with the nodes. Any pair of non-adjacent nodes

in the network represents conditional independence between the associated

variables under particular circumstances, this can be easily captured from the

network. Thus probabilistic network is a powerful intuitive language for en-

coding such dependence and independence relations, and therefore provides a

perfect language for communicating and analysing the dependence and inde-

pendence statements between variables of a problem-domain.

In the following section we discuss a very popular probabilistic network known

as the Bayesian network.

2.3.1 Bayesian Network

The graph of the Bayesian network [Pearl, 1988] is a DAG consisting of nodes

for chance variables (circles) and directed arcs between the nodes specify the

probabilistic independence and dependence relations between the correspond-

ing chance variables. Bayesian Network was first introduced into the field of

artificial intelligence by [Pearl, 1982]. It is defined as a pair 〈X,P〉, where

X = {X1, . . . , Xk} is the set of chance variables and P is the set of conditional
probability distributions, containing one distribution, Pi = P (Xi|pa(Xi)), for

each chance variable Xi ∈ X, where pa(Xi) is a set of parents of Xi in the

graph.

The DAG of the Bayesian network encodes a joint probability distribution over

X, the conditional independence and dependence assumptions, and the prop-

erties of chain rule allow multiplicative factorization of the joint probability

distribution over X:
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Figure 2.4: A simple Bayesian Network with three variables.

P (X) = P (X1, . . . , Xk) =
k∏
i=1

P (Xi|pa(Xi)) (2.7)

Each conditional probability P (Xi|pa(Xi)) can be represented as a table, where

each entry in the table will specify the probability value of the variable Xi for

the given joint assignment of the variables in pa(Xi).

Solving a Bayesian network 〈X,P〉, with a set of random variables X having the

conditional probabilities in P amounts to compute all posterior probabilities for

a given evidence in the form of observations on the subset of variables Y in the

model, i.e., computing P (X|Y ) for all X ∈ X. If Y = ∅, i.e., no observations

are made, then the task is to compute all prior probabilities, i.e., P (X) for all

X ∈ X.

Example 2 » Bayesian Network

Figure 2.4 is a simple Bayesian Network taken from [Madsen, 1996], where it is
observed that an apple tree has started losing its leaves. The owner of the tree
wants to know, whether the tree is dry because of the drought or it is the sickness
that causes it to lose its leaves. The qualitative knowledge of this situation is
represented using a DAG, which consists of three nodes representing the chance
variables Sick, Dry and Loses. All the variables have two states ‘no’ and ‘yes’. The
chance variable Sick tells us whether or not the tree is sick, whereas, the variable
Dry tells us if the tree is dry or not and the variable Loses gives whether or not the
tree is losing its leaves. The quantitative part of the Bayesian network is given by
the probability distributions P (D), P (S) and P (L|D,S) of the variables Dry, Sick
and Loses respectively.
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The variables Dry and Sick are independent variables since they do not have
parents. Their probability distributions P (D) and P (S) are marginal distribu-
tions, whereas, the prior distribution of the variable Loses is dependent on the
states of the variables Dry and Sick. We can obtain its marginal distribution by
marginalization of the variables Dry and Sick through the combination of the
three probability distributions P (D), P (S) and P (L|D,S), i.e., we finally obtain
P (L = no ) = 0.82 and P (L = yes ) = 0.18.

Since it is observed that the tree is losing its leaves, i.e., the variable Loses is in the
state yes. Applying a similar procedure to compute the posterior distributions of
Dry and Sick given Loses is in the state yes, we obtain, Dry: P (D = no | L =
yes) = 0.53 and P (D = yes | L = yes) = 0.47 and Sick: P (S = no | L =
yes) = 0.51 and P (S = yes | L = yes) = 0.49. Hence, based on the given

evidence, sickness is the most likely cause for the tree to lose its leaves.

2.4 Decision and Utility Theory

A decision is a choice made by an individual, known as decision maker, among

a set of available alternatives (or outcomes). In order to illustrate the distinc-

tion between decision and outcomes, think of an individual willing to invest his

savings, debating between buying a property or buying some stocks on the mar-

ket. In this situation, buying a property and buying some stocks on the market

corresponds to outcomes, and a decision is to choose one of these outcomes.

Howard [Howard, 2007] describes that people usually evaluate their decisions

based on the outcomes, for instance, when someone’s investment turned out to

be a monetary loss then he usually says that he made a bad decision.

Decision theory is a theory of decisions which lies in the intersection of eco-

nomics, psychology, statistics, game theory, operations research, artificial intel-

ligence and many other [Hansson, 1994, Braziunas, 2011]. It is primarily based

on the axioms of probability and utility [Howard, 2007], where probability the-

ory provides a framework to represent the uncertain belief of the current state

under which the decisions are to be taken, and utility theory presents a set of

principles for consistency among beliefs, preferences and decisions [Henrion

et al., 1991].

Boutilier et. al [Boutilier et al., 1997] describes that the specification of a deci-

sion making problem requires the following four components: (i) an estimate
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of the current state or conditions under which the decisions are to be made; (ii)

a set of decisions (or actions) that can be taken; (iii) a model of the system dy-

namics which describes the potential outcomes of any decision; and (iv) a set of

preferences to qualify the relative goodness of particular outcomes. Although,

extracting these four components can be difficult and time consuming, human

decision analysts made enormous efforts to help elicit such information from

the decision maker [Howard, 1984]. Examples of such works can be found

in [Roy, 1989, Bouyssou, 1989, Pearl, 1996, Dyer et al., 1992, Kahneman and

Tversky, 1979] and many others.

However, once a decision making problem has been identified completely then

it can be classified according to various parameters (e.g., individual vs. group

decision making), but the majority of the problems can be categorized into one

of the following two main categories [Domshlak, 2002]:

(a) Decision making under certainty

(b) Decision making under uncertainty

A decision making problem falls into category (a) if the current state (or the

condition) is known prior to making decisions, i.e., each action leads invariably

to a specific outcome. For problems in (b) the current state is unknown at

the time of making decisions, i.e., each action leads to one of a set of possible

outcomes and each outcome occurs with known probability.

Multi-objective outcomes

In practice, often our decisions involve multiple objectives. Also, for each ob-

jective we associate an attribute (or attributes) which will indicate the degree

to which the goal of the objective is met [Keeney, 1993]. These attributes may

be measured in different measurement units. For instance, a shipping company

wants to minimize the total duration of its routes in order to improve customer

service and minimize the number of trucks used to reduce operating costs. In

this situation, we may associate the objectives, “minimize the total duration of

routes" and “minimize the trucks used” by attributes, “duration between cities"

and “number of trucks in use”, respectively. Clearly, the attributes measure-

ments are different. For simplicity, throughout this dissertation we assume that

every objective is associated with only one attribute.

In a decision making problem assume that we have a set of p conflicting objec-

tives {1, . . . , p} then the outcomes associated with each decision endowed with
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p-dimensional structure. Under certainty, every decision maps to a point in p-

dimensional space; whereas under uncertainty, a decision maps to a distribution

over the points in that space [Braziunas, 2011].

Preference and Utility Modelling

The utility theory [Von Neumann and Morgenstern, 1945] is a foundation for

both decision and game theories. Modelling preferences in the form of utility

functions became a primary concern of decision theory. Roughly, utility func-

tion gives a unique (up to isomorphic linear transformations) description of

the preferences [Domshlak, 2002]. Modelling preferences in a decision prob-

lem with several conflicting objectives is a very difficult task. To deal with this

situation, decision theorists have developed multi-attribute (or multi-objective)

utility theory (MAUT) as a way to model preferences [Keeney and Raiffa, 1993].

The most important stage of preference modelling is to identify the objectives

or attributes of decision making problems. Once the objectives are identified

then a utility function is assigned to each attribute. Each utility function then

assesses the quantity of interest into a value scale whose increments are always

equal in significance to the decision maker [Henrion et al., 1991]. The common

approach in MAUT is, find a function that combines all attribute values into a

single numerical value to compare outcomes. This function must be assessed

with respect to the preferences of the decision maker. The utility model driven

in this situation can be simple additive or more complex depending on how

the attributes are judged, i.e., independently or there exists some dependencies

among them. This and several other preference model forms are discussed in

Chapter 3.

Utility functions also represent behaviour of an individual under uncertainty,

for example, a person prefers a certain cash prize of $10 to a 60-percent chance

of $20 and 40-percent chance of $0 [Keeney and Raiffa, 1993, Henrion et al.,

1991]. Such preferences under uncertainty usually represented using simple

lottery or gamble, which is a probability distribution over outcomes. For in-

stance, if outcomes o1, . . . , on are realized with probabilities p1, . . . , pn, respec-

tively, then it is represented as

l = 〈p1, o1; . . . ; pn, on〉

Normally, outcomes with zero probability will not be included in the lottery no-

tation. A variety of techniques have been developed to assist the decision mak-
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ers in assessing their attitude towards risk by eliciting their relative preferences

among lotteries, which are formed by varying probabilities and outcomes, such

works can be found in [Keeney, 1993, Von Winterfeldt et al., 1986, Howard,

1967].

2.4.1 Decision Making under Certainty

We say that we are making decisions under Certainty, if each action is known

to lead invariably to a particular outcome.

In the following section we discuss a very well-known mathematical model,

multi-objective constraint optimization for representing and solving many deci-

sion making problems under certainty.

2.4.1.1 Multi-objective Constraint Optimization Problems

Constraint satisfaction and optimization are two important areas in the field

of Artificial Intelligence [Gavanelli, 2002]. A Constraint Satisfaction Problem
(CSP) is a framework for representing and solving many real-life decision mak-

ing problems without uncertainty. A CSP consists of a set of decision variables

which take finite values subject to a set of constraints or preferences expressed

by the decision maker. The aim of solving a CSP is to find the assignments

to the variables satisfying all the imposed constraints. A Constraint Optimiza-
tion Problem (COP) is a CSP with an additional objective function that must

be optimized. The goal of solving any COP is to determine the solutions that

satisfy all the constraints and are not worse than any already existing solution.

In a single-objective COP, it is easy to determine whether one solution is bet-

ter than the other. As a result, we obtain a single optimal or best solution in

the end. However, many real world applications, often involve two or more

objective functions, which may conflict each other. Such problems are called

Multi-objective Constraint Optimization Problems (MOCOPs). For instance, the

shipping company problem discussed above is a MOCOP, because increasing

the number of trucks reduces the duration of the routes, but it will increase the

operation costs. Thus the objective functions are clearly conflicting.

Mathematically, a CSP is defined as a triple 〈X,D,C〉, where X = {X1, . . . , Xn} is

a set of (decision) variables with finite domains D = {D1, . . . , Dn} and C is the

set of constraints or preferences. An assignment A is a function that maps some
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of the variables to values in the corresponding domain, i.e., A : {Xi} → Di. A

complete value assignment x = (X1 = x1, . . . , Xn = xn) to the variables is called

a solution. A solution that satisfies all constraints is called a feasible solution.

Suppose that there are p (≥ 1) conflicting objectives and without loss of gen-

erality we assume maximization for all objectives, then a MOCOP is defined as

〈X,D, F〉 [Marinescu, 2011], where F = {f1, . . . , fr} is the set of utility func-

tions. A utility function fi ∈ F is defined as fi : Yi → Rp, where R is set of real

numbers and Yi ⊆ X is called the scope of fi. That is, for each configuration

of variables in its scope utility functions return a vector in Rp, which is called

utility vector. The objective is to maximize the sum of all utility functions, i.e.,

maximize F(X) =
r∑
i=1

fi(Yi) is the objective function. The solution to the prob-

lem is x = (X1 = x1, . . . , Xn = xn), a complete value assignment to the decision

variables that satisfies all constraints.

We say a solution x weakly dominates another solution x′ if and only if each

attribute values in the associated utility vector of x is better than or equal to

the corresponding attribute values in associated utility vector of x′. In other

words, if ~u = (u1, . . . , up) and ~v = (v1, . . . , vp) are the utility vectors associated

with the solutions x and x′, then x weakly dominates x′ if and only if ~u ≥ ~v,

i.e., ui ≥ vi, for all i = 1, . . . , p. This dominance relation is also known as weak
Pareto dominance relation [Pareto, 1964], which is denoted by ~u ≥ ~v, where ≥
is weak Pareto dominance relation. In particular, if ~u > ~v, i.e., ~u ≥ ~v, and ~u 6= ~v

then we say that the solution x dominates or Pareto dominates the solution x′.

The relation > is called Pareto dominance relation.

Clearly, it is not always possible to determine between any pair of solutions

if one is better than the other by using weak Pareto dominance relation (or

Pareto dominance relation). Thus, the solution space of MOCOP is partially

ordered with respect to ≥. By applying Pareto dominance relation, instead of

a single optimal solution we get a set of solutions, known as Pareto optimal
solutions or non-dominated solutions, with different trade-offs between the ob-

jectives. Although, there will be multiple Pareto optimal solutions, in practice,

most probably the following steps will be taken for implementation:

(i) Generate the Pareto optimal solutions of the MOCOP.

(ii) Locate only those Pareto optimal solutions which satisfy preferences of

the decision maker.

Since the Pareto optimal solutions are mathematically equal, the decision maker
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requires to express his preferences to choose the best solutions of his interest.

The main idea behind this is that the decision maker can be able to make better

choices after knowing a variety of good solutions [Gavanelli, 2002]. However,

this approach has several drawbacks that are discussed in detail in Chapters 3,

4 and 5.

2.4.2 Decision Making under Uncertainty

Uncertainty is the primary concern in making decisions and it is represented

by probabilities. Suppose, in a decision making problem under uncertainty D

is a decision variable with options d1, . . . , dm, i.e., dom(D) = {d1, . . . , dm}, H
is a hypothesis with states h1, . . . , hn, ε is a set of observations in the form of

evidence and u is utility function. In order to evaluate the actions maximizing

expected utility (EU) is probably the most common decision criteria adopted

in literature. If u(di, hj) is the utility of an outcome (di, hj) then the expected

utility of performing an action di is defined as

EU(di) =
∑
j

P (hj | ε)u(di, hj),

where P is the probability distribution over H given the evidence ε. The utility

function u represents the preferences of the decision maker on a numerical

scale. Making optimal decision under uncertainty is to choose an option with

highest expected utility, this is known as maximum expected utility principle.
Choosing an action, which maximizes the expected utility is to find a decision

option d such that

d = arg max
di∈dom(D)

EU(di)

In rest of this section we discuss two graph based formalisms Influence Dia-
gram and Decision Tree for representing and solving sequential decision making

problems under uncertainty.

2.4.2.1 Influence Diagrams

The success of Bayesian networks in representing probability information using

a graphical model suggested extending it to represent both preferences and util-

ity information of the decision maker in order to reason about expected utility
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[Domshlak, 2002]. The idea of this extension leads to a graph based formalism

known as influence diagram, which adds “utility nodes" or “value nodes" and

“decision nodes" to Bayesian network, and represents the dependence of utility

on conditions imposed in the model.

Influence diagrams were first introduced by [Howard and Matheson, 1984a],

and it is defined as a quadruple 〈X,D,P,U〉, where X = {X1, . . . , Xn} is a set of

chance variables representing uncertainty, D = {D1, . . . , Dm} is a set of decision

variables that are under control of the decision maker and specify the possible

decisions are to be taken over the time, P is the set of conditional probability dis-

tributions one for each chance variable Xi ∈ X, defined by Pi = P (Xi|pa(Xi)),
where Pi ∈ P and pa(Xi) ⊆ X ∪D \ {Xi}, and U = {U1, . . . , Ur} is the set of

utility (or reward) functions representing the preferences of the decision maker

and are defined on the subsets of variables Q = {Q1, . . . , Qr}, Qi ⊆ X∪D, called

scopes.

Each decision Dk ∈ D in the model is dependent on some set of variables

pa(Dk) ⊆ X ∪ D \ {Dk}, called its parents whose states will be known at the

time of making decision Dk and will have direct impact on it. It is assumed

that a decision node and its parents are parents to all subsequent decisions in

the model, this property is called no-forgetting. Like in Bayesian networks, the

chance variables are divided into two categories, the ones observed during the

evaluation of influence diagrams are called observable and unobservable are the

ones that are never observed during the whole process [Pearl, 1988].

The graph of an influence diagram is a directed acyclic graph that contains

nodes representing chance variables (circles), decision variables (rectangles)

and utility functions (diamonds). An arc emerging from a node Y into a node

representing random variable Xi denotes a probabilistic dependence relation of

Xi on Y , while an arc from a variable X into a node representing a decision

variable Dj denotes that the state of X is known when the decision Dj is to

be made. An arc from a node Z into a node representing a utility function Uk

denotes functional dependence of Uk on Z.

In an influence diagram, the decision variables are totally ordered, this is known

as regularity. The regularity implies that there should be only one sequence,

lets say D1, . . . , Dk, in which the decisions are to be made. The graph of the

influence diagram contains a directed path from one decision variable to the

next one in the decision sequence to impose the regularity. As a result of the

total order on the decision variables, the chance variables are partitioned into

27



2. DEFINITIONS AND CONCEPTS 2.4 Decision and Utility Theory

disjoint sets, denoted by Io, I1, . . . , Im. The partition induces a strict partial

order ≺ over X ∪D, given by

I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dm ≺ Im [Jensen et al., 1994],

where Io is the set of chance variables observed before first decision, Ii is the set

of chance variables observed after making decision Di and before making deci-

sionDi+1, and Im is the set of chance variables left unobserved or observed after

the last decision Dm has been made. All these properties and steps are neces-

sary in construction of the influence diagram otherwise the computed expected

utilities will not be correct.

A policy (or strategy) for an influence diagram is defined as an ordered sequence

∆ = (δ1, . . . , δm), where each δk, k = 1, . . . ,m is called the decision rule for the

decision variable Dk ∈ D and is a mapping δk : Ωpa(Dk) → ΩDk , where Ωpa(Dk) is

cartesian product of the domains of the variables in pa(Dk) ⊆ X∪D. A decision

rule for the decision Dk determines the optimal action that the decision maker

can take for all possible observations made prior to making decision Dk. We

can see that a policy ∆ assigns a value for each decision variable Di which is

dependent on its parents set pa(Di). For a policy ∆, the expected utility is given

by the expression

EU∆ =
∑
X

[(
n∏
i=1

Pi ×
r∑
j=1

Uj)]∆

Solving an influence diagram amounts to finding an optimal policy that maxi-

mizes the expected utility, that is, need to find arg max∆ EU∆. Therefore, the

aim of the decision maker is to solve the following expression, known as sum-
max-sum rule, which gives the maximum expected utility

∑
I0

max
D1
· · ·

∑
Im−1

max
Dm

∑
Im

 n∏
i=1

Pi ×
r∑
j=1

Uj

 [Jensen et al., 1994]. (2.8)

Example 3 » Standard Influence Diagram

Figure 2.5 shows the influence diagram of the oil wildcatter problem [Raiffa,
1993]. An oil wildcatter must decide either to drill or not to drill for oil at a
specific site. Before drilling, a seismic test could help determine the geological
structure of the site. The test results can show a closed reflection pattern (indi-
cation of significant oil), an open pattern (indication of some oil), or a diffuse
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Figure 2.5: A simple influence diagram with two decisions.

pattern (almost no hope of oil). The special value ‘notest’ is used if no seismic test
is performed. There are two decision variables, T (Test) and D (Drill), and two
chance variables S (Seismic results) and O (Oil contents). The probabilistic knowl-
edge consists of the conditional probability tables P (O) and P (S|O, T ), while the
utility function is the sum of U1(T ) and U2(O,D).

The following is the strict partial order ≺ imposed by the total order of the decision
variables:

{} ≺ Test ≺ Seismic ≺ Drill ≺ Oil

Here we obtained the total ordering of the variables but in general this will not
be the case. The empty set at the beginning of the ordering denotes that no ob-
servations are made before the decision on whether or not to Test. The decision
maker will have Seismic test result after making the decision to Test the soil and
before deciding whether or not to Drill the ground. Finally, Oil is observed after the
decision Drilling has been made. The optimal policy is to perform the test and to
drill only if the test results show an open or a closed pattern. The expected utility
of this policy is 22.5.
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2.4.2.2 Influence Diagrams with Multiple Objectives

The representation of influence diagram with only one objective is both unreal-

istic and inadequate for modelling most sequential decision making problems.

Incorporating multiple objectives within influence diagrams has always been

accomplished through a multi-attribute utility function as part of MAUT [Diehl

and Haimes, 2004]. MAUT has provided a variety of techniques to include

multi-objective utility functions in standard single objective influence diagrams.

Extending a single objective influence diagram to a multi-objective one, it only

requires replacement of single attribute utility nodes (or utility functions) with

new multi-attribute utility nodes (or multi-attribute functions). In other words,

in multi-objective influence diagrams, we allow more general notions of utility

functions, which allow utility values to be vectors, known as utility vectors, in

Rp, where p is the number of objectives. Each element in the utility vector is a

different measurable objective, for example, one based on monetary gain, and

one based on risk to health. On the other hand, the graphical representation

of multi-objective influence diagrams is identical to that of standard influence

diagrams.

Formally, a multi-objective influence diagram with p(≥ 1) objectives is defined

as a quadruple 〈X,D,P,U〉, where X = {X1, . . . , Xn} is a set of chance variables

representing uncertainty, D = {D1, . . . , Dm} is a set of decision variables, P is

the set of conditional probability distributions, and U = {U1, . . . , Ur} is the set

of utility functions, which represents the preference of the decision maker over

the p-objectives. Each utility function is defined as Uj : ΩQj → Rp, where Qj is

the scope of Uj. Since the utility vectors are now elements in Rp, the Pareto (or

Product) ordering (see Section 4.2), in general, is used to compare them. This

indicates that we will no longer necessarily have a unique maximal values of

expected utility, but a set of them. Different algorithms to solve multi-objective

influence diagrams are discussed in Chapter 3 (Section 3.4) and we present our

approach to solve these models in Chapter 5 (Section 5.2).

2.4.3 Decision Trees

The notion of decision trees was first presented by the pioneering work of

[Von Neumann and Morgenstern, 1945] for game theory, and introduced by

[Raiffa, 1993]. Decision tree is a graph based formalism for sequential deci-

30



2. DEFINITIONS AND CONCEPTS 2.4 Decision and Utility Theory

sion making under uncertainty. A decision tree is defined as a triple 〈X,D,P〉,
where X is a set of chance variables representing the uncertain environment of

the problem domain and D is a set of decision variables specifying the possible

actions that the decision maker can take at specific point of time, though the

decision variables are controlled by the decision maker but he does not know

exactly the outcomes of the actions because the outcomes not only depends

on his choices but also on some subset of unpredictable variables in X, and P

is the set of conditional probability distributions, containing one distribution,

Pi = P (Xi|pa(Xi)), for each chance variable Xi ∈ X.

The graph of the decision tree consists of two types of nodes, decision nodes

drawn as squares which represent the decision variables and chance nodes de-

signed by circles for representing chance variables. The tree is constructed using

top-down approach, i.e., starting from the root of the tree and going down to-

wards its branches. It is assumed that, at each decision node in the tree, there

are only a finite number of alternatives available for the decision maker. The

decision maker then selects a course of action at each decision node, which is

shown as branch emerging to the right side of the decision node in the tree.

The chance node in the tree indicates that an event is expected at that point.

The terminal branches of the tree determine the utility (or pay-off) associated

with the series of actions and events that occur along each path.

The decision trees are usually solved based on the average-out and fold-back

strategy, this implies, starting from the terminal node in each path, the task of

averaging-out process is to compute the expected utility value. The task of fold-

back process is to choose the decision alternative having the highest expected

utility value. To solve a decision tree model, the decision maker starts with the

leaf node in each path and move towards left until he reaches the root node by

applying the process of averaging-out at chance nodes and fold-back at decision

nodes.

Example 4 » Decision Tree

Figure 2.6 shows the decision tree of the problem described in Example 3. The de-
cision variables test (T ) and drill (D) are represented as square boxes and chance
variables Seismic results (S) and oil contents (O) as circles. For simplicity, we
assume that the chance variable Seismic results has only three outcomes diffuse,
open and closed patterns, respectively. In figure, the paths emerging from the
chance variable represent its possible outcomes and are assigned a probability
value, whereas, the paths emerging from the decision nodes represent that the
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Figure 2.6: A decision tree of the oil wildcatter problem.

possible actions that can be taken. The terminal branches of the tree specifies the
associated utility value of the actions and the events that occur along each path.

Despite the fact that the complex problem is better understood through its de-

cision tree representation, decision tree has several disadvantages. Firstly, a

small change in the input data cause large changes in the tree; in some cases

such as changing variables and removing the duplicate information can lead to

redrawing the tree. Secondly, its complexity; it is easy to compare the decision

tree with any other decision making model but constructing it, specially with

many branches is complex and time consuming.

2.5 Summary

This chapter presented the basic concepts of probability theory and introduced

probabilistic networks for reasoning and decision making under uncertainty. A

probabilistic network is an effective representation of dependence and indepen-

dence relations among sets of random variables. The framework of Bayesian

network was discussed to represent and process probabilistic knowledge. Since
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they are the effective representation of probabilistic knowledge this makes them

powerful tools for reasoning under uncertainty.

We have presented the concepts of the decision and utility theories and dis-

cussed decision making problems with multiple objectives under certainty and

uncertainty. The framework of multi-objective constraint optimization was dis-

cussed for decision making without uncertainties. Whereas, influence diagrams

and decision trees were introduced for representing and solving decision mak-

ing under certainty. In particular, we discussed that influence diagrams are the

extension of Bayesian networks augmented with decision variables, informa-

tion precedence relations and preference relations. For the case of decisions

with multiple objectives under uncertainty, we discussed how a standard influ-

ence diagram with single objectives can be extended to incorporate multiple

objectives.
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Chapter 3

Related Work

3.1 Introduction

This chapter gives the background and literature related to preference rela-

tions and their representation in multi-objective optimization settings. Different

techniques for representing preferences in the literature are mainly classified as

cardinal representations and relational representations, these two models will be

discussed in detail and the related work on these models will be presented.

Since there is a huge literature related to solving multi-objective constraint

optimization models, we only discuss the background and related work on

the multi-objective AND/OR branch-and-bound algorithm (search-based algo-

rithm), and variable elimination algorithm (inference-based algorithm) which

is based on the framework of AND/OR search spaces [Dechter and Mateescu,

2004], which are the two main algorithms focused on solving multi-objective

constraint optimization models in this dissertation.

Regarding solving influence diagram models, we discuss different algorithms

including transformation-based method (which transform influence diagram

models to other graphical models and apply the solution techniques related

to the newly transformed model), variable elimination methods (such as the

bucket elimination algorithm) and algorithms related to some other methods

such as arc reversal and node removal.

Finally, we discuss methods approximating the Pareto ordering, here we only

focus on ε-covering techniques presented in the literature.

The outline of the chapter is as follows: Introduction and background on pref-
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erences, properties of preference relations and preference representations are

presented in Section 4.4.1. Graph concepts, AND/OR search spaces and trees,

and algorithms for solving multi-objective constraint optimization models are

discussed in Section 3.3. Different methods and formalisms for solving influ-

ence diagram model, approximation techniques for approximating the Pareto

optimal set, and methods for incorporating the preferences during influence di-

agram evaluation are discussed in Section 3.4. Concluding remarks are given

in Section 3.5.

3.2 Preferences

Though the notion of preferences sounds simple, working with them can be

a very difficult task. There are a number of reasons for this, the most obvious

one is the cognitive difficulty of specifying preferences [Brafman and Domshlak,

2009]. However, this is often not an issue when there is only a single objective

(or attribute) that the decision maker considers to be important. For instance,

in a flight booking scenario, in which one wants to book a flight well in advance

from Cork to Hyderabad, and all the user cares about is the price of the ticket. In

this situation, finding the most suitable outcome among the set of all available

outcomes might be an easy task as we only search for the cheapest flight. How-

ever, our preferences are typically quite complicated [Brafman and Domshlak,

2009], for instance, if the decision maker also cares about flight length (includ-

ing changeover time during the journey), airline, flight class (e.g., business or

economy) and so on. Once decisions involve multiple objectives, ordering even

two outcomes can become cognitively difficult; the simple reason for this is,

one needs to consider the decision maker’s trade-offs and the interdependence

of the objectives. As the number of objectives increases, additional computation

and representational issues come into play.

3.2.1 Preference Relations and Properties

The preference relation is a crucial concept in modelling an individual’s pref-

erences in decision theory. Usually, a preference relation is a binary relation,

which compares or eliminates the unwanted (or also called dominated) ele-

ments (with respect to the relation) from a set. In this section we give some

introductory material on preference relations and their properties.
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A binary relation on a set X is a set of ordered pairs (x, y) with x, y ∈ X and

a universal binary relation on X is a set {(x, y) : x, y ∈ X}. If R is any binary

relation on X then it is a subset of universal binary relation. If any (x, y) ∈ R
then it is denoted with xRy and (x, y) 6∈ R is denoted as x 6 Ry.

If R is a binary relation on X then for any x, y ∈ X exactly one of the following

holds:

(i) xRy and yRx

(ii) xRy and y 6 Rx

(iii) x 6 Ry and yRx

(iv) x 6 Ry and y 6 Rx

When we deal with binary relations they usually are assumed to have certain

properties. In the following definition we give some of the common properties.

Definition 1 » Properties of a binary relation

A binary relation R on X is

(i) reflexive if xRx for all x ∈ X,

(ii) irreflexive if x 6 Rx for all x ∈ X,

(iii) transitive if xRy and yRz then xRz for all x, y, z ∈ X,

(iv) negatively transitive if x 6 Ry and y 6 Rz then x 6 Rz for all x, y, z ∈ X,

(v) symmetric if xRy then yRx for all x, y ∈ X,

(vi) asymmetric if xRy then y 6 Rx for all x, y ∈ X,

(vii) antisymmetric if xRy and yRx then x = y for all x, y ∈ X,

(viii) complete if xRy or yRx (or possibly both) for all x, y ∈ X.

A binary relation defined on a set, having or assumed to have certain properties,

can define an ordering (or some systematic ranking) on the elements of that

set. We distinguish between binary relations based on the properties they hold

with special names. We now present few of them that we deal within this

dissertation.

Definition 2 » Order relations

A binary relation R on X is
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(i) a preorder, if it is reflexive and transitive,

(ii) a partial order, if it is preorder and antisymmetric,

(iii) a total preorder, if it is complete and transitive,

(iv) a total order, if it is a total preorder and antisymmetric,

(v) an equivalence relation, if it is reflexive, transitive and symmetric.

For instance, the relation ≥ on A = {1, 2, 3, 4, 5} is a total pre-order and a total

order but it is not an equivalence relation because it is reflexive (i.e., a ≥ a for

all a ∈ A) and transitive (i.e., a ≥ b and b ≥ c then a ≥ c for all a, b, c ∈ A) but

not symmetric (eg., 3 ≥ 2 but 2 6≥ 3).

The relation = on A is reflexive, transitive and symmetric, therefore it is an

equivalence relation.

The equivalence relation is important, particularly when we deal preferences

with multiple objectives (i.e., preferences that are expressed on more than one

attribute). The main reason is that, it represents the notion of equally preferred

outcomes. For instance, if R is an equivalence relation on a set X then xRy
implies that x is equally preferred or equivalent to y with respect to R. An

equivalence relation on X partitions X into a class of non-empty disjoint sub-

sets, called equivalence classes, such that any two elements of X are in the same

class then they are equivalent. Formally, an equivalence class of X is defined as

follows:

Definition 3 » Equivalence class

If X is a set and R is an equivalence relation on X then R[x] = {y ∈ X : yRx} is
called the equivalence class generated by x.

For any x, y ∈ X, it can be easily seen that for any equivalence relation R on

X, R[x] = R[y] if and only if xRy [Fishburn, 1970]. This means, any two

equivalence classes are either identical or disjoint.

Indifference is another important relation that usually arises when one has to

express his preferences on a set of multi-objective outcomes, which is defined

as:

Definition 4 » Indifference relation

If R is a binary relation on a set X then the associated indifference or incompara-
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bility relation ∼ on X is defined as

x ∼ y ⇐⇒ x 6 Ry and y 6 Ry

For any x and y in X, the relation x ∼ y represents that an individual feels

there is no real difference between x and y or uncertain about his preferences

between x and y. For instance, in above flight booking example, an individual

who prefers (e950, 3) (i.e., prefers a flight with ticket price e950 and three

stopovers) over (e925, 4) might feel that (e950, 3) ∼ (e1050, 2).

Definition 5 » Additive independence

A binary relation R on X ⊆ R is

— additively independent ⇐⇒ for all x, y ∈ X, xRy ⇒ (x + z)R(y + z), for
all z ∈ X.

If additive independence holds, then we say that the relation R respects the

operation addition (+).

Definition 6 » Scale-invariance

A binary relation R on X ⊆ R holds

— scale invariance ⇐⇒ for all x, y ∈ X, xRy ⇒ (α.x)R(α.y), for any α ∈ R,
α > 0.

Similarly, if scale-invariance holds, then we say that the relation R respects the

operation multiplication (·).

We now discuss an important binary relation, namely strict order, which is de-

fined as:

Definition 7 » Strict order

A binary relation R defined on X is a

— strict order ⇐⇒ R on X is non-empty, transitive and irreflexive.

For instance, again consider A = {1, 2, 3, 4, 5}, then the relation > (and <) on

A is a strict order.

We denote a strict order that is defined on some set X with �. For any x, y ∈ X,

x � y represents that x is strictly preferred to y
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Asymmetry and the antisymmetric property can be viewed as criteria of strict

preference consistency, in the sense that if one strictly prefers x to y then he

should not simultaneously prefer y to x. Transitivity is often assumed to be

a reasonable criterion for an individual’s preferences. The reason is, if x is

preferred to y and y is preferred to z then it seems obvious that x should be

preferred to z.

3.2.1.1 Convex Cones and Preferences

Convex cones (Chapter 2, page 10, [Boyd and Vandenberghe, 2004]) allow ef-

fective modelling of preferences. They represent the structure of preferences. In

this section we discuss the characteristics and features of cones that are useful

in our work.

Let p > 0 be an integer and ~x, ~y ∈ Rp, where ~x = (x1, . . . , xp) and ~y =
(y1, . . . , yp).

Definition 8 » Cones

A non-empty set C ⊆ Rp is called a

(i) cone, if ~x ∈ C implies that α~x ∈ C for all α ∈ R, α ≥ 0.

(ii) convex cone, if (a) C is a cone ; (b) any ~x, ~y ∈ C implies that ~x+ ~y ∈ C.

(ii) positive convex cone, if (a) ~0 ∈ C; (b) C is a convex cone (c) if any ~x ∈ Rp,
~x ≥ ~0 then ~x ∈ C.

We can see that a cone is closed under positive scalar multiplication, whereas a

convex cone is closed under positive scalar multiplication and closed under ad-

dition. The positive convex cone is closed under positive scalar multiplication,

closed under addition and consists of all the elements of Rp whose components

(or coordinates) are non-negative.

Definition 9 » Finitely generated cone

A convex cone C ⊆ Rp is said to be generated or spanned by a finite set of vectors
G = {~g1, . . . , ~gn}, where ~gi ∈ Rp for all i ∈ {1, . . . , n} called generators, if it
satisfies

C = {~x ∈ Rp : ∃ (λ1, . . . , λn) ∈ Rn+ ∪ {~0} such that ~x =
n∑
i=1

λi~gi}
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Where ~0 = (0, . . . , 0) is the zero vector in Rn.

Figure 3.1: A finitely generated convex cone.

Figure 3.1 shows a finitely generated convex cone with five generators

~g1, ~g2, ~g3, ~g4 and ~g5.

We now introduce two special cones.

Definition 10 » Closed and pointed cone

A convex cone C ⊆ Rp is called

(i) closed, if C coincides with its topological closure, where topological closure of
C is the union of C and its boundary.

(ii) pointed, if (a) C is a closed; (b) any ~x ∈ C, ~x 6= ~0, implies that −~x 6∈ C.

A pointed convex cone plays a key role in preferences, it gives the notion of

consistency of the preferences.

Figure 3.2: A pointed cone (left) and a non-pointed cone (right).

In figure 3.2, a convex cone generated by ~g1 = (−2, 4) and ~g2 = (3, 4) is pointed.

Whereas a convex cone which is generated by ~h1 = (−1, 1) and ~h2 = (1,−1), is

not pointed because it contains both (−1, 1) and its additive inverse (1,−1).
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A pointed cone induces a partial order on Rp, we next look into this.

Definition 11 » Pointed cone based partial orders

If Cpc ⊆ Rp is a pointed convex cone, then the relation <pc is a partial order on Rp

(Chapter 2, page 104,[Dattorro, 2005]), defined by

~x <pc ~y ⇐⇒ ~x− ~y ∈ Cpc.

Neither ~x or ~y is necessarily a member of Cpc for the above relations to hold.

If ~x <pc ~y then we may say that ~x weakly dominates ~y with respect to Cpc. We

say that two points ~x and ~y are comparable with respect to Cpc when ~x <pc ~y or

~y <pc ~x.

We can easily see that the partial order <pc satisfies the Scale-invariance and

additive independence properties.

Proposition 1 » Scale-invariance and additivity of <pc

If Cpc ⊆ Rp is a pointed convex cone and <pc is a partial order induced by
Cpc then

(i) for all ~x, ~y ∈ Rp, if ~x <pc ~y and λ ∈ R+, λ > 0 then λ~x <pc λ~y

(Scale-invariance).

(ii) for all ~x, ~y ∈ Rp, if ~x <pc ~y then ~x + ~z <pc ~y + ~z for all ~z ∈ Rp

(Additive independence).

Proof. Let Cpc ⊆ Rp be a pointed convex.

(i): Consider ~x <pc ~y; then we have ~x − ~y ∈ Cpc. Since Cpc is closed under

positive scalar multiplication, then for any real λ > 0, we have λ(~x− ~y) ∈
Cpc, i.e., λ~x− λ~y ∈ Cpc, implying that λ~x �pc λ~y.

(ii): Suppose that ~x <pc ~y then ~x−~y ∈ Cpc. We have (~x+~z)−(~y+~z) = ~x−~y ∈ Cpc,
which implies (~x+ ~z) <pc (~y + ~z) for all ~z ∈ Rp.

We now define the dual cone of a cone, which is another important definition

on which our one of the main contributions, i.e., representing preferences in
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the matrix form in Chapter 4 rely.

Definition 12 » Dual cone

A subset C∗ ⊆ Rp is called the dual cone of a cone C ⊆ Rp, if it is given by

C∗ = {~y ∈ Rp : ~y · ~x ≥ 0 for all ~x ∈ C}

In the above definition, ~y · ~x is called the dot product between ~y and ~x, which is

defined by ~y · ~x = y1x1 + . . . + ypxp =
p∑
i=1

yixi. We can see from the definition

that the dual cone C∗ consists all the elements which make an acute angle (i.e.,

angle less than or equal to 90◦) with every element of the cone C.

Figure 3.3: Pointed cone (grey) and its dual cone (yellow).

Figure 3.3 shows a convex cone (grey in colour) generated by ~g1 = (−2, 3) and

~g2 = (2,−1) and its dual cone (yellow in colour) generated by ~l1 = (1, 2) and
~l2 = (1, 2/3).

3.2.2 Preference Representation

Representation of preferences of an individual or a group, in a multi-objective

setting, is a very difficult task in general and it is a major goal of decision

analysis [Fishburn, 1970, Raiffa and Keeney, 1976, French, 1986, Keeney,

1993, Howard and Matheson, 2005]. One of the simplest techniques is, to
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present the decision maker with a set of outcomes and ask him to compare

pairwise. However, this method is not always feasible; clearly one can not ap-

ply this technique when we have a very large (possibly exponential) number of

outcomes.

Many different formalisms have been proposed and studied to represent pref-

erences. These formalisms can be classified into two different categories,

namely cardinal preference representation and relational preference representa-
tion [Walsh, 2007]. In a cardinal preference representation, a numerical valua-

tion is given to each outcome, whereas in a relational preference representation,

the outcomes are ordered by means of a binary preference relation. In this dis-

sertation, we focus on a relational representation of preferences and also give

its relationship with the cardinal representation.

In the following sections we discuss different preference representation tech-

niques. We denote the set of outcomes, on which a preference relation is de-

fined with U . The notation ~u < ~v represents the outcome ~u is weakly preferred
to ~v; that is, outcome ~u is deemed to be at least as good as outcome ~v and ~u � ~v
means that ~u is strictly preferred to ~v, i.e., ~u < ~v and ~v 6< ~u.

3.2.2.1 Cardinal Preference Representation

This section presents different cardinal preference representations, which in-

clude utility-based representation and relative importance of criteria such as

lexicographic models and weighted coefficient models.

Utility-based Preference Representation

In this form of preference representation the decision maker asked to assign a

real number, also called the utility, to each outcome such that the preference

relation < is defined as: ~u < ~v if and only if the utility associated with ~u

is greater than or equal to the utility associated with ~v. More formally, the

decision maker requires to define a real-valued function, called utility function
or value function, f : U → R that represents his ability to prefer a particular

outcome. The fundamental theorem of utility [Fishburn, 1970, Von Neumann

and Morgenstern, 1945] states that the numbers f(~u) and f(~v) are assigned to

the elements ~u and ~v in U in such a way that

~u < ~v if and only if f(~u) ≥ f(~v)
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The advantage of representing preferences in this way is that it is always pos-

sible to answer very common questions such as “which of the two outcomes is

better?” or “what is the optimal outcome?”. However, the main disadvantage

with this form of representation is that, it is time consuming and tedious when

one has to deal with the large number of outcomes with multiple objectives (or

attributes) [Domshlak et al., 2011]. Also, with this representation the decision

maker may find two outcomes incomparable. It can be possible that the deci-

sion maker expresses the utility function in a convenient and compact form and

if such form exists then outcome-by-outcome quantification can be eliminated

[Brafman and Domshlak, 2009]. If U is finite or countably large then the ex-

istence of such utility function f is guaranteed by a certain number of axioms

[Von Neumann and Morgenstern, 1945].

A variety of methods have been emerged to construct the decision maker’s

utility function (for instance [Raiffa and Keeney, 1976, Saaty, 1988, Keeney,

1982]). Most of these methods are categorized based on constructing the util-

ity function either explicitly or implicitly. In the first category of methods, a

utility function is directly constructed from the decision maker’s revealed pref-

erences [Von Winterfeldt et al., 1986]. A good example of this method is given

by Keeney and Raiffa in their classic book [Raiffa and Keeney, 1976]. In the

second category of methods, the utility function is constructed on axiomatic ba-

sis of multi-attribute utility theory, examples of such methods include the UTA

(Utilités Additives) method proposed by Jacquet-Largreze and Sisko [Jacquet-

Lagreze and Siskos, 1982, Siskos et al., 2005] which requires the utility func-

tion associated with each objective to be piece-wise linear (i.e., utility func-

tion composed of some linear segments defined over an equal number of inter-

vals), the AHP (Analytic Hierarchy Process) method developed by Saaty [Saaty,

2005] which assumes the underlying utility function is linear, and the MAC-

BETH (Measuring Attractiveness by a Categorical based Evaluation Technique)

method developed by Bana e Costa and Vansnick [Bana et al., 2005] which

constructs the underlying utility function in an interactive procedure based on

preference difference measurement. One feature of the AHP method is that, it

informs the decision maker about his inconsistency while expressing his prefer-

ences, but it does not necessarily remove the inconsistencies.

Several interactive approaches have been developed to elicit the underlying

utility function of which the exact form is not known to the decision maker.

These methods are primarily based on the assumption that the utility function

is either linear (defined by f(~u) = p~u + q, where ~u ∈ U and p, q ∈ R) [Zionts
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and Wallenius, 1980, Koksalan, 1984], or quasiconcave (f(λ~u + (1 − λ)~v) ≤
min(f(~u), f(~v)), where λ ∈ [0, 1] and ~u,~v ∈ U) [Korhonen et al., 1984, Mu-

rat Köksalan and Taner, 1992, Koksalan et al., 1984, Malakooti, 1989] or gen-

eral monotone (~u ≥ ~v ⇒ f(~u) ≥ f(~v), for ~u,~v ∈ U) [Köksalan and Sagala,

1995]. In addition, Koksalan and Sagala [Murat Köksalan and Sagala, 1995]

developed an approach to test whether the expressed preferences are consistent

with the underlying utility function which is either linear, or quasi-concave, or

general monotone. Despite the fact that these methods are simple and clear,

they require the decision maker to be consistent with the underlying utility

function while expressing his preferences.

Additive Independence

Given the fact that a utility function elicitation over a large number of outcomes

is a cognitively difficult task [Domshlak et al., 2011, Braziunas and Boutilier,

2006], we need to make additional efforts concerning decision maker pref-

erences so that the utility function can be compactly representable. One such

attempt is structural assumption of preferences, known as additive independence
[Raiffa and Keeney, 1976, Fishburn, 1970] which is commonly used in practice

and applied to partition a set of attributes into a single attributes or arbitrary

sets of attributes. When additive independence hold then it leads to a simple

and compact additive utility representation.

A set of objectives is said to be preferentially independent of its complement, if

the preference order over the outcomes with varying its objective values does

not change when the objective values of its complement are fixed to any value.

A set of objectives is mutually preferentially independent, if every subset of it,

is preferentially independent of its complement set.

If mutual preferential independence holds, the utility function f , representing

preferences of the decision maker can be broken down into single-objective

sub-utility functions, namely f1, . . . , fp such that f can be written as:

f(~u) =
p∑
j=1

fj(uj) (3.1)

where uj is the value of jth objective in ~u.

Each sub-utility function fj, often written as a product of local value function gj
and scaling constants, or weights, wj, i.e., fj = wjgj(uj), the utility function f

45



3. RELATED WORK 3.2 Preferences

can be represented as:

f(~u) =
p∑
j=1

wjgj(uj) (3.2)

The additive representations, given in (3.1) and (3.2) are equivalent. In

weighted representation, it is usually assumed that each scaling constant is

non-negative and their sum is equal to unity, i.e.,
p∑
j=1

wj = 1, where wj ≥ 0. We

discuss this model in detail in Section 3.2.2.1.1.

Generalized Additive Independence

Additive independence relations require very strong assumptions regarding the

structure of the preferences. Generalized additive independence (GAI) models

have gained popularity in the recent years because of their additional flexibility

[Bacchus and Grove, 1995, Boutilier et al., 2001, Boutilier et al., 2003, Gonzales

and Perny, 2004, Boutilier et al., 2005, Braziunas and Boutilier, 2012, Braziunas

and Boutilier, 2007]. A GAI model is a generalization of an additive model and

the conditions under which the GAI model defines an accurate representation of

decision maker’s utility function is given by Fishburn [Fishburn, 1967, Fishburn,

1970]. In GAI models, independence holds among certain subsets (known as

factors) of objectives (or attributes), rather than individual objectives (or at-

tributes). For instance, in a flight booking scenario, if an individual’s prefer-

ences over flight length and flight class (e.g., economy or business) depends on

price of the ticket then the GAI model groups such preferences into two GAI

factors, namely F1 and F2, where F1 = {length, price} and F2 = {class, price}.
With these two factors, a GAI utility function representing such conditional

preference can be defined as:

fGAI(~u) = f1(length, price) + f2(class, price)

where ~u = (price, length, class). In contrast, the simple additive utility function

defined as

fA(~u) = f ′1(price) + f ′2(length) + f ′3(class)

cannot adequately represent such conditional preferences of the decision maker.

46



3. RELATED WORK 3.2 Preferences

3.2.2.1.1 Relative Importance of Criteria (or Objectives) In many multi-

objective optimization problems, all objectives are not supposed to be equally

important. In other words, the decision maker may consider only a subset of

objectives which are more important among all other objectives. For instance,

in a flight booking scenario, an individual may consider the price (P) of the

ticket is relatively more important than the number of stopovers (S).

Generally, relative importance of objectives is modelled by using the very well-

known preference models lexicographic ordering and weighting coefficients. In

the following section we discuss them in detail.

Lexicographic Models

The concept of lexicographic preference models (or orderings) [Fishburn, 1974,

Freuder et al., 2010] with multiple objectives implies that if one outcome has

better objective values than another outcome on the most important objectives

(or criteria) then it is considered to be better overall, regardless on how poor

values it has on the rest of the objectives [Brafman et al., 2006]. For instance,

again in a flight booking scenario, suppose that the decision maker is also con-

cerned about the length (L) of the journey, and expresses his preferences as, P

is more important than S and L, and S is more important than L. Suppose that

an outcome ~u has better value for P and the worse values for less important

objectives S and L in comparison with another outcome ~v, then lexicographic

preference model implies that ~u is still preferred over ~v.

A lexicographic order is total, i.e., any arbitrary pair of outcomes are compa-

rable under the lexicographic order. The notion of lexicographic ordering is

often used in multi-objective optimization for representing qualitative prefer-

ences. The main disadvantage of using a lexicographic approach is that not all

objective values might be considered while comparing the outcomes. However,

[Yaman et al., 2011] argues that lexicographic preference models are simple

and can be well-understood by the individuals.

Weighted Coefficient Models

This is the most common approach used in multi-objective optimization for

modelling the decision maker preferences. In weighted coefficient models with

p objectives {1, . . . , p}, the weights wi, i = 1, . . . p are assigned to the objectives.

These weights are non-negative numbers which represent the relative impor-

tance of the objectives. The weights are independent from the measurement
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units of the objectives scales [Brans and Mareschal, 2005]. Usually, the higher

the weight, more important the objective is.

The dominance relation between vectors of Rp with respect to weighted coeffi-

cients model is defined as:

Definition 13 » Weighted dominance relation

For a given weights vector ~w = (w1, . . . , wp), where wi for all i ∈ {1, . . . , p} is the
weight of the objective i, then a vector ~u = (u1, . . . , up) dominates another vector
~v = (v1, . . . , vp), written as ~u <~w ~v if

~u <~w ~v ⇐⇒
p∑
i=1

wiui ≥
p∑
i=1

wivi

Assigning weights to the objectives is not straightforward because it involves

priorities and perceptions of the decision maker. However, many researchers

have developed systematic approaches for selecting weights. For instance, [Eck-

enrode, 1965] provides a method for choosing weights for each of the six ob-

jectives involved in designing a specific air defence and a general air defence

systems, and selecting a personnel subsystem manager for a development pro-

gram. In general, the approaches for selecting weights are categorized into

two main classes known as rating and ranking methods. With rating methods,

the decision maker assigns independent weights of relative importance to each

objective. With ranking methods [Yoon and Hwang, 1995], the objective func-

tions are ordered by importance in such a way that least important objective

receives a weight of one, and the objectives that are more important receive

integer weights which will then be incremented consistently.

The paired comparison methods rate objective functions by pairwise comparing

them. For instance, [Saaty, 1977, Saaty, 2003, Saaty and Hu, 1998] provide

an eigenvalues method for determining the weights, this involves p(p − 1)/2,

pairwise comparisons between objectives, where p is the number of objectives.

The pairwise comparison of objectives is represented by using a matrix, which

is known as the judgement or comparison matrix. The eigenvalues of the matrix

are then used as weights for the objectives. While [Gennert and Yuille, 1988]

suggests a method which disregards the preferences of the decision maker in

assigning the weights to the objectives. This yields choosing the weights which

maximize the final minimum value of the weighted sum function.
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3.2.2.2 Relational Preference Representation

In relational preference representation, outcomes are ordered by means of a

binary preference relation. Expressing preferences in relational form is perhaps

much easier for the decision maker than the cardinal form [Walsh, 2007]. For

instance, in a flight booking scenario, the decision maker may choose a cheap-

est flight among all the available options without assigning the weights. In

addition, expressing the conditional preferences using the relational formalism

is straightforward. For example, if there is somewhat expensive direct flight

from origin to the destination, the decision maker concerns about change-overs

during the journey so prefers “direct flight” to the “cheapest flight”. Such con-

ditional preferences are difficult to express using cardinal formalisms [Walsh,

2007].

Domshlak et al. [Domshlak et al., 2011] argues that for a decision maker pro-

viding binary preference relations is much easier to specify than value func-

tions, because the qualitative comparison of pair of multi-objective outcomes

(indicating one outcome is better than another one) needs much lesser bur-

den than the quantitative assessment of single multi-objective outcomes. For

instance, the simple qualitative statements (of preferences) of the form “I like

the flight which costs e1000 with 2 stopovers more than the flight which costs

e900 with 4 stopovers” or “I prefer a car like this, but white in color” indicate

an ordering relation between outcomes [Brafman and Domshlak, 2009]. Such

preference statements provide much more information because they implicitly

encode many comparisons between multi-objective outcomes.

Although learning a binary preference relation that compare outcomes in pair-

wise manner is much simpler (mainly because suggesting that one alternative

is better than the other one can be used directly instead of translating it into

constraints on a value function), the prediction step may become more difficult

[Domshlak et al., 2011]. The main reason for this is that the binary preference

relation learned from the qualitative input preference statements usually does

not define an ordering of the outcomes in a unique way. Therefore, it is then

required to map a preference relation to a maximally consistent ranking. One

such efficient techniques is simple voting, which is also known as Borda count

procedure used in social chose theory, often gives good approximations [Hüller-

meier and Fürnkranz, 2010]. Another approach for learning ranking functions

is based on the model assumptions, that is, assumptions about the structure of

the preference relations. Such approach is less generic than the previous one,
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as it only depends on the assumptions made on the preference structure.

3.2.2.3 Representation using Convex Cones

Convex cones allow more effective modelling of preferences from the trade-offs

perspective [Hunt et al., 2010]. In this thesis we use convex cones to model

preferences of the decision maker, revealed in the form of pairwise comparison

between utility vectors. In this section we look at the work related to ours and

also present some literature on modelling preferences using convex cones.

The use of convex cones to model a decision maker’s preferences in multi-

objective decision making became popular with the seminal work of Yu [Yu,

1974]. To locate the set of undominated solutions for a given Y ⊂ Rp, Yu

presented two different mathematical methods, based on the concepts of polar
cones (a polar cone W∗ of a W ⊂ Rp is defined as, W∗ = {~v ∈ Rp | ~v · ~u ≤
0 for all ~u ∈ S}) and the cone convexity of Y . This work is mainly based on the

study of ‘cone extreme points’, where extreme points of a convex cone are the

ones which are not dominated by any other element in it.

Berman and Naumov [Berman et al., 1993] uses interval trade-offs and con-

struct a matrix of a cone, which represents the decision maker’s preferences.

Noghin [Noghin, 1997] makes use of objective weights as relative importance

of criteria and construct the convex hull of the Pareto cone, this idea extended

further in [Noghin and Tolstykh, 2000, Noghin, 2001] to construct an estimate

of the undominated solution set. Wiecek [Wiecek, 2007] extended the works

of Berman and Naumov, and Noghin to model relative importance of objectives

using convex cones, where two cone-based models were presented to model

the preferences. In the first model, one objective is designated as less important

while all the others are more important. In the second model, a group (more

than one) of objectives are classified as less important while all the others are

considered more important. These models were represented by use of matrices.

In addition, the relation between these models were also studied.

Dehnokhalaji et al. [Dehnokhalaji et al., 2011] developed a framework to

model preferences, which revealed in the form of pairwise comparison between

utility vectors, with multiple convex cones. Each cone represents a subset of

preference information. This work is based on the assumption that the decision

maker’s value function is unknown, but it has a quasi-concave form. Engau

[Engau, 2008] assumes scale-invariance and additive properties to the decision
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maker’s preference relation, in addition they assume ideal-symmetric property,

which is given as, if Y ⊂ Rp and ~y ∈ Y , any equal length vectors ~r,~t ∈ Rp with

~y · ~r = ~y · ~t then ~y − ~r is preferred over ~y if and only if ~y − ~t is preferred over ~y.

The ideal-symmetric convex cones are then used to model the decision maker’s

preferences.

3.3 Multi-objective Constraint Optimization

In constraint satisfaction problems (CSPs) the aim is to find the assignments

for the variables that satisfy all the constraints [Dechter, 2003]. Since multi-

objective constraint optimization problems (MOCOPs) consist of a set objective

functions, the primary goal of solving them is to search for the set of Pareto

optimal solutions, known as Pareto frontier or efficient frontier, providing the

decision maker with a set of outcomes to choose from [Lin, 2010]. Most com-

plete algorithms for solving MOCOPs typically fall within one of the following

two categories [Marinescu, 2009]:

(i) Inference-based algorithms

(ii) Search-based algorithms

Inference-based algorithms (e.g., variable elimination) are good at making use

of the structural information encoded in the problem. In addition, these al-

gorithms perform a sequence of transformations that reduce the problem size,

while preserving the solution space of the problem. The time and space com-

plexity of these algorithms is exponential in a topological parameter called tree-
width [Mateescu and Dechter, 2012]. The main draw back of these algorithms

is that, due to their high space requirements these are impractical particularly

for problems with larger tree-widths [Marinescu, 2008, Marinescu, 2009].

Search-based algorithms (e.g., depth-first Branch and Bound) transform MO-

COPs into a set of sub-problems by selecting a variable and considering the

assignment of each of its domain values. The sub-problems are then solved in

sequence applying recursively the same transformation rule [Marinescu, 2009].

These algorithms are not sensitive to the problem structure, consequently, they

do not capture the in-dependencies represented by the structural information

encoded in the problem. For this reason, search-based algorithms may not be

as effective as inference-based algorithms in using this information. These have

a time complexity which is exponential in the number of variables, but can
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operate in linear memory [Marinescu, 2008].

The introduction of AND/OR search space [Dechter and Mateescu, 2007a] for

graphical models has changed the situation for the past few years. In particu-

lar, the framework of AND/OR search space is sensitive to the in-dependencies

in the model, which often results in exponential reduction of complexities. In

addition, the search is guided by a pseudo tree [Freuder and Quinn, 1985, Ba-

yardo and Miranker, 1995] that captures the in-dependencies in the underlying

graphical model. As a result, the search space is exponential in the depth of the

pseudo tree, rather than in the number of variables.

The following section defines the basic graph concepts and AND/OR search

space for MOCOPs.

3.3.1 Graph Concepts

A directed graph G = {V,E}, where V = {X1, . . . , Xn} is a set of vertices or

nodes, and E = {(Xi, Xj) | Xi, Xj ∈ V } is a set of directed edges or arcs. The

edge (Xi, Xj) implies that Xi points to Xj, where Xi is called parent and Xj

is named its child. For each node Xi, the set of parents of Xi in G is denoted

with pa(Xi), while the set of child nodes of Xi is denoted with ch(Xi). The

degree of a vertex is defined as the number of incident arcs to it. The family of

node Xi is denoted with fam(Xi) and it is defined as fam(Xi) = {Xi}∪pa(Xi).
If G has no directed cycles then we say that G is acyclic graph. An undirected
graph G ′ is similar to a directed graph G, but the only difference is that, arcs are

undirected, i.e., (Xi, Xj) ∈ E ⇐⇒ (Xj, Xi) ∈ E.

An ordered graph Go = (G, o) is an undirected graph, where o = (X1, . . . , Xn) is

an ordering of the nodes. The width of the node Xi is defined as the number of

neighbours of Xi that precede it in the ordering. The width of the ordering o is

the maximum width over all nodes. The induced width of Go is denoted as w∗(o)
and it is the width of the induced ordered graph which is obtained as follows:

nodes are processed from last to first; when node Xi is processed then all its

neighbours are connected. The induced width of a graph G is denoted by w∗

and it is the minimal induced width over all its orderings.

A hyper-graph is a pair Gh = (X,S), where X is a set of variables and S =
{S1, . . . , St} is a set of subsets of X. Elements of S are called hyper-edges of Gh.
Let T = (V,E) be a tree, where V is a set of nodes, also called clusters and E
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is the set of edges. Then T is called a tree decomposition of Gh together with a

labelling function L, which associates with each node v ∈ V a set L(v) ⊆ X, if

the following properties hold:

(1) For each Si ∈ S ∃v ∈ V such that Si ⊆ L(v);

(2) For each Xi ∈ X, the set {v ∈ V | Xi ∈ L(v)} induces a connected sub-tree

of T . This is also known as running intersection property.

The tree width of a tree decomposition of a hyper-graph is defined as the size

of the largest cluster minus 1, i.e., width = maxv |L(v) − 1|. Whereas, the

tree-width of a hyper-graph is defined as the minimum width among all its tree

decompositions.

The set of maximal cliques or clusters in the induced graph provide a tree-

decomposition of the graph [Mateescu and Dechter, 2005]. The tree-width is

the maximal number of variables in a cluster of an optimal cluster-tree decom-

position of the graph [Arnborg, 1985]. It is well known that the induced width

of any graph is identical to its tree-width [Dechter and Pearl, 1989].

3.3.2 AND/OR Search Spaces and Trees

The AND/OR search space for solving MOCOPs has recently been introduced

in [Marinescu, 2009]; its important characteristic includes exploiting the in-

dependencies between the variables during the search and captures the un-

derlying graphical model. Let M = 〈X,D, F〉 be a MOCOP instance, where

X = {X1, . . . , Xn} is a set of (decision) variables with finite domains D =
{D1, . . . , Dn}, C is the set of constraints and F = {f1, . . . , fr} is the set of utility

functions. Each utility function fi is defined as fi : Yi → Rp, where R is the

set of real numbers and Yi ⊆ X, known as its scope. The objective function is

F(X) =
r∑
i=1

fi(Yi). Then we define its primal graph and pseudo tree as follows:

Definition 14 » primal graph

A primal graph ofM is an undirected graph G = (V,E) whose vertices, V , are the
variables in M and an edge in E connects any two variables that appear in the
scope of the same utility function.

Definition 15 » pseudo tree

A pseudo tree of a primal graph G = (V,E) is a directed rooted tree T = (V,E ′),
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such that every arc of G not included in E ′ is a back-arc in T , namely it connects
a node in T to an ancestor in T .
Example 5 » An example of MOCOP

Figure 3.4 shows a MOCOP instance with 5 bi-valued decision variables {X0,
X1, X2, X3, X4} and 3 ternary utility functions f1(X0, X1, X2), f2(X0, X1, X3),
and f3(X1, X3, X4) defined in Figure 3.4(a). The objective is to maximize the
sum of all utility functions, i.e., objective is to maximize F(X0, X1, X2, X3) =
f1(X0, X1, X2) + f2(X0, X1, X3) + f3(X1, X3, X4). Figures 3.4(b) and 3.4(c) rep-
resents its corresponding primal graph and pseudo tree, respectively.

Figure 3.4: A MOCOP instance with 2 objectives.

An AND/OR state space representation of a MOCOP problem can be defined by

a quadruple 〈S,O, Sg, so〉, where:

(1) S is a set of states which can be either OR or AND states;

(2) O is a set of operators which can be either OR or AND operators;

(3) Sg ⊆ S is a set of goal states;

(4) so ∈ S is a start node.

The OR states represent alternate ways for solving the problem, whereas, the

AND states represent the problem decomposition into sub-problems which need

to be solved. An OR node transforms an OR state into another state, and an

AND state transforms an AND state into a set of states.

The AND/OR state space representation of the problem includes an explicit

AND/OR search tree ST (M), where each node represents a state (or a variable)

and child nodes are obtained by applicable AND or OR operators. The search
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graph includes start node so, known as its root node. The nodes having no chil-

dren are known as terminal nodes, and are labelled as SOLVED or UNSOLVED.

The structure of an AND/OR search tree ST (M) is given by the underlying

pseudo tree T . It has alternating levels of OR and AND nodes. The OR nodes

correspond to the variables inM and are labelled Xi, and AND nodes are cor-

responding to the value assignments to the variables and are labelled 〈Xi, xi〉 or

〈xi〉. The root of ST (M) is an OR node labelled with the root of T . The children

of an OR node Xi are AND nodes labelled with the assignments 〈Xi, xi〉 which

are consistent with the assignments along the path from the root. The children

of an AND node 〈Xi, xi〉 are OR nodes labelled with the children of variable Xi

in T .

The solution tree of the search tree ST (M) is a AND/OR sub-tree T which:

(1) contains the root node so of ST (M);

(2) if n ∈ T is an OR node then it contains exactly one of its child nodes in

ST (M), and if n ∈ T is an AND node then it contains all its children in T ;

(3) all its terminal nodes are labelled SOLVED.

An AND/OR search tree ST (M) can have a utility associated with each arc, and

the utility of a solution sub-tree is a function (e.g., additive utility) of the arcs

included in the solution sub-tree. The goal is to search for a solution sub-tree

with optimal (maximum) utility.

Example 6 » AND/OR search tree for MOCOP

Figure 3.5 shows the AND/OR search tree corresponding to the MOCOP instance
given in Example 5. From the figure we can see that the AND/OR search tree
has alternating levels of OR and AND nodes. A solution tree of the problem is
highlighted (in orange colour). Once the variables X0 and X1 are instantiated,
the search space below the AND node labelled 〈X1, 0〉 decomposes the problem into
two independent sub-problems, the first one is rooted at node labelled X2 and the
second is rooted at node labelled X3.

3.3.2.1 Weighted AND/OR Search Tree

The arcs in ST (M) from OR nodes Xi’s to AND nodes 〈Xi, xi〉’s are assigned

weights (which are vectors in Rp) derived from the multi-objective utility func-

tions in F. Once all the weights are assigned, ST (M) is then called a weighted
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Figure 3.5: AND/OR search space.

AND/OR search tree.

Since we deal with sets of multi-objective utility values, in the following we give

some definitions on utility sets that will be used in rest of the thesis.

Definition 16 » Sum of two utility sets

If U, V ⊂ Rp are two sets of utility values then we define their sum as:

U + V = {~u+ ~v | ~u ∈ U,~v ∈ U}.

The dominance relation between sets of utility vectors is defined as:

Definition 17 » Dominance relation for sets of utility values

If U and V are two subsets of Rp then we say that U dominates V with respect
to < if and only if ∀v ∈ V ∃u ∈ U such that u < v. If U dominates V , then we
denote it as U < V .

Definition 18 » Maximal or Pareto Set

Let < be a partial order and suppose that U ⊂ Rp is the set of utility vectors, then
the maximal set of U with respect to < is the set of undominated elements of U ,
i.e., the maximal set of U is defined by max<(U) = {~u ∈ U | @~v ∈ U,~v � ~u}. If
< is the weak Pareto order ≥ then we call max<(U) as the Pareto set or Pareto
frontier.
Definition 19 » Arc weight

The weight w(n, n′) of the arc from the OR node n labelled Xi to the AND node
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Figure 3.6: Weighted AND/OR search tree.

n′ labelled 〈Xi, xi〉 is a utility vector defined as the sum of all the multi-objective
utility functions whose scope includes Xi and is fully assigned along the path from
the root to 〈Xi, xi〉, evaluated at the values along the path.

Each node n in the weighted search tree is associated with a value v(n) (is a

subset of Rp) which is computed recursively as shown in [Marinescu, 2009].

The value v(n) represents the optimal solution associated with the conditioned

sub-problem below n.

Definition 20 » Node value

The value v(n) of a node n in a weighted AND/OR search tree of a MOCOP instance
M = 〈X,D, F〉 with p objectives is defined recursively as follows:

(1) v(n) = {~0}, if n = 〈Xi, xi〉 is a terminal AND node;

(2) v(n) = ∑
n′∈succ(n) v(n′), if n = 〈Xi, xi〉 is an internal AND node, where

succ(n) are the children of n;

(3) v(n) = max<{w(n, n′) + v(n′) | n′ ∈ succ(n)}, if n = Xi is an OR node.

From the above definition, the value v(n) of a node in an AND/OR search tree

ST is the set of utility vectors representing the optimal solutions of the sub-

problem rooted at n conditioned on the variable assignment along the path

from the root to n [Marinescu, 2009]. In particular, if n is the root node then

v(n) is the efficient frontier of the initial problem.

Example 7 » Weighted AND/OR search tree

Figure 3.6 shows the weighted AND/OR search tree of the MOCOP instance given
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in Example 5, relative to the pseudo tree given in Figure 3.4(c). The utility vec-
tors displayed on the OR-to-AND arcs are the weights corresponding to the input
utility functions. For instance, the weight of the arc from OR node X2 to its AND
child 〈X2, 1〉 is (3, 6) given along the path (X0, 〈X0, 0〉, X1, 〈X1, 1〉, X2, 〈X2, 0〉).
An optimal solution tree corresponding to the assignment (X0 = 1, X1 = 0, X2 =
1, X3 = 0, X4 = 0) with utility vector (9, 6), which is obtained by summing the
utility values associated on the arcs from the root node X0 all the way to terminal
AND node labelled 〈X4, 0〉, i.e., (0, 0) + (0, 0) + (2, 1) + (6, 1) + (1, 4) = (9, 6), is
highlighted (blue colour).

The value of the OR node X2 along the path (X0, 〈X0, 1〉, X1, 〈X1, 1〉, X2) is com-
puted as follows:

v(X2) = max
≥
{w(X2, 〈W2, 0〉) + v(〈W2, 0〉), w(X2, 〈W2, 1〉+ v(〈W2, 1〉)}

= max
≥
{(1, 6) + (0, 0), (2, 4) + (0, 0)}

= max
≥
{(1, 6), (2, 4)}

= {(1, 6), (2, 4)}

where, ≥ is the weak Pareto ordering. Notice that v(〈W2, 0〉) = v(〈W2, 1〉) =
(0, 0) because the nodes 〈W2, 0〉 and 〈W2, 1〉 are the terminal AND nodes for the
independent sub-problem rooted at the node labelled X2.

3.3.3 Multi-objective AND/OR Branch-and-Bound

Rollon and Larrosa [Rollon and Larrosa, 2007, Rollón and Larrosa, 2006a]

showed that multi-objective problems can be solved using a depth-first Branch-

and-Bound schema, which traverses the traditional OR search tree in depth-first

manner and results in the set of optimal solutions of the initial problem. During

the search, the algorithm Multi-Objective Branch-and-Bound (MOBB) records

the best solutions found so far, which is the underestimate of the optimal so-

lutions of the initial problem [Marinescu, 2009, Rollon and Larrosa, 2007]. At

each visited node during the search, MOBB computes an upper bound (which

is basically a set of utility vectors in Rp) of the sub-problem below the cur-

rent node using a heuristic evaluation function (see Definition 22 in Section

3.3.4.2). The algorithm then backtracks if the current best solutions found so

far dominates the upper bound set, because traversing below the current node

cannot lead to any new optimal solution.
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Exact Multi-objective AND/OR Branch-and-Bound (MOAOBB) is one of the

most efficient algorithms to solve MOCOPs (recently introduced by [Marinescu,

2009]). MOAOBB is an extension of the AND/OR Branch-and-Bound (AOBB)

algorithm introduced by [Marinescu and Dechter, 2005] for the mono objective

case. MOAOBB applies the general principles of AND/OR search and extends

the MOBB into a Branch-and-Band algorithm guided by an AND/OR instead of

traditional OR search tree. We start the description of the algorithm with the

notion of partial solution tree which represents the sets of full solution trees.

Definition 21 » Partial solution tree

A partial solution tree T ′ of an AND/OR search tree ST (M) is a sub-tree which:

(1) contains the root node so of ST (M);

(2) if n is an OR node in T ′ then it contains one of its AND child nodes in ST (M),
and if n is an AND node it contains all its OR children in ST (M).

A node of T ′ is a tip node if it has no children in T ′. A tip node is either a terminal
node (if it has no children in ST (M)), or a non-terminal node (if it has children
in ST (M)).

In above definition, we can see that a partial solution tree whose tip nodes

are terminal is a solution tree. A partial solution tree may be extended in sev-

eral ways to a full solution tree; the set of these extensions is denoted with

extension(T ′).

3.3.4 Variable Elimination Algorithm

Variable elimination algorithms [Bertele and Brioschi, 1972, Dechter, 1999,

Shafer and Shenoy, 1990] are the facets of inference-based methods. Let

G = 〈X,D, F 〉 be a graphical model with an ordering d = (X1, . . . , Xn) of

its variables. The ordering d represents the variable elimination order, from last

to first, for variable elimination [Mateescu and Dechter, 2012]. The utility func-

tions in F are placed into the buckets of the variables that appear latest in their

scope. For instance, all functions that contain variable Xi and do not contain

any Xj for j > i are placed in the bucket of Xi.

Let {B(X1), . . . , B(Xn)} be a set of buckets, one for each variable given in the

order d = (X1, . . . , Xn). We say that bucket B(Xi) is connected to bucket B(Xj)
if the function generated in bucket B(Xi) is placed in B(Xj) [Marinescu and
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Dechter, 2009a]. The variables of bucket B(Xi), are the variables in the union

of the scopes of its new and old functions.

Once the functions are partitioned into the buckets, then buckets are processed

from the last variable Xn to the first X1 by eliminating the buckets variable. The

variables are eliminated by combining all functions and removing the variable

by a marginalization operation and place the resulting function, also known

as the message, in the bucket of its latest variable in d. A variable elimination

algorithm also generates a bucket-tree [Kask et al., 2005] (where the bucket-

tree is a tree whose nodes are buckets) by linking each bucket Xi to the one

where the newly generated functions in bucket Xi are placed, which is called

the parent of bucket Xi in the bucket-tree.

Example 8 » Variable elimination

Figure 3.7(a) shows the primal graph of a MOCOP instance which has the utility
functions f1(X0, X1), f2(X0, X2), f3(X0, X1, X4) and f4(X1, X2, X3), a pseudo tree
that drives its weighted AND/OR search tree is shown in figure 3.7(b), and the
initial partition of the utility functions into the buckets along the ordering d =
(X0, X1, X4, X3, X2) is shown in figure 3.7(c).

Figure 3.7: A MOCOP instance with bucket structure.

In this case the bucket of X4 contains the function f3(X0, X1, X4), the bucket of
X2 contains the functions f2(X0, X2) and f4(X1, X2, X3) and the bucket X1 has
the function f1(X0, X1). We can notice that the buckets of X0 and X3 are initially
empty.

Figure 3.8(a) shows the execution of the variable elimination and figure
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Figure 3.8: Variable elimination execution and bucket-tree.

3.8(b) represents its bucket-tree structure. The variable elimination algorithm
first processes the bucket X2, it combines the bucket’s functions f2(X0, X2)
and f4(X1, X2, X3), the resulting function will be a utility function, lets say
f(X0, X1, X2, X3), which involves the variables X0, X1, X2, X3. Eliminate the vari-
ableX2 from f(X0, X1, X2, X3) using the marginalisation operation and, as shown
in figure 3.8(a), the newly generated function, namely g1(X0, X1, X3), is then
placed into the bucket of next latest variable in d, i.e., X3. Since the bucket of
X3 only has the function g1(X0, X1, X3) then we apply the marginalisation opera-
tion directly to eliminate X3. In this case the newly constructed function, namely
g2(X0, X1), is placed into the bucket of the next latest variable X4 in d. Similarly,
the marginalisation operation is applied on the only function f3(X0, X1, X4) resid-
ing in the bucket of X4, and the newly constructed function g3(X0, X1) is placed
in the bucket of X1. Now, the bucket of X1 has two new functions g2(X0, X1) and
g3(X0, X1), and an already existing function f1(X0, X1). These functions are then
combined to eliminate the variable X1 by using the marginalisation. Finally, the
newly generated function g4(X0) is placed in the first variable X0 in the ordering.

The order in which the variables are eliminated is important because it deter-

mines the complexity of the algorithm. The elimination ordering d we compute

using greedy Min-fill heuristics [Dechter, 2003, Rollon and Larrosa, 2011].

3.3.4.1 Bucket and Mini Bucket Elimination

Given an optimization problem and its variable ordering d, the Bucket Elimina-
tion (BE) algorithm partitions utility functions into buckets, where each bucket

is associated with a variable. Utility functions are placed into buckets according

to the variables in their argument that appear latest in the variable ordering.
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The algorithm has two phases, namely top-down and bottom-up. During the top-

down phase, the algorithm processes each bucket from last to first by a variable

elimination procedure (see Section 3.3.4). The variable elimination procedure

computes a new function by combining all the functions in the bucket and elim-

inates the bucket’s variable. The newly generated function is then placed into

lower bucket. During the bottom-up phase, the algorithm assigns a value to

each variable in the ordering and constructs a solution to the problem. The

time and space complexity of the algorithm is exponential in w∗, where w∗ is

the induced width of the corresponding primal graph along the ordering d of

the variables [Dechter, 1999].

The mini-bucket elimination (MBE) algorithm is designed to avoid time and

space complexity of BE by partitioning the large buckets into smaller buckets,

called mini-buckets [Dechter and Rish, 2003]. The sizes of these mini-buckets

are controlled by an input parameter, called the i-bound. For simplicity some-

times we denote the i-bound with i. For given i the algorithm divides the large

buckets into mini-buckets containing at most i number of distinct variables.

Assuming maximization of the objectives, the algorithm processes each mini-

bucket separately. Recently, [Rollon, 2008] extended the MBE algorithm for

mono-objective to the multi-objective case, which is known as multi-objective
mini-bucket elimination (MO-MBE). The important feature of MO-MBE is, for

any given MOCOP instance along with the optimal solution it also outputs the

collection of augmented buckets, which are the foundation for the generated

heuristics. The time and space complexity of the algorithm is exponential in i,

where i < n [Dechter and Rish, 1998].

For given a MOCOP instance, if we set the i value to be very large, in particular,

if i > w∗ then the algorithm MBE coincides with the BE algorithm. The BE

algorithm can be viewed as a message passing algorithm, where messages pass

from leaves to the root along the bucket-tree.

3.3.4.2 Branch-and-Bound and Mini-Bucket Heuristics

As mentioned previously, the MOAOBB performs the depth-first traversal of the

search tree defined by the problem. The internal nodes during the search rep-

resent the partial assignments to the variables and leaf nodes denote the com-

plete ones. For maximization problems, the algorithm maintains a global lower

bound (global upper bound for minimization problems) on the cost of optimal
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solutions, which corresponds to the best full assignment of the variables found

thus far. In addition, at each node, the MOAOBB computes a heuristic estimate

of the best solution extending the current partial assignment. MOAOBB then

prunes the respective sub-tree if the heuristic estimate is worse than the global

upper bound.

On the other hand, the effectiveness of the Branch-and-Bound algorithm de-

pends on the quality of the heuristic function [Marinescu and Dechter, 2009b].

[Marinescu, 2009] extended the notion of heuristic evaluation function from

the mono objective to the multi-objective case. Like in the mono objective

case, with each node a heuristic evaluation function h(n) is associated such

that h(n) is the underestimate of the efficient frontier v(n) of the conditioned

sub-problem below the node n.

Definition 22 » Heuristic evaluation function

Given a node n and a partial solution tree T ′n rooted at n in the AND/OR search
tree ST . Then the heuristic evaluation function f(T ′n), is defined recursively as
follows:

(1) If T ′n has only node n then f(T ′n) = h(n);

(2) If n is OR node having the AND childm in T ′n, then f(T ′n) = w(n,m)+f(T ′m);

(3) If n is an AND node having OR children m1, . . . ,mk in T ′n, then f(T ′n) =∑k
i=1 f(T ′mi).

From the above definition, f(T ′n) is an upper bound that underestimates the effi-

cient frontier (optimal solutions) of the sub-problem represented by T ′n. During

the search, at the root node so, the algorithm maintains the best solutions found

so far, denoted with v(so). If every element of f(T ′n) is dominated by at least

one element of v(so) (i.e., for all ~v ∈ f(T ′n) ∃~u ∈ v(so) such that ~u > ~v, implying

that v(so) > f(T ′n), where > is Pareto ordering) then it prunes the sub-problem

below the current node n because no optimal solution exists under the node n.

In the following example we describe heuristic evaluation function of a partial

solution tree.

Example 9 » Heuristic evaluation function of a partial solution tree

Consider the MOCOP instance presented in Example 5. Figure 3.9 shows the
partially explored AND/OR search tree relative to the pseudo tree given in Fig-
ure 3.4(c). The current partial solution tree T ′ is highlighted (orange colour).
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Figure 3.9: Utility associated with a partial solution tree.

The nodes of the partial solution tree are: X0, 〈X0, 1〉, X1, 〈X1, 0〉, X2, X3 and
〈X3, 0〉. The node X2 is a terminal tip node and its corresponding heuristic es-
timate is h(X2) = {(2, 1), (3, 0)}. Assuming that the search is currently at the
tip node 〈X3, 0〉 of T ′ and its corresponding heuristic estimate is h(〈X3, 0〉) =
{(1, 4), (3, 2)}. By using Definitions 20 and 22, the heuristic evaluation function
of T ′ is computed recursively as follows:

f(T ′) =w(X0, 1) + f(T ′〈X0,1〉)

=w(X0, 1) + f(T ′X1)

=w(X0, 1) + w(X1, 0) + f(T ′〈X1,0〉)

=w(X0, 1) + w(X1, 0) + f(T ′X2) + f(T ′X3)

=w(X0, 1) + w(X1, 0) + h(X2) + w(X3, 0) + f(T ′〈X3,0〉)

=w(X0, 1) + w(X1, 0) + h(X2) + w(X3, 0) + h(〈X3, 0〉)

=(0, 0) + (0, 0) + {(2, 1), (3, 0)}︸ ︷︷ ︸
h(X2)

+ (6, 1)︸ ︷︷ ︸
w(X3, 0)

+ {(1, 4), (3, 2)}︸ ︷︷ ︸
h(〈X3, 0〉)

= {(2, 1), (3, 0)}︸ ︷︷ ︸
h(X2)

+ {(7, 5), (9, 3)}︸ ︷︷ ︸
w(X3, 0) + h(〈X3, 0〉)

={(2, 1) + (7, 5), (2, 1) + (9, 3), (3, 0) + (7, 5), (3, 0) + (9, 3)}

={(9, 6), (11, 4), (10, 5), (12, 3)}
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Figure 3.10: Pruning the partial solution tree.

In the following example, we explain the pruning mechanism of MOAOBB.

Example 10 » Pruning mechanism

Continuing Example 9, in Figure 3.10, the left sub-tree rooted at node X1 is fully
explored, producing the current best solution found so far, which is equal to v(s) =
{(14, 6), (13, 8), (11, 11), (10, 16), (3, 24), (9, 19), (8, 21)}. Suppose that the search
is currently at AND node 〈X3, 0〉 of the current partial solution tree T ′ (highlighted
in Figure 3.10). Extending the sub-tree T ′ rooted at current tip node 〈X3, 0〉, we
obtained f(T ′) = {(9, 6), (11, 4), (10, 5), (12, 3)}. Clearly, the current best solution
set, v(s), Pareto dominates f(T ′), which implies that extending the sub-tree rooted
at current tip node 〈X1, 0〉 cannot yield a better solution and search can be pruned.

Static and Dynamic Mini-Bucket Heuristics

We now discuss two general schemes for generating heuristic estimates based

on mini-bucket approximation. These schemes are controlled by the mini-

bucket i-bound, which allows a controllable trade-off between preprocessing

and computational overhead [Kask and Dechter, 2001].

Static Mini-Bucket Heuristics: For a given MOCOP instance the intermediate

functions generated by the mini-bucket approximation can be used to com-
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pute a heuristic function that overestimates the minimal extension of the cur-

rent assignment in an AND/OR search [Marinescu and Dechter, 2005, Kask and

Dechter, 2001]. For instance, consider {B(X1), . . . , B(Xn)} the ordered set of

augmented buckets generated by MO-MBE along a depth-first search traversal

of the corresponding pseudo tree T . The static mini-bucket heuristic function

h(n), where n is the node in the AND/OR search tree relative to T is computed

as follows:

(1) If n is an AND node labelled 〈Xj, xj〉 then h(n) is equal to the sum of all

intermediate functions generated by MO-MBE in buckets corresponding

to the descendants of Xj in T and reside in bucket B(Xj) or the buckets

corresponding to the ancestors of Xj in T ;

(2) If n is an OR node labelled Xj then h(n) is defined as the undominated

closure (i.e., the set of elements that are not dominated by any other

elements) of {w(n,m) + h(m) | m ∈ succ(n)}.

In the following example [Marinescu and Dechter, 2006, Marinescu, 2008] we

describe the static bucket and mini-bucket heuristics.

Example 11 » Static bucket and mini-bucket heuristics

Consider a MOCOP instance with variables {X0, X1, X2, X3, X4, X5, X6}, Figures
3.11(a) and 3.11(b) show its primal graph and corresponding pseudo tree. The
variable ordering of the problem is given by d = (X0, X1, X2, X3, X4, X5, X6). The
corresponding bucket and mini-bucket configurations are displayed in Figures 3.12
and 3.13, respectively. In Figures 3.12 and 3.13 we also show the execution of the
bucket and mini-bucket eliminations along the bucket tree corresponding to the
elimination ordering d. The functions (labelled h) on the arcs denote the messages
sent from a bucket node to its parent in the tree.

Figure 3.11: A MOCOP instance and a corresponding pseudo tree.
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Figure 3.12: Static bucket elimination heuristic.

Figure 3.13: Static mini-bucket heuristics for i = 3.

Suppose that the variables X0 and X1 have been instantiated during the search.
Let us assume that h∗(x0, x1, x2) is the maximal utility of the sub-problem rooted
at node X2 in the pseudo tree, conditioned on (X0 = x0, X1 = x1, X2 = x2). In
the AND/OR search tree, this is represented by the sub-problem rooted at the AND
node labelled 〈X2, x2〉, ending the path {X0, 〈X0, x0〉, X1, 〈X1, x1〉, X2, 〈X2, x2〉}.
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Thus, we obtain:

h∗(x0, x1, x2) = max
X3,X4

(f7(x2, x4) + f6(x1, x4) + f3(x0, x3) + f5(x2, x3) + f4(x1, x3)

= max
X3

(f3(x0, x3) + f5(x2, x3) + f4(x1, x3)) + max
X4

(f7(x2, x4) + f6(x1, x4))

= hX3(x0, x1, x2) + hX4(x1, x2)

where,

hX3(x0, x1, x2) = max
X3

(f3(x0, x3) + f5(x2, x3) + f4(x1, x3))

hX4(x1, x2) = max
X4

(f7(x2, x4) + f6(x1, x4))

As shown in figure 3.12, the heuristic functions hX3(x0, x1, x2) and hX4(x1, x2) are
generated by the bucket elimination algorithm using the maximization operation
(since we assume maximization of objectives) over the variablesX3 andX4. On the
other hand, computing these functions, particularly, the function hX3(x0, x1, x2)
may be too hard to compute as it involves a computation with four variables.
Alternatively, we can replace bucket elimination by a partition based mini-bucket
approximation, which yields an upper bound approximation, h(x0, x1, x2), defined
as follows:

h∗(x0, x1, x2) = max
X3

(f3(x0, x3) + f5(x2, x3) + f4(x1, x3)) + hX4(x1, x2)

≤ max
X3

(f3(x0, x3)) + max
X3

(f5(x2, x3) + f4(x1, x3)) + hX4(x1, x2)

= hX3(x0) + hX3(x1, x2) + hX4(x1, x2)

= h(x0, x1, x2)

where,

hX3(x0) = max
X3

(f3(x0, x3))

hX3(x1, x2) = max
X3

(f5(x2, x3) + f4(x1, x3))

As shown in Figure 3.13, the functions hX3(x0) and hX3(x1, x2) are computed by
the mini-bucket algorithm with i = 3. Thus, during search we can compute the
function h(x0, x1, x2) from the pre-compiled mini-buckets, which yields an upper
bound on the respective sub-problem.

For OR nodes, such as X2, ending the path {X0, 〈X0, x0〉, X1, 〈X1, x1〉, X2}, h(X2)
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can be obtained by maximizing over the values of the sum between the weights
w(C, 〈C, c〉) and the heuristic evaluation function h(〈X2, x2〉) below the AND child
〈X2, x2〉 of C, i.e., h(X2) = max〈X2,x2〉(w(X2, 〈X2, x2〉) + h(〈X2, x2〉)).

Dynamic Mini-Bucket Heuristics: Instead of pre-compiling the mini-bucket

heuristic, it is also possible to generate it dynamically during the search [Rol-

lon and Larrosa, 2006, Marinescu and Dechter, 2005]. For instance, given the

order set of augmented buckets {B(X1), . . . , B(Xn)} along a depth-first search

traversal of T . If asgn(πn) is the current partial assignment path to the node n

then the dynamic mini-bucket heuristic function is computed as follows:

(1) If n is an AND node labelled 〈Xj, xj〉, then h(n) is the sum of all intermedi-

ate functions that reside in bucket B(Xj) and were generated by MO-MBE

in buckets corresponding to the descendants of Xj in T , conditioned on

asgn(πn);

(2) If n is an OR node labelled Xj then h(n) is defined as the undominated

closure of {w(n,m) + h(m) | m ∈ succ(n)}.

For a specified i-bound, dynamic mini-bucket heuristic in comparison with the

static mini-bucket heuristic implies a much higher computational overhead.

However, the bounds generated dynamically may be much more accurate be-

cause some of the variables are already assigned and therefore require less

partitioning and smaller number of functions [Marinescu, 2009, Marinescu and

Dechter, 2009a].

Example 12 » Dynamic mini-bucket heuristics

Figure 3.14 shows the bucket tree structure corresponding to a MOCOP in-
stance given in Example 11. The dynamic mini-bucket heuristic estimate
h(x0, x1, x2) of the AND node labelled 〈X2, x2〉 of variable X2 ending the path
{X0, 〈X0, x0〉, X1, 〈X1, x1〉, X2, 〈X2, x2〉} is computed by MO-MBE with i = 3 on
the sub-problem represented by the buckets X3 and X4, conditioned on the par-
tial assignment (X0 = x0, X1 = x1, X2 = x2). The algorithm MO-MBE produces
buckets X3 and X4 by eliminating the corresponding variables. As shown in Figure
3.14, it generates two new functions, namely, hX3(X2) and hX4(X2). These func-
tions are constants since variables X0, X1 and X2 are already assigned in the scope
of the input functions: f3(x0, X3), f4(x1, X3), f5(x2, X3), f6(x1, X4) and f7(x2, X4),
respectively. Thus, h(x0, x1, x2) = hX3(x2) + hX4(x2) and it is equal to the exact
h∗(x0, x1, x2) in this case.
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Figure 3.14: Dynamic mini-bucket heuristics for i = 3.

3.4 Decision Making under Uncertainty: Influence

Diagrams

Influence diagrams are widely used by AI researches for knowledge represen-

tation and decision making under uncertainty. In this section we present the

development of influence diagrams and discuss various methods that have been

used for solving them. These methods solve influence diagrams either by con-

verting them to other graphical models such as Bayesian networks and decision

trees, or by evaluating them directly.

3.4.1 Transformation-based Evaluation

Reduction to Decision Tree:

Influence diagrams can be transformed into a decision tree and then solved

using an average-out and fold-back strategy [Howard and Matheson, 1984b].

The transformation involves two phases. In the first phase, a regular influence

diagram is first transformed into a decision tree network [Howard and Matheson,

1984b, Shachter, 1986]. Whereas in second phase, a decision tree is constructed

from the decision tree network. The major drawback with this method is that

the size of the decision tree is exponential in the number of variables in the

influence diagram. Therefore, it requires an enormous amount of space to store
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the tree [Pearl, 1988]. Similar kinds of algorithms can be found in [Qi, 1994, Qi

and Poole, 1993, Qi et al., 1994], which transforms influence diagram into a

decision tree in such a way that an optimal solution graph of the decision graph

corresponds to an optimal policy of the influence diagram.

Qi and Poole [Qi and Poole, 1995] made an attempt to convert an influence

diagram into a much smaller decision tree than Howard and Matheson’s. This

approach is based on asymmetry in the decision problem to avoid unnecessary

computation and makes use of heuristic search techniques and domain depen-

dent knowledge.

Reduction to Bayesian Network:

The approach of transforming influence diagrams to Bayesian Networks was

first given by Cooper [Cooper, 1988]. Since the influence diagram is similar to

a Bayesian network, the transformation only requires to ensure that all nodes

in the graphical model are assigned proper probability distributions to allow

one to perform inference. That means we only need to convert all decision and

utility functions (or utility nodes) to chance nodes.

Cooper’s method applies only in the case when there is just one utility node.

Consider an influence diagram that has the set of decision nodes {D1, . . . , Dm}
having the finite domains {dom(D1), . . . , dom(Dm)}, then these nodes convert

to chance nodes using the following distribution:

∀di ∈ dom(Di), P (di | pa(Di)) = 1
|dom(Di)|

where pa(Di) is the parents of Di in the graph of influence diagram and

|dom(Di)| is the number of elements in dom(Di). Suppose that it has only one

utility function denoted by U . Without loss of generality we can assume that U

is non-negative. The utility node U is then transformed to a binary chance node

with the following conditional probability distribution:

P (U = 1 | pa(U)) = U(pa(U))
MU

P (U = 0 | pa(U)) = 1− P (U = 1 | pa(U))

where pa(U) is the set of parents (or scope) of U and MU = maxpa(U) U(pa(U)).
This transformation is known as Cooper’s transformation [Crowley, 2004].

Once the transformation process is finished decision variables are enumerated
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according to the regularity constraint (which says that there is a defined order

of decisions). If D1, . . . , Dm is the order in which decisions are to be taken then

it is shown that an optimal decision rule for decision Dk can be computed by

δ∗k = arg max
Dk

P (Dk, pa(Dk) | U = 1).

The conditional probability of Dk is then set to Pδ∗
k
(Dk | pa(Dk)). Similarly, the

optimal decision rule for decision variables Dk−1, . . . , D1 is computed using the

above expression.

Shachter and Peot [Shachter and Peot, 1992] introduced an improved algo-

rithm that takes advantage of the independence structure of the Bayesian net-

work and the regularity constraint. This algorithm breaks the influence diagram

into Bayesian inference sub-problems, which implies that the computations can

be done locally using Bayesian network technique for belief propagation [Pearl,

1986]. In addition, using this approach we can recursively optimize each deci-

sion rule starting from the last until we reach the first.

Zhang [Zhang, 1998] introduced an algorithm that greatly reduces the num-

ber of nodes being considered in each stage of the evaluation. This algorithm

is primarily based on the previous works of Zhang and Poole given in [Zhang

and Poole, 1992], which deals with the stepwise decomposable influence di-

agrams, and [Zhang and Poole, 1994], which is based on Bayesian inference

techniques. This method is primarily based on partitioning the set of all nodes

in an influence diagram into disjoint sets with respect to the last decision Dm

(which is called the tail decision node). Using these partitions they ignore the

variables that are irrelevant to decision Dm and apply the Bayesian inference

technique to compute the optimal decision rule for Dm. Xiang and Ye [Xiang

and Ye, 2001] proposed an algorithm that transforms influence diagrams into a

Bayesian network and then use junction tree-based [Jensen and Jensen, 1994]

inference algorithms. This algorithm claims to be efficient and simpler than

Zhang’s algorithm but there is no experimental backup given for the claims.

3.4.2 Variable Elimination Techniques

Our approach to multi-objective influence diagram computation is based on

the axiomatic framework of [Wilson and Marinescu, 2012], which allows par-

tially ordered utility values. This general framework is applicable for influence
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diagrams with multi-objective utilities, or interval-valued utilities, as well as

quality decision theory based on order-of-magnitude probabilities and utilities.

3.4.2.1 Bucket Elimination

We adopt the variable elimination approach to solve (multi-objective) influ-

ence diagram, making use of Dechter’s bucket elimination framework [Dechter,

2000a, Wilson and Marinescu, 2012]. To describe the bucket elimination al-

gorithm for influence diagrams, consider a car buying problem [Pearl, 1988]

described as follows:

Example 13 » Used cars

A buyer wants to buy one of the two used cars which can be carried out for various
tests for various costs. Depending on the test results buyer can decide which car to
buy. The quality of the car purchased determines the payoff he gets. The objective
of the buyer is to maximize the expected monetary value.

Figure 3.15: An influence diagram representation of car buying problem.

Figure 3.15 is the influence diagram representation of the situation. The decision
variable T represents the choice of test to be carried out and it has three possible
options, namely t0 (no test), t1 (test car 1) and t2 (test car 2). Each decision
option has three possible consequences, namely, pass, fail and null. The null value
represents that the test is carried out to car 1 and the results are given for car 2,
and vice versa. The decision variable D represents the choice of which car to buy,
its possible options are d1 and d2, representing the decision to buy car 1 and the
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decision to buy car 2, respectively. The two chance variables C1 and C2 represent
the quality of car 1 and the quality of car 2, and each of them can either be good
quality, q1, or bad quality, q2. The utility of testing is defined by the function U(T ),
the utility in buying car 1 is defined by U(C1, D = buy car 1) and the utility for
buying car 2 is given by the function U(C2, D = buy car 2). Note that the utility
U(C1, D = buy car 2) = 0 and U(C2, D = buy car 1) = 0. The total utility
of the problem is given by the sum of all utility functions, i.e., the total utility is
U(T ) + U(C1, D) + U(C2, D).

The objective of the buyer is to determine the actions for the decision variables T
and D which maximizes the following expected utility:

EU = max
T,D

∑
t2,t1,C2,C1

P (t2 | C2, T )P (C2)P (t1 | C1, T )P (C1).

[U(T ) + U(C1, D) + U(C2, D)] (3.3)

Like the MOCOP case, the bucket elimination algorithm for influence diagrams

partitions the probability and utility components into ordered buckets. Each

of these functions are placed into a bucket of the variable that appear latest in

their scopes. For instance, in the above car example, the initial bucket structure

for the ordering d = (T, t2, t1, D,C2, C1) is given in the following figure.

Figure 3.16: Initial bucket structure of car problem.

After initial partitioning of the utility (denoted by ψ) and probability (denoted

by φ) functions, buckets are processed from the last variable to the first in the

ordering d. When processing a chance bucket a new probability component

and a new utility component are computed, which are then placed into a clos-

est lower bucket of a variable in their scopes. The chance variable is then
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eliminated from the ordering. The decision buckets are processed in a similar

manner and eliminate the bucket’s variable by maximization (max) operation.

Since the elimination ordering is d = (T, t2, t1, D, C2, C1) the expected utility

expression 3.3 can be reorganized as follows:

EU = max
T

∑
t2

∑
t1

max
D

∑
C2

P (t2 | C2, T )P (C2).
∑
C1

P (t1 | C1, T )P (C1).

[U(T ) + U(C1, D) + U(C2, D)]

When processing Bucket C1:

EU = max
T

∑
t2

∑
t1

max
D

∑
C2

P (t2 | C2, T )P (C2).
∑
C1

P (t1 | C1, T )P (C1)︸ ︷︷ ︸
Bucket C1

.

[U(T ) + U(C1, D)︸ ︷︷ ︸
Bucket C1

+U(C2, D)]

EU = max
T

∑
t2

∑
t1

max
D

∑
C2

P (t2 | C2, T )P (C2). φ(t1, T )︸ ︷︷ ︸
Bucket C1

.[U(T ) + ψ(t1, T,D)︸ ︷︷ ︸
Bucket C1

+U(C2, D)]

(3.4)

where φ(t1, T ) =
∑
C1

P (t1 | C1, T )P (C1)

and ψ(t1, T,D) = 1
φ(t1, T ) .

∑
C1

P (t1 | C1, T )P (C1)U(C1, D).

We can see in expression (3.4) that eliminating chance variable C1 (by summa-

tion) created a new probability (φ(t, T )) and a utility (ψ(t1, T,D)) components.

Now, we proceed to eliminate the next variable, C2.

When processing Bucket C2: Reorganising the expression (3.4), we get

EU = max
T

∑
t2

∑
t1

φ(t1, T ) max
D

∑
C2

P (t2 | C2, T )P (C2)︸ ︷︷ ︸
Bucket C2

.[U(T ) + ψ(t1, T,D) + U(C2, D)︸ ︷︷ ︸
Bucket C2

]

EU = max
T

∑
t2

∑
t1

φ(t1, T ) max
D

φ(t2, T )︸ ︷︷ ︸
Bucket C2

.[U(T ) + ψ(t1, T,D) + ψ(t2, T,D)︸ ︷︷ ︸
Bucket C2

] (3.5)
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where φ(t2, T ) =
∑
C2

P (t2 | C2, T )P (C2)

and ψ(t2, T,D) = 1
φ(t2, T ) .

∑
C2

P (t2 | C2, T )P (C2)U(C2, D).

In expression (3.5), processing chance bucket C2 created a new probability

(φ(t2, T )) component and a new utility (ψ(t2, T,D)) component. We now move

onto the next variable, D, in the ordering.

When processing Bucket D: Rearranging (3.5), we get

EU = max
T

∑
t2

φ(t2, T )
∑
t1

φ(t1, T )[U(T ) + max
D
{ψ(t1, T,D) + ψ(t2, T,D)}︸ ︷︷ ︸

Bucket D

]

maximizing over D, we obtain

EU = max
T

∑
t2

φ(t2, T )
∑
t1

φ(t1, T )[U(T ) + ψ(t1, t2, T )] (3.6)

where φ(t1, t2, T ) = max
D
{ψ(t1, T,D) + ψ(t2, T,D)}.

For the decision bucket D, since no probability component involves D we sim-

ply maximize over the relevant sum of utility components, generating the new

utility component, namely, ψ(t1, t2, T ). Now, we move onto the next variable t1
in the ordering.

When processing Bucket t1: Since everything is properly ordered in expres-

sion (3.6), we apply the summation operation over the relevant probability and

utility components to remove t1 in (3.6)

EU = max
T

∑
t2

φ(t2, T )
∑
t1

φ(t1, T )︸ ︷︷ ︸
Bucket t1

[U(T ) + ψ(t1, t2, T )︸ ︷︷ ︸
Bucket t1

]

EU = max
T

∑
t2

φ(t2, T )φ(T )[U(T ) + ψ(t2, T )] (3.7)

where φ(T ) =
∑
t1

φ(t1, T ) and ψ(t2, T ) = 1
φ(T )

∑
t1

φ(t1, T ).ψ(t1, t2, T )
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The elimination of chance variable t1 created a new probability component and

a new utility component, namely, φ(T ) and ψ(t2, T ). The next elimination vari-

able in the ordering is t2.

When processing Bucket t2: Rearranging the probability and utility compo-

nents in (3.7) to eliminate t2, we get

EU = max
T

φ(T )
∑
t2

φ(t2, T )︸ ︷︷ ︸
Bucket t2

[U(T ) + ψ(t2, T )︸ ︷︷ ︸
Bucket t2

]

EU = max
T

φ(T )φ′(T ).[U(T ) + ψ(T )] (3.8)

where φ′(T ) =
∑
t2

φ(t2, T ) and ψ(T ) = 1
φ′(T )

∑
t2

φ(t2, T ).ψ(t2, T )

The new probability and utility components after eliminating the chance vari-

able t2 are φ′(T ) and ψ(T ). Now we move to the final variable T in the elimina-

tion ordering.

When processing Bucket T : Finally, we choose the options for T that maxi-

mizes:

EU = max
T

φ(T )φ′(T ).[U(T ) + ψ(T )]

Figure 3.17: Bucket evaluation for car example.

Figure 3.17 shows the recorded functions in the buckets after processing in
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reverse order of d.

It was shown in [Dechter, 2000a] that the dependencies created by the multiple

utility components can be avoided, whenever the utility functions are defined

on chance variables only. This shows that computing expected utility is not nec-

essarily that much harder than the task of belief-updating over the underlying

probabilistic sub-networks.

In principle, the bucket elimination for influence diagrams is similar to the vari-

able elimination algorithms proposed by Shachter [Shachter, 1986, Shachter,

1988, Shachter, 1990], Tatman and Shachter [Tatman and Shachter, 1990],

Shachter and Peot [Shachter and Peot, 1992], Shenoy [Shenoy, 1992] and

Zhang [Zhang, 1998]. In particular it is very much similar to the join-tree

clustering algorithm of F. Jensen, V. Jensen and Dittmer [Jensen et al., 1994]

for evaluating influence diagrams.

Maua et al. [Maua and de Campos, 2011] proposed a variable elimination al-

gorithm for solving Limited Memory Influence Diagrams (LIMIDs), which are

generalization of influence diagrams allowing decision making with limited in-

formation. LIMIDs have similar graphical structure that of standard influence

diagrams but relax the two fundamental assumptions, no-forgetting assumption

and the assumption of a total order on the decisions. Although they consider

standard totally ordered utilities, their algorithm also manipulates partially or-

dered sets of different undominated policies.

3.4.3 Other Algorithms

Previously, influence diagrams were evaluated using arc reversal and node re-

moval method, in which each node (or variable) is removed through some

value-preserving reduction, which is a sequence of transformations to the dia-

gram that maintain feasibility and has the ability not to modify the maximal ex-

pected utility value. Nodes are removed one after the other until only one util-

ity node remains, holding the utility of the optimal policy. Removal of chance

variable involves averaging the utility that depends on the chance node us-

ing the conditional probability (involving that chance variable). In contrast,

the removal of decision variable involves combining the utility that depends

on the decision node and then maximizing the resulting utility over the deci-

sion node. Such works can be found in [Olmsted, 1983, Tatman and Shachter,

1990, Shachter, 1986, Ezawa, 1986].
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A branch-and-bound approach for evaluating standard influence diagrams is

suggested by Pearl [Pearl, 1988], as an improvement over the classical method

of unfolding influence diagram into a decision tree. This approach was first

implemented by Yuan et al. [Yuan et al., 2012], to overcome the difficulty of

wasting computation in solving decision scenarios that have zero probability or

that are not reachable from any initial state by following an optimal decision

policy. They take the approach of [Nilsson and Höhle, 2001, Yuan and Hansen,

2009] for computing upper bounds on maximum utility and prune branches

of the search tree that cannot be part of an optimal policy, and also prune

branches that have zero probability. Marinescu [Marinescu, 2010] proposed

AND/OR branch-and-bound algorithm which traverses AND/OR search spaces

associated with an influence diagram.

Zhou et al. [Zhou et al., 2009] consider influence diagrams with interval-

valued utility which is similar to bi-objective utility. Their approach is based

on Cooper’s transformation for solving influence diagrams based on Bayesian

network algorithms [Cooper, 1988], which has a restriction on the influence di-

agrams to have a unique utility node. Kikuti and Cozman [Kikuti and Cozman,

2007], Kikuti et al. [Kikuti et al., 2011] and DeCampos [de Campos and Ji,

2008] allow interval probability but precise single-objective utility, and Lopez

and Rodriguez [López-Díaz and Rodríguez-Muñiz, 2007] consider generalized

influence diagrams based on fuzzy random variables.

Diehl and Haimes [Diehl and Haimes, 2004] describe a computational tech-

nique for influence diagrams with multiple objectives, with the restriction of

just a single value node (utility function). The solution method is based on in-

fluence diagram transformations [Shachter, 1986]. Pareto dominance is used to

prune sub-optimal utility vectors during the computation (with trade-offs being

taken into account at the end of the computation).

3.4.4 Approximation Techniques

Our other approach for multi-objective influence diagrams is based on approx-

imation technique that relies on a log transformation of the solution space.

Papadimitriou and Yannakakis [Papadimitriou and Yannakakis, 2000] proposed

the use of the logarithmic grid in (1 + ε), where ε > 0 is a very small real num-

ber, to generate an ε-covering of the Pareto set, which is based on ε-dominance
(≥ε). For any ~u,~v ∈ Rp+ we say that ~u ε-dominates ~v if and only if (1 + ε).~u ≥ ~v,
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whereas the ε-covering of any arbitrary finite set U ⊂ Rp+ is the set Uε, which

has the property that ∀ ~v ∈ U ∃~u ∈ Uε such that ~u ≥ε ~v.

The set Uε is not unique; however, it was shown in [Papadimitriou, 1991] that

it is possible to compute an ε-covering of a finite set U ∈ Rp+ by mapping each

vector ~u ∈ U onto a hyper grid using a log transformation ϕ : Rp+ → Zp+, defined

by ϕ(~u) = (ϕ(u1), . . . , ϕ(up)), where ∀i, ϕ(ui) = dlog ui/ log(1 + ε)e, then for any

~u,~v ∈ Rp+, we have the following (see Section 5.3 of Chapter 5 for more):

ϕ(~u) ≥ ϕ(~v)⇒ ~u ≥ε ~v.

However, it is not straightforward to replace the Pareto dominance with ε-

dominance because ε-dominance is not transitive. For instance, in a bi-objective

decision making problem, if we have ~u = (10, 50), ~v = (9, 54) and ~w = (7, 58)
then for ε = 0.1 we have ~u ≥ε ~v and ~v ≥ε ~w but ~u 6≥ε ~w. To overcome this is-

sue, we adopt a finer ε-dominance relation, called (ε, λ)-dominance (≥λε ), where

λ ∈ (0, 1), developed by Dubus et al. [Dubus et al., 2009] for a generalized addi-

tive decomposable (GAI) network, which represents a (multi-objective) gener-

alized decomposable additive utility functions [Gonzales and Perny, 2004]. For

any ~u,~v ∈ Rp+ we say that ~u (ε, λ)-dominates ~v if and only if (1 + ε)λ ·~u ≥ ~v. The

(ε, λ)-covering of any finite U ⊂ Rp+, U(ε,λ), is obtained by eliminating all (ε, λ)-
dominated elements from U , i.e., U(ε,λ) = {~v ∈ U| 6 ∃~u ∈ U such that ~u ≥λε ~v}.

It is now possible to compute an (ε, λ)-covering of a finite set U ⊂ Rp+ with log
grid mapping ϕλ : Rp+ → Zp+, defined by ϕλ(~u) = (ϕλ(u1), . . . , ϕλ(up)) where ∀i,
ϕλ(ui) = dlog ui/ log(1 + ε)λe, For any ~u,~v ∈ Rp+, we have the following:

ϕλ(~u) ≥ ϕλ(~v)⇒ ~u ≥λε ~v.

3.5 Summary and Conclusion

In this chapter, we presented some introductory material for preferences and

discussed various properties that a preference relation can take, which form

the background to our preference handling techniques in this thesis. We also

discussed various preference representation methods such as utility-based rep-

resentation and lexicographic models. In particular, we described the weighted

coefficients and relational representation models for preferences, which are

closely related to the work on preferences in this dissertation. Despite the fact

80



3. RELATED WORK 3.5 Summary and Conclusion

that, weighted coefficients model is much easier when compare to the relational

representation of preferences, the main drawback is that defining the weights

to the objectives is much burden on the decision maker. In addition, represent-

ing the true preferences of the decision maker with weighted coefficients model

is a very difficult task. Nevertheless, we show in Chapter 4, our formalism for

preferences is an alternative approach to the weighted coefficients model.

For solving multi-objective constraint optimization models, we discussed in de-

tail both inference-based and search-based algorithms. In addition, we pro-

vided introductory material to the graph-based concepts to help understanding

the AND/OR search spaces for graphical models and some other graph-based

formalisms. We explained AND/OR branch-and-bound and a variable elimina-

tion algorithm (based on bucket structure) for solving the model. These are

the two main algorithms we focus in this dissertation in solving multi-objective

constraint optimization models in Chapter 4.

For influence diagrams, various algorithms are presented to solve the model.

In particular, we highlighted (in Section 3.4) related works in solving influ-

ence diagrams. Variable elimination techniques are discussed in detail and we

see in Chapter 5 that it can be used effectively to solve multi-objective influ-

ence diagrams in both situations, first, when using ε-covering techniques for

approximating the Pareto sets, and second, when there are some additional

input preferences of the decision maker.
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Chapter 4

Multi-objective Constraint
Optimization with Trade-offs

This chapter discusses particular enhancements in multi-objective constraint

optimization algorithms. The main focus is incorporating the decision maker’s

preference information into the multi-objective constraint optimization algo-

rithms. In particular, we focus on branch-and-bound algorithms which use a

mini-buckets algorithm for generating the upper bound (a set with vector of

objective values) at each node. We consider the problems with maximization

instead of minimization of the objectives and hence use the terminology of util-

ity and utility function instead of cost and cost function.

The upper bound sets that guide the branch-and-bound algorithm can often be

very large. We introduce simple and efficient methods to control the cardinality

of the generating upper bound sets. The reduced upper bound sets still maintain

the upper bound property.

The chapter is organized as follows: Section 4.2 gives the basic definition

of multi-objective constraint optimization problem, Section 4.3 discusses the

AND/OR Branch-and-Bound algorithm for multi-objective constraint optimiza-

tion problems. The main focus of this chapter, handling the decision maker’s

imprecise trade-offs is given in Section 4.4. Methods for deducing preferences

(imprecise trade-offs) are given in Section 4.4.1 and the implementation of the

dominance test between the multi-objective utility vectors with respect to the

deduced preferences is discussed in Section 4.4.3. Methods for controlling the

upper bound set size for both Pareto (no trade-offs) and trade-offs cases are

discussed in Section 4.5. Section 4.6 gives the experimental results on various
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common multi-objective constraint optimization benchmarks. Finally, conclud-

ing remarks are given in Section 4.7.

4.1 Introduction

The goal of solving a Multi-Objective Constraint Optimization Problem (MO-

COP) is to minimize or maximize the objective function subject to a set of con-

straints involving multiple, often conflicting and some times non-commensurate

objectives. Examples of such problems arise in job-shop scheduling [Xia and

Wu, 2005], machine maintenance [Al-Najjar and Alsyouf, 2003], product or

process design [Ashby, 2000, Cavin et al., 2004] and many other.

We assume that there are p(> 1) number of objectives in a multi-objective con-

straint optimization problem, where each complete assignment of the decision

variables is a utility vector in Rp. The solutions can be compared based on the

Pareto or point-wise ordering. However, the Pareto ordering is rather weak,

leading to the set of Pareto-undominated solutions becoming potentially very

large. On the other hand, it is very difficult task for the decision maker to

specify precise trade-offs between the objectives. As mentioned in earlier chap-

ters, there are number of reasons for this, the most obvious one is the cognitive

difficulty of specifying preferences [Brafman and Domshlak, 2009].

In this chapter, we discuss our approach for preference handling that allows

the decision maker to express his preferences in the form of comparison be-

tween the utility vectors. The utility vectors presented to the decision maker

for comparison can be chosen, e.g., using a brief elicitation technique. These

preferences will then be used to strengthen the preference relation over Rp.
Our experimental results show that even a small number of such preferences

can greatly reduce the size of the undominated set.

We present three different approaches for testing the dominance between utility

vectors of Rp with respect to the input preferences of the decision maker. The

first approach is based on linear programming, the second is based on the dis-

tance algorithm that computes distance between point and a convex cone, and

the third is based on matrix multiplication, where we construct the matrix us-

ing the input preferences. The experimental results show that the matrix based

approach speeds up almost an order of magnitude over the linear programming

approach.
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In this chapter, we focus on the extension of MOCO algorithms for the case

where there are additional trade-offs, in particular we extend the multi-

objective branch-and-bound and variable elimination algorithms. The branch-

and-bound approach which we consider is based on [Marinescu, 2009], that

performs the depth-first traversal of an AND/OR search tree and use a mini-

buckets algorithm for generating an upper bound which is basically a set of

utility vectors at each node. Since the generating upper bound sets are subsets

of Rp they can become extremely large during the search. We propose very

simple and effective methods to handle the cardinality of the upper bound sets

for both Pareto (no trade-offs) and trade-offs case. These methods iteratively

replace a collection of elements with their upper bound until the upper bound

set reduces to the desired size. For the case where there are no trade-offs the

upper bound of a collection of elements is generated using the Pareto ordering,

whereas, for trade-offs case the upper bound is generated using the input pref-

erences. The new reduced upper bound set still maintains the key upper bound

property (defined in Section 4.5).

4.2 Multi-objective Constraint Optimization

A Multi-objective Constraint Optimization Problem (MOCOP) is a classical for-

mulation of an operations research model which is based on maximization or

minimization of some objective function subject to some constraints. We define

a MOCOP problem with p objectives as a triple 〈X,D, F〉, where:

• X = {X1, . . . , Xn} is a set of variables.

• D = {D1, . . . , Dn} is a set of finite domains of variables in X.

• F = {f1, . . . , fr} is a set of utility functions.

Each utility function fi ∈ F is defined as fi : Yi → Rp, where Yi ⊆ X is called

scope of the function fi. That means, for each configuration of variables in

its scope, a utility function in F associates a vector in Rp, which is called utility
vector. A utility vector ~u = (u1, . . . , up) is a vector of p components, where ui ∈ R
represents the utility associated with the i-th objective. The objective function

is sum of all utility function in the problem domain, i.e., F(X) =
r∑
i=1

fi(Yi). Any

complete value assignment, x = (X1 = x1, . . . , Xn = xn) to the variables is

called a solution.
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Solutions are compared based on the associated utility vectors. The most com-

mon approach for comparing the solutions is the Pareto ordering, which is de-

fined as: a solution x weakly-Pareto dominates another solution x′ if and only

if the utility vector associated with x is at least as good as the utility vector

associated with x′ for all i ∈ {1, . . . , p}, and we say that x Pareto dominates x′ if
and only if the utility vector associated with x has strictly better value in at least

one j ∈ {1, . . . , p} and better values in the remaining objectives than the associ-

ated utility vector of x′. The weak Pareto dominance and the Pareto dominance

relations are denoted with ≥ and >, respectively. Formally, we define:

Definition 23 » weak Pareto order

If ~u = (u1, . . . , up) and ~v = (v1, . . . , vp) are the utility vectors associated with any
two solutions, then the relation ≥ defined by

~u ≥ ~v if and only if ui ≥ vi for all i ∈ {1, . . . , p}

is called the weak Pareto order.

Definition 24 » Pareto order

If ~u = (u1, . . . , up) and ~v = (v1, . . . , vp) are the utility vectors associated with any
two solutions, then the relation > defined by

~u > ~v if and only if ~u ≥ ~v and ~u 6= ~v

is called the Pareto order.

With weak Pareto order (or Pareto order) it is not always possible to determine

the most preferred (or the best) solution between a pair of solutions. For in-

stance, in a bi-objective case, if we have ~u = (3, 2) and ~v = (2, 3), then neither

of them dominates the other, i.e., ~u 6≥ ~v and ~v 6≥ ~u. Consequently, the solution

space of a MOCOP is partially ordered with respect to the weak Pareto order

(or Pareto order).

In this thesis, we focus on the partial orders < satisfying the following mono-

tonicity properties:

Independence: if u < v then u+ w < v + w for any u, v, w ∈ Rp.

Scale-Invariance: if ~u < ~v and q ∈ R, q ≥ 0 then q×~u < q×~v for any u, v ∈ Rp

and q ∈ R, q ≥ 0.
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An example of a partial order satisfying these monotonicity properties is the

weak Pareto order.

Given any u, v ∈ Rp, and < is any relation then u < v denotes that u weakly
dominates v with respect to <. As usual the asymmetric part of < denoted by

�, which represents the strict dominance or simply dominance relation, defined

as u � v if and only if u < v and v 6< u.

Solving a MOCOP problem consists of finding the set of undominated solutions

that generate the maximal utility values (see Definition 18 in Chapter 3), i.e.,

finding the assignments of the decision variables such that the corresponding

utility is a member of the set max<{F(X) ∈ Rp | X ∈ X}.

4.3 Multi-objective AND/OR Branch-and-Bound

In this section, we present the Multi-objective AND/OR Branch-and-Bound

(MOAOBB) to solve MOCOPs, which is introduced by [Marinescu, 2009].

MOAOBB is an extension of the AND/OR Branch-and-Bound (AOBB) algo-

rithm presented by [Marinescu and Dechter, 2005] for the mono objective case.

MOAOBB applies the general principles of AND/OR search and extends the

Multi-objective Branch-and-Bound (MOBB) into a Branch-and-Bound algorithm

guided by an AND/OR instead of traditional OR search tree. During the search,

MOAOBB records the best solutions found so far. At each visited node during

the search, MOAOBB computes an upper bound (which is basically a set of util-

ity vectors in Rp) of the sub-problem below the current node using a heuristic

evaluation function h(n) (see definition 22, Chapter 3). The heuristic function

h(n) is used in our experiments is the multi-objective mini-bucket heuristic (see

Section 3.3.4.2, Chapter 3). The algorithm backtracks if the current best solu-

tions found so far dominates the upper bound set, because traversing below the

current node cannot lead to any new optimal solution.

MOAOBB is described by Algorithm 1. It performs a depth-first traversal of the

weighted AND/OR search tree (see Section 3.3.2.1, Chapter 3), while main-

taining at the root node s of the search tree the set v(s) of the best solutions

found so far. It expands alternating levels of OR and AND nodes (lines 3–10).

A perimeter of the search is maintained by a stack called OPEN, whereas the

nodes already expanded are contained by the list called CLOSED. During the

search, an expanded node n having an empty set of successors propagates the
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Algorithm 1: MOAOBB
Data: M = 〈X,D,F〉, pseudo tree T , heuristic h.
Result: Maximal set ofM, max<{F (X) | X ∈ X}.

1 create an OR node s labeled by the root of T ;
2 OPEN← {s}; CLOSED← ∅;
3 while OPEN 6= ∅ do
4 move top node n from OPEN to CLOSED;
5 expand n by creating its successors succ(n);
6 foreach n′ ∈ succ(n) do
7 evaluate h(n′) and add n′ on top of OPEN;
8 let T ′ be the current partial solution tree with tip n′;
9 if v(s) < f(T ′) then

10 remove n′ from OPEN and succ(n);

11 while ∃n ∈ CLOSED s.t. succ(n) = ∅ do
12 remove n from CLOSED and let np be n’s parent;
13 if np is AND then v(np)← v(np) + v(n);
14 else v(np)← max<{v(np) ∪ {w(np, n) + v(n)}};
15 remove n from succ(np);

16 return v(s)

value v(n) to its parent np in the search tree which, in turn, updates the value

v(np) (lines 11–15).

The algorithm computes node values recursively in bottom-up manner. That

is starting from the leaf nodes, it removes the OR nodes by maximization and

AND nodes by summation, where the maximization operation yields undomi-

nated closure with respect to the relation <. The algorithm also prunes any

partial solution tree T ′ with tip node n′ if the corresponding heuristic evalua-

tion function f(T ′) is dominated by the current best solutions found so far v(s)
(i.e., for every ~u ∈ f(T ′) ∃~v ∈ v(s) such that ~u < ~v) maintained by the root

node s on the maximal set max<{F(X) ∈ Rp | X ∈ X} (lines 9–10). Finally,

the search terminates when the root s is evaluated, resulting v(s) as the set of

utility vectors corresponding to the optimal solutions.

The time complexity of MOAOBB is given by O(n ·kdp), where dp is the depth of

the pseudo tree, k is the maximum domain size and n is the number of variables.

Since the maximal set max<{F(X) ∈ Rp | X ∈ X} is a subset of Rp, it is not an

easy task to predict its size, as a consequence MOAOBB may use prohibitively

large amounts of memory to store the maximal sets.
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4.4 Handling Imprecise Trade-offs

In this section we present our approach for handling the decision maker prefer-

ences.

4.4.1 Deducing Preferences from Additional Inputs

We assume that we have learned some preferences of the decision maker, i.e.,

we are given a set Θ of pairs of the form (~u,~v) meaning that the decision maker

prefers ~u to ~v, where the utility vectors ~u and ~v can be chosen using some

elicitation technique. We will use this information to deduce further preferences

in two different ways, the first based on Partial order inference [Marinescu

et al., 2012], the second based on a well-known Multi-Attribute Utility Theory

(MAUT) model.

Partial Order-based Inference: Suppose that we are given a set of input pref-

erences Θ. Based on this preference information we infer a preference relation

<Θ over Rp. As mentioned earlier, we are interested in the partial orders which

satisfies the Independence and Scale-Invariance properties. We assume that the

decision maker has some unknown partial order < that represents Θ over Rp

and further < satisfies the following properties:

— Extends weak Pareto: ~u ≥ ~v =⇒ ~u < ~v for all ~u,~v ∈ Rp.

— Scale Invariance: ~u < ~v =⇒ q~u < q~v for all ~u,~v ∈ Rp and q ≥ 0, q ∈ R.

— Independence: ~u < ~v =⇒ ~u+ ~w < ~v + ~w for all ~u,~v, ~w ∈ Rp

Since the decision maker’s preference relation < includes Θ then it naturally

gives rise to the following definitions.

Definition 25 » Consistency

The set Θ is said to be consistent if there exists some partial order < on Rp that
extends Θ, extends Pareto, and satisfies Scale-Invariance and Independence.

Definition 26 » Induced preference relation

If Θ is consistent then we define an induced preference relation <Θ on Rp by ~u <Θ

~v ⇐⇒ ~u < ~v for all partial orders < extending Θ, extending Pareto, and satisfy
Scale-Invariance and Independence.
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Definition 25 gives the consistency of the input preferences. It is very crucial

for us to test the consistency because it is quite common situation that revealed

preferences might have inconsistencies [Wang et al., 2009, Tversky, 1996]. Def-

inition 26 defines the induced preference relation over the set of input prefer-

ences. The relation <Θ should be the smallest among all partial orders which

include the preferences of a decision maker and satisfying the assumed mono-

tonicity properties.

MAUT-based Inference: Our other approach for preference inference is based

on the well-known Multi-attribute Utility Theory. Assume that the decision

maker uses a weighted sum of the objectives to compare the utility vectors

(Chapter 5, Page 168 of [Figueira et al., 2005]), i.e., there exists non-negative

real scalars q1, . . . , qp, such that, for given any two utility vectors ~u,~v ∈ Rp the

decision maker prefers ~u to ~v (~u < ~v) if and only if
p∑
i=1

qiui ≥
p∑
i=1

qivi. We call

the preference relation < a MAUT-based total pre-order. If we know the values

for weight vectors q1, . . . , qp in advance then the problem reduces to the single

objective. Since we are given a set of input preferences Θ this allows us to

define the induced preference relation <2
Θ, defined as follows:

Definition 27 » MAUT-based preference relation

~u <2
Θ ~v if and only if ~u < ~v holds for all MAUT-based pre-orders extending Θ.

Thus ~u is preferred to ~v then it holds for all MAUT-based orderings satisfying

preferences, and vice versa.

4.4.2 Preference Models

In this section we present different preference models for representing the de-

cision maker’s input preferences.

The consistent set of preferences Θ induces a relation <Θ which specifies the

input preferences. For given any ~u,~v ∈ Rp, Definition 26 implies that (~u,~v) (~u

is preferred to ~v) can be deduced from Θ if ~u < ~v holds for all partial orders <

that extend Θ, extend Pareto, and satisfy Scale-Invariance and Independence

properties. In this case we denote ~u <Θ ~v.

The following well-known result (see e.g., [Casas-Garriga and Balcázar, 2004],

Example 1.8, page 7, [Harju, 2006]) shows that the intersection of a set of

partial orders is also a partial order. By definition, we can see that the induced
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preference relation <Θ is also the intersection of all partial orders extending Θ.

If Θ is consistent then the following result implies that <Θ is a partial order.

Lemma 1 » Intersection of arbitrary family of partial orders

The intersection of a set of partial orders is a partial order.

Proof. Let Q be a set of partial orders and < be the intersection of all partial

orders in Q, i.e., <= ⋂
Q. We need to show that < is a partial order.

(i) For all partial orders � in Q, by reflexivity we have ~u � ~v ∀~u, which

implies that ~u < ~v holds ∀~u. Thus, < is reflexive.

(ii) For all ~u,~v, ~w suppose that ~u < ~v and ~v < ~w.

~u < ~v =⇒ ~u � ~v holds for all partial orders � in Q. Similarly, ~v < ~w =⇒
~v � ~w holds for all partial orders � in Q. By transitivity of partial orders

�, it follows immediately that ~u � ~w. The definition of < then implies

that ~u < ~w. Hence, < is transitive.

(iii) For all ~u,~v suppose that ~u < ~v and ~v < ~u.

~u < ~v and ~v < implies that ~u � ~v and ~v � ~u holds for all partial orders

� in Q. The antisymmetric property of � implies that ~u = ~v. Thus, < is

antisymmetric.

For a consistent set of input preferences Θ, if Q(Θ) is the set of all partial

orders extending Θ and Pareto, satisfying Scale-Invariance and Independence

properties then by Definition 26, we can write the induced preference relation

<Θ as <Θ= ⋂
Q(Θ). The following result gives the important characterization

of <Θ, which says, for a given set of consistent input preferences Θ the relation

<Θ is a partial order, satisfies Scale-Invariance and Independence. We need

these properties for the MOCOP algorithms, such as MOAOBB, to be correct

(up to equivalence).
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Proposition 2 » Consistent input preferences induce a partial order

If Θ is consistent then <Θ is a partial order extending Θ and Pareto, and
satisfying Scale-Invariance and Independence.

Proof. Let Θ be the consistent set of input preferences and Q(Θ) be the set of

all partial orders extending Θ and Pareto, and satisfying the Scale-Invariance

and Independence properties.

(i) Since <Θ= ⋂
Q(Θ), Lemma 1 implies that <Θ is a partial order.

(ii) Suppose that (~u,~v) ∈ Θ. Then for all partial orders < in Q(Θ) we have

that ~u < ~v, which implies ~u <Θ ~v. Therefore, <Θ extends Θ.

(iii) Let ~u ≥ ~v for all ~u,~v, where ≥ is the Pareto ordering. Since all partial

orders < in Q(Θ) extends the Pareto ordering, i.e., ~u ≥ ~v =⇒ ~u < ~v

holds for all Partial orders < in Q(Θ), which implies that ~u <Θ ~v also

holds. Thus, <Θ extends the Pareto ordering.

(iv) Let ~u <Θ ~v for all ~u,~v, and let λ ≥ 0 be a real number.

~u <Θ ~v =⇒ ~u < ~v holds for all partial orders < in Q(Θ). Since all partial

orders in Q(Θ) satisfy the Scale-Invariance then it holds λ~u < λ~v for all

partial orders < in Q(Θ), which implies λ~u <Θ λ~v. Therefore, <Θ satisfies

Scale-Invariance.

(v) Let ~u <Θ ~v for all ~u,~v.

~u <Θ ~v =⇒ ~u < ~v for all partial orders < in Q(Θ). Then for all ~w the

Independence property implies that ~u+ ~w < ~v+ ~w for all partial orders <

in Q(Θ), implying that ~u+ ~w <Θ ~v + ~w. Thus, <Θ satisfies Independence.

This completes the proof.

Since the relation <Θ satisfies the Independence property then with the follow-

ing result we show that every element of the set {~u−~v | (~u,~v) ∈ Θ} is preferred

to ~0.
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Lemma 2 » Difference vector always preferred to zero vector

Let < be a pre-order on Rp that satisfies Independence. Then, for any
vectors ~u and ~v, we have ~u < ~v ⇐⇒ ~u− ~v < ~0.

Proof. Suppose that ~u < ~v for ~u,~v ∈ Rp. The Independence property of <

implies that ~u+ (−~v) < ~v + (−~v), i.e., ~u− ~v < ~0.

Conversely, suppose that ~u−~v < ~0 for ~u,~v ∈ Rp. Again using the Independence

property we have ~u− ~v + ~v < ~0 + ~v, i.e., ~u < ~v.

The following result gives the generalized Independence property.

Lemma 3 » Generalized Independence

Suppose that a partial order < satisfies Independence, and that for all

i = 1, . . . , k, ~ui < ~vi then
k∑
i=1

~ui <
k∑
i=1

~vi.

Proof. We prove this by induction on k. If k = 1 then the statement is true, i.e.,

~u1 < ~v1. Assume that
k−1∑
i=1

~ui <
k−1∑
i=1

~vi. Independence and commutative properties

implies that
k−1∑
i=1

~ui + ~uk < ~uk +
k−1∑
i=1

~vi, i.e.,

k∑
i=1

~ui < ~uk +
k−1∑
i=1

~vi. (4.1)

Considering ~uk < ~vk, we can repeat the Independence property with
k−1∑
i=1

~vi then
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we obtain ~uk +
k−1∑
i=1

~vi < ~vk +
k−1∑
i=1

~vi, i.e.,

~uk +
k−1∑
i=1

~vi <
k∑
i=1

~vi. (4.2)

Relations (4.1), (4.2) and the transitivity of < implies that
k∑
i=1

~ui <
k∑
i=1

~vi. This

completes the proof by induction on k.

The relation <′Θ based on pre-orders, and its relationship with <Θ

If Θ be the set of input preferences and <′Θ be the induced relation defined as

follows: for given ~u,~v ∈ Rp we define, ~u <′Θ ~v if and only if ~u < ~v holds for

all pre-orders < that extend Θ, extend Pareto, and satisfy Scale-Invariance and

Independence.

Using the above definition we can write the relation <′Θ as
⋂
R(Θ), where R(Θ)

is the set of all pre-orders that extend Θ, extend Pareto, and satisfy Scale-

Invariance and Independence. The relation <Θ is defined as
⋂
Q(Θ), where

Q(Θ) is the set of all partial orders that extend Θ, extend Pareto, and satisfy

Scale-Invariance and Independence.

The following result shows that the intersection of any arbitrary family of pre-

orders that contains a partial order is always a partial order.

Lemma 4 » Intersection of arbitrary family of pre-orders including

a partial order

The intersection of a set of pre-orders that includes a partial order is a
partial order.

Proof. Let R be the set of pre-orders. Let < be a pre-order and � be a partial

order in R. We need to show that < is a partial order, i.e., we need to show <

is antisymmetric.
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Let ~u < ~v and ~v < ~u.

~u < ~v =⇒ ~u � ~v

~v < ~u =⇒ ~v � ~u

~u � ~v and ~v � ~u =⇒ ~u = ~v.

Therefore, ~u < ~v and ~v < ~u implies that ~u = ~v. This completes the proof.

We make use of the above result in the following result, which gives the relation

between <′Θ and <Θ.

Lemma 5 » Equivalence of <Θ and <′Θ

The following holds for an arbitrary binary relation defined for the input
preferences set Θ on Rp.

(i) <Θ and <′Θ are both pre-orders that extend Θ, extend Pareto, and
satisfy Scale-Invariance and Independence.

(ii) Θ is consistent ⇐⇒ <Θ is a partial order.

(iii) <′Θ ⊆ <Θ.

(iv) If Θ is consistent then <′Θ = <Θ.

Proof. Let Θ be the set of input preferences on Rp.

(i): Proof follows from Proposition 2.

(ii): Suppose that Θ is a consistent set, which impliesQ(Θ) is non-empty. Since

<Θ is the intersection of all partial orders then <Θ itself a partial order.

Conversely, suppose that <Θ is a partial order extending Θ and Pareto, and

satisfying Scale-Invariance and Independence then the set Q(Θ) is non-

empty, i.e., there exists a partial order that extends Θ and Pareto, and

satisfying Scale-Invariance and Independence properties then Definition

25 implies that Θ is consistent.
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(iii): Since a partial order is pre-order, then we have Q(Θ) ⊆ R(Θ) which im-

plies <′Θ ⊆ <Θ.

(iv): Suppose that Θ is consistent. Then Q(Θ) is non-empty. From (iii), we

have Q(Θ) ⊆ R(Θ) which implies R(Θ) includes a partial order. Lemma 4

implies that the intersection of a set of pre-orders that includes a partial

order is a partial order, that means <′Θ = ⋂
R(Θ) is a partial order. Using

(i), we have <′Θ is a partial order that extends Θ, extends Pareto, and

satisfies Scale-Invariance and Independence. Therefore, <′Θ is a member

of the set Q(Θ), which then implies <Θ ⊆ <′Θ. It follows using (iii) that

<′Θ = <Θ.

The cone-based ordering <Θ

In this section, we present our preference model, which is based on the positive

convex cones (which is a convex cone, contains ~0 and contains all vectors ~u

such that ~u ≥ ~0).

Let W = { ~w1, . . . , ~wk} with W ⊆ Rp. We define the set C(W ) to be the set of

all vectors ~u of Rp such that there exists k ≥ 0 and non-negative real scalars

q1, . . . , qk such that ~u ≥ ∑k
i=1 qi ~wi, where ≥ is weak Pareto order. Note that

an empty summation on the right-hand-side taken to be equal to ~0, the zero

vector (0, . . . , 0) in Rp. In other words, the set C(W ) consists all the vectors

that weakly-Pareto dominate some (finite) linear combination of elements of

W , i.e., C(W ) = {~u ∈ Rp | ∃q1, . . . qk ∈ R+ ∪ {0} such that ~u ≥
k∑
i=1

qi ~wi}.

The following well-known result (see e.g., Chapter 19, pages 170-178, [Rock-

afellar, 1997]) gives some properties of the set C(W ).
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Lemma 6 » C(W ) is a positive convex cone

Let W be any finite subset of Rp.

(i) If ~u ≥ ~0 then ~u ∈ C(W ).

(ii) If ~u,~v ∈ C(W ) then ~u+ ~v ∈ C(W ).

(iii) C(W ) ⊇ W .

(iv) If ~u ∈ C(W ) and q is a non-negative real number then q~u ∈ C(W ).

Proof. Let W be any finite subset of Rp.

(i): Assume that ~u ≥ ~0. Choose q1 = 0, . . . , qk = 0 then we have
k∑
i=1

qi ~wi = ~0,

i.e., ~u ≥
k∑
i=1

qi ~wi, which implies ~u ∈ C(W ).

(ii): Suppose ~u,~v ∈ C(W ), then there exists non-negative real scalars q1, . . . , qk

and q′1, . . . , q
′
k, and vectors ~w1, . . . , ~wk ∈ W such that ~u ≥

k∑
i=1

qi ~wi and

~v ≥
k∑
i=1

q′i ~wi. Then ~u+ ~v ≥
k∑
i=1

(qi + q′i) ~wi, implying that ~u+ ~v ∈ C(W ).

(iii): Consider ~w1 ∈ W and choose q1 = 1, q2 = 0, . . . , qk = 0. Then we can write

~w1 =
k∑
i=1

qi ~wi, which implies ~w1 ∈ C(W ). Similarly ~w2, . . . , ~wk ∈ C(W ).
Hence C(W ) ⊇ W .

(iv): Let ~u ∈ C(W ), then there exists non-negative real scalars q1, . . . , qk and

vectors ~w1, . . . , ~wk ∈ W such that ~u ≥
k∑
i=1

qi ~wi. Consider real q ≥ 0. Then

q~u ≥
k∑
i=1

(qqi) ~wi, implying that q~u ∈ C(W ).

In the above result, the properties (ii) (closure under addition) and (iv) (clo-

sure under positive scalar multiplication) imply that C(W ) is a convex cone. In

addition, we name the property (i) as positivity. For this reason we call C(W ) a

positive convex cone.

For W ⊆ Rp, we define W ∗ to be the set of vectors ~u ∈ Rp such that ~u ·~v ≥ 0 for

all ~v ∈ W , where ~u ·~v is the dot product between ~u and ~v given by ~u ·~v =
p∑
i=1

uivi,
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i.e., W ∗ = {~u ∈ Rp | ~u · ~v ≥ 0 ∀~v ∈ W}. The set W ∗ is called dual of W .

The following standard result from [Güler, 2010] (Page 151, Section 6.3, Chap-

ter 6) states that a finitely generated convex cone is always closed and the dual

of the dual of closed convex cone is the convex cone itself.

Proposition 3 » Dual of the dual is primal

If W ⊆ Rp finite set then C(W ) is topologically closed and W ∗∗ = C(W ),
where W ∗∗ = (W ∗)∗.

Suppose that Θ = {(~ui, ~vi) | ~ui, ~vi ∈ Rp, i = 1, . . . , k} is the set of k input prefer-

ences. Then we define the set WΘ = {~ui − ~vi | (~ui, ~vi) ∈ Θ, i = 1, . . . , k}. Using

the results in Lemma 6, the set C(WΘ) defined as the set of all elements in Rp

that weakly-Pareto dominates some positive linear combination of WΘ, i.e.,

C(WΘ) = {~u ∈ Rp | ∃q1, . . . , qk ∈ R+ ∪ {0} such that ~u ≥
k∑
i=1

qi(~ui − ~vi)}

is a positive convex cone (by Lemma 6). We now define the relation <Θ based

on the positive convex cones as:

Definition 28 » Positive convex cone-based relation

If Θ be the finite set of input preferences then we define the relation <Θ by ~u <Θ ~v

if and only if ~u− ~v ∈ C(WΘ).

The following result gives some important properties of the relation <Θ.

Proposition 4 » Properties of <Θ

<Θ is a pre-order that extends Θ, extends Pareto, and satisfies Scale-
Invariance and Independence.
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Proof. Let C(WΘ) be the positive convex cone generated by WΘ. Then by Defi-

nition 28, we have ~u <Θ ~v if and only if ~u− ~v ∈ C(WΘ).

(i) Let ~u ∈ Rp. By Lemma 6(i) we have ~0 ∈ C(WΘ) and ~0 = ~u−~u =⇒ ~u <Θ ~u,

showing that <Θ is reflexive.

(ii) Suppose that ~u <Θ ~v and ~v <Θ ~w then ~u−~v ∈ C(WΘ) and ~v− ~w ∈ C(WΘ).
Lemma 6(ii) implies that ~u− ~w = (~u−~v) + (~v− ~w) ∈ C(WΘ), i.e., ~u <Θ ~w,

showing that <Θ is transitive. Hence <Θ is a pre-order.

(iii) To show that <Θ extends Θ we need to show that ~u <Θ ~v holds for any

pair (~u,~v) ∈ Θ. Let (~u,~v) ∈ Θ then to prove ~u <Θ ~v we need to show

~u − ~v ∈ C(WΘ). By definition ~u − ~v ∈ WΘ and by Lemma 6(iii) the proof

immediately follows.

(iv) Consider any ~u,~v ∈ Rp and assume that ~u ≥ ~v. To prove that <Θ extends

Pareto we need to show ~u <Θ ~v, i.e., we need to show that ~u−~v ∈ C(WΘ).
Now, ~u ≥ ~v =⇒ ~u − ~v ≥ ~0, it follows immediately using Lemma 6(i) that

~u− ~v ∈ C(WΘ). Thus <Θ extends the Pareto.

(v) Suppose that ~u <Θ ~v then we have ~u − ~v ∈ C(WΘ), and let ~w be any

arbitrary vector inRp. (~u+~w)−(~v+~w) = ~u−~v ∈ C(WΘ), i.e., ~u+~w <Θ ~v+~w,

showing that <Θ satisfies Independence.

(vi) Let q ≥ 0 be a real number and assume that ~u <Θ ~v. Then we have

~u−~v ∈ C(WΘ). By Lemma 6(iv), it follows that q~u−q~v = q(~u−~v) ∈ C(WΘ),
i.e., q~u <Θ q~v, showing that <Θ satisfies Scale-Invariance.

In the following section we look at the relationship between the relations <Θ

and <′Θ.

The relationship between <Θ and <′Θ

We show now that the cone-based partial order <Θ is equivalent to the induced

preference relation <′Θ. In particular, we present a theorem which basically

gives a way to check the dominance between the utility vectors in Rp with

respect to the decision maker’s revealed preferences Θ.

The following result shows that the relation <Θ is a subset of the relation <′Θ.
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Proposition 5 » <Θ is a subset of <′Θ

Let Θ be the finite set of input preferences and ~u,~v ∈ Rp be any two
arbitrary vectors. If ~u <Θ ~v then ~u <′Θ ~v.

Proof. Let Θ = {(~ui, ~vi) | ~ui, ~vi ∈ Rp, i = 1, . . . , k} be the set of input preferences.

Suppose that ~u <Θ ~v. To prove ~u <′Θ ~v, it is sufficient to show that ~u < ~v holds

for any pre-order that extends Θ, extends Pareto, and satisfy Scale-Invariance

and Independence.

If ~u <Θ ~v then by definition ~u−~v ∈ C(WΘ) then there exists positive real scalars

q1, . . . , qk and given ~ui − ~vi, i = 1, . . . , k such that ~u − ~v ≥
k∑
i=1

qi(~ui − ~vi). Let

us suppose that < is a pre-order that extends Θ, extends Pareto, and satisfies

Scale-Invariance and Independence.

Since < extends Θ, then we have for all i = 1, . . . , k, ~ui < ~vi. Scale-

Invariance implies that qi~ui < qi~vi. Independence property and Lemma 3 im-

ply that
k∑
i=1

qi~ui <
k∑
i=1

qi~vi. Lemma 2 implies that
k∑
i=1

qi~ui −
k∑
i=1

qi~vi < ~0, i.e.,
k∑
i=1

qi(~ui− ~vi) < ~0. Since we have ~u−~v ≥
k∑
i=1

qi(~ui− ~vi), then transitivity implies

that ~u− ~v < ~0. Lemma 2 implies that ~u < ~v, as required.

Proposition 6 » The relations <Θ and <′Θ are identical

For any finite Θ, we have <Θ = <′Θ.

Proof. By Proposition 4, <Θ is a pre-order that extends Θ, extends Pareto, and

satisfies Scale-Invariance and Independence. The definition of <′Θ then entails

that <′Θ ⊆ <Θ.

Proposition 5 implies that <Θ ⊆ <′Θ. Thus <Θ = <′Θ.

99



4. MULTI-OBJECTIVE CONSTRAINT

OPTIMIZATION WITH TRADE-OFFS 4.4 Handling Imprecise Trade-offs

In the following section we discuss the relationship between the relations <Θ

and <2
Θ.

The relationship between <Θ and <2
Θ

The following result shows that the induced preference relation <Θ is equiv-

alent to the MAUT-based total pre-orders extending Θ, <2
Θ, which is given in

Definition 27.

Proposition 7 » The relations <Θ and <2
Θ are equal

~u <2
Θ ~v ⇐⇒ ~u−~v ∈ C(WΘ). Therefore, if Θ is consistent then the relations

<Θ and <2
Θ are equal.

Proof. Let ~u = (u1, . . . , up) and ~v = (v1, . . . , vp) be two p-dimensional utility

vectors. Any MAUT-based order < on Rp has an associated weights vector ~w =
(w1, . . . , wp), so we write < as <~w. We then have ~u <~w ~v ⇐⇒ (~u − ~v) · ~w ≥ ~0.

We say that <~w extends Θ if and only if, for all ~u ∈ WΘ, ~w · ~u ≥ ~0, i.e., iff

~w ∈ (WΘ)∗. Thus,

~u <2
Θ ~v ⇐⇒ (~u− ~v) · ~w ≥ 0, for all ~w ∈ (WΘ)∗

⇐⇒ ~u− ~v ∈ (WΘ)∗∗

⇐⇒ ~u− ~v ∈ C(WΘ) [by Proposition 3, (WΘ)∗∗ = C(WΘ)]

⇐⇒ ~u <Θ ~v.

The following theorem gives a way to test the dominance between utility vectors

of Rp with respect to the partial order <Θ.
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Theorem 1 » Testing the dominance between utility vectors

Let Θ be a consistent set of pairs of vectors in Rp. Then ~u <Θ ~v if and only
if ~u− ~v ∈ C(WΘ).

Proof. Suppose that Θ is consistent. Lemma 5(iv) implies that <′Θ = <Θ. Propo-

sition 6 gives that <Θ = <Θ. This completes the proof.

Theorem 1 states that, for given any set of input preferences Θ =
{(~ui, ~vi) | ~ui, ~vi ∈ Rp, i = 1, . . . , k} checking if ~u dominates ~v with respect to

the induced preference relation <Θ, it is equivalent to check if ~u − ~v is in the

positive convex cone C(WΘ), which is equivalent of checking if there exists a set

of non-negative real scalars q1, . . . , qk such that ~u− ~v ≥
k∑
i=1

qi(~ui − ~vi).

In the following example we explain the procedure for testing the dominance

between utility vectors with respect to the induced preference relation <Θ,

which is given by Theorem 1.

Example 14 » Cone-based dominance

Suppose Θ = {((2, 5), (3, 3)), ((5, 2), (2, 3))} is the set of consistent input prefer-
ences. Then we obtain WΘ = {(−1, 2), (3,−1)}. Suppose that we are given the
utility vector, ~u = (7, 2) and ~v = (2, 3.5). Then using Theorem 1, ~u <Θ ~v if
and only if ~u − ~v is in the convex cone C(WΘ) generated by WΘ. In other words,
~u <Θ ~v if and only if ~u − ~v weakly-Pareto dominates some positive linear com-
bination of elements of WΘ, i.e., ~u <Θ ~v if and only if ∃q1, q2 ≥ 0 such that
~u− ~v ≥ q1(−1, 2) + q2(3,−1). Finally, ~u <Θ ~v if and only if there exists a solution
for the linear inequalities: 5 ≥ −q1 + 3q2 and −1.5 ≥ 2q1 − q2. The system in this
case has a solution, e.g., q1 = 0.1 and q2 = 1.7, thus implying that ~u <Θ ~v.

In Figure 4.1, the shaded area represents the positive convex cone C(WΘ). Since
the relation <Θ extends Pareto, C(WΘ) always include the positive quadrant of the
xy-plane. We can see that the point ~u− ~v is in C(WΘ), thus ~u <Θ ~v.

Using Theorem 1 and looking at the above example, to perform the dominance

test between utility vectors with respect to �Θ, i.e., to check if ~u <Θ ~v we need

101



4. MULTI-OBJECTIVE CONSTRAINT

OPTIMIZATION WITH TRADE-OFFS 4.4 Handling Imprecise Trade-offs

Figure 4.1: Convex cone of the preference information Θ = {((2, 5), (3, 3)),
((5, 2), (2, 3))}.

to check the consistency of the system of linear inequalities, which can be done

using a linear programming solver (e.g., lpsolve). Alternatively, we can use the

(incomplete) algorithm of [Zheng and Chew, 2009], which is known as the Dis-
tance Algorithm (DA). The DA is introduced for calculating the distance between

a vector and a convex cone in p-dimensional space. In the following section we

discuss the use of DA for testing the dominance between utility vectors in Rp.

Testing Dominance using Distance Algorithm

We implemented DA to calculate the distance between vector ~u − ~v and the

convex cone, C(WΘ), generated by WΘ = {~ui − ~vi | (~ui, ~vi) ∈ Θ, i = 1, . . . , k}
plus p unit vectors in Rp. The algorithm depends on a very small positive real

number ε, called the termination tolerance. If the distance between the point

and the convex cone is zero or less than ε the algorithm results that the point

is in the cone, i.e., the vector ~u dominates ~v with respect to <Θ. Otherwise,

the point is outside and the vector ~u does not dominate ~v with respect to <Θ.

Moreover, the distance algorithm takes a finite number of iterations to conclude

position of the point with respect to the convex cone.

To describe the algorithm, let W ⊂ Rp and C(W ) be the convex cone generated

by W . Let ~u be the point that we want to locate its position (i.e., inside or

outside) with respect to C(W ). Let ~v be the closest point on C(W ) to ~u. The

following function gives the maximum dot product value, computed between

an element ~r ∈ Rp and the elements of W :

hW (~r) = max
~w∈W

~w · ~r
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where, ~w · ~r is the dot product between vectors ~w and ~r. The vector ~r is usually

defined as ~r = ~u − ~v and its length gives the distance between the vectors ~u

and ~v. The function sW : Rp → W , finds the vector sW (~r) ∈ W such that

hW (~r) = sW (~r) · ~r, i.e., the function sW finds a vector in W that gives the

maximum dot product with ~r. The vector sW (~r) is not necessarily unique, but

considering any one of them will be fine.

Let C(Wk) ⊆ C(W ) be the convex cone generated by Wk = { ~w1, . . . , ~wk} ⊆ W .

Let ~vk be the closest vector on C(Wk) to ~u and ~rk = ~u − ~vk be the difference

vector. Let Ŵk be a minimal subset of Wk such that ~vk is a strictly positive

combination of Ŵk. In order to locate the position of ~u with respect to C(W ),
the algorithm performs the following steps:

(i) Set ~v0 = ~0, ~r0 = ~u,W0 = ∅, Ŵ0 = ∅, and k = 0.

(ii) If hW (rk) < 0 then ~u is outside the cone C(W ) or if hW (rk) > 0 and

hW (rk) < ε then ~u is inside the cone C(W ) and algorithm stops.

(iii) Compute sW (~rk) and set Wk+1 = Ŵk ∪ {sW (~rk)}.

(iv) Compute cWk
= (W T

k+1Wk+1)−1W T
k+1~u. Partition the set Wk+1 into

W−
k+1,W

0
k+1 and W+

k+1, which consist of the vectors in Wk+1, to which the

corresponding components of cWk
are strictly negative, zero, and strictly

positive, respectively.

(v) If W−
k+1 = ∅ then ~vk+1 = Wk+1cWk

. Else if W−
k+1 is a singleton then remove

W−
k+1 from Wk+1 and go to (iv).

(vi) If W−
k+1 is not singleton then take W ′

k+1 to be a proper subset of Wk+1

including sW (~rk) and excluding at least one point in W−
k+1. If all subsets

have been checked, then ~vk+1 = ~vW ′
k+1

and ˆWk+1 = W ′
k+1.

(vii) ~rk+1 = ~u− ~vk+1, and k = k + 1. Return to (ii).

Example 15 » Distance Algorithm

To describe the DA, consider W = { ~w1, ~w2, ~w3, ~w4, ~w5, ~w6} ⊂ Rp and C(W ) be the
pointed convex cone generated by W . Suppose that we are given a point ~u ∈ Rp

and let ε be the small positive number (e.g. 10−5). Figure 4.2 shows the working
procedure of the algorithm to locate the point ~u with respect to the cone C(W ). In
first iteration (Figure 4.2(a)), algorithm finds that ~w5 ∈ W using the functions
hW and sW , i.e., hW (~u) = sW (~u) · ~u, where sW (~u) = ~w5. In this case we set
W1 = {w5}. The coefficient vector cW1 is calculated as cW1 = (W T

1 W1)−1W T
1 ~u (step
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Figure 4.2: Distance Algorithm with three iterations to conclude that the point
is inside the cone.

(iv)). The algorithm then computes the closest vector of ~u, ~v1, in first iteration,
which is equal to ~v1 = W1cW1. The distance of ~u with respect to C(W ) is the
length of the residual vector, ~r1 = ~u − ~v1. In second iteration (Figure 4.2(b)), DA
finds the vector ~w6 such that hW (~r1) = ~w6 · ~r1, i.e., sW (~r1) = ~w6. We set W2 =
Ŵ1∪{ ~w6} = { ~w5, ~w6}. The coefficient vector cW2 is given by cW2 = (W T

2 W2)−1W T
2 .

The closest vector of ~u in the second iteration is constructed as ~v2 = W2cW2. The
updated shortest distance between ~u and C(W ) is given by the length of the new
residual vector, ~r2 = ~u− ~v2. The algorithm moves to third iteration (Figure 4.2(c)),
where it finds that hW (~r2) = ~w3 · ~r2, in this case sW (~r2) = ~w3. DA then sets
W3 = Ŵ2 ∪ {w5, w6} = {w3, w5, w6}. The coefficient vector in third iteration is
computed as, cW3 = (W T

3 W3)−1W T
3 ~u. For simplicity assume that the elements of

cW3 are non-negative, otherwise, DA executes steps (iv) - (vi), to find the minimal
set Ŵ3 from W3 such that the closest vector ~v3 can be expresses as their positive
linear combination. Since all components of cW3 are non-negative, then we have
~v3 = W3cW3. The residual vector is obtained as ~r3 = ~u − ~v3. In fourth iteration,
algorithm finds that the value hW (~r3) is less than ε. Thus, DA discovers that the
point ~u lies inside the cone C(W ), in particular, it concludes that ~u lies in the cone
C(W3) generated by the elements of W3.

Figures in 4.3 display the case where the given point ~u lies outside the cone C(W ).
The algorithm takes four iterations (Figures 4.3(a), 4.3(b), 4.3(c) and 4.3(d))
to discover that the point ~u is outside C(W ). In fourth iteration, we have Ŵ4 =
{ ~w1, ~w5, ~w6}, the closest vector of ~u on C(W ) is ~v4 and the residual vector is ~r4 =
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Figure 4.3: Distance Algorithm with four iterations to conclude that point is
outside the cone.

~u − ~v4. When processing next iteration, we obtain the negative value for hW (r4),
which indicates that the given point is outside the convex cone.

For our experiments (in Section 5.5 ) on influence diagrams in the next chapter

we set ε = 10−7 and the experimental results indicate that the incompleteness

of the algorithm does not appear to make a significant difference.

4.4.3 Implementing Matrix-based Dominance Test

Proposition 7 gives the equality of the two induced preference relations <Θ

and <2
Θ, whereas, Theorem 1 gives the condition for the dominance check with

respect to <Θ i.e., for given any set of consistent preferences Θ in order to

test whether utility vector ~u dominates the utility vector ~v we need to check

if ~u − ~v ∈ C(WΘ), where WΘ is given by {~ui − ~vi : (~ui, ~vi) ∈ Θ}. As we have

already seen that testing if ~u−~v is in C(WΘ) leads to solving a system of k linear

inequalities which can be done using a linear program (LP) solver or by use of

distance algorithm. Clearly, for multi-objective constraint optimization this can

be an expensive task as we need to perform many dominance checks. In this

section we present a procedure to compile this dominance check by use of a

matrix which we construct using the input preferences Θ. Later we show that

it greatly reduces the computational overhead.

Let (C(WΘ))∗ be the dual cone of C(WΘ) which is defined as (also see Definition
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12 in Section 3.2.1.1, Chapter 3):

(C(WΘ))∗ = {~u ∈ Rp |
p∑
i=1

~u · ~v ≥ 0, ∀ ~v ∈ C(WΘ)}

Since C(WΘ) is finitely generated then C(WΘ)∗ will also be a finitely generated

set. Moreover, the set (C(WΘ))∗ is characterized by its generators, i.e., the set of

vectors in Rp which represent (C(WΘ))∗. To find these set of generators we use

the approach of [Tamura, 1976], where two different scenarios are presented

for constructing the generators of the dual cone. In first case, the generators

are constructed for a pointed convex cone, whereas the second case focuses on

constructing generators for a non-pointed convex cone, where a pointed convex

cone C has the property that, if ~u ∈ C then −~u 6∈ C. If C is not pointed then it is

a non-pointed convex cone.

As shown in [Tamura, 1976], the procedure for constructing generators for

pointed convex cones is much simpler than for non-pointed ones. We assume

that the input preferences set Θ is consistent which then implies that C(WΘ) is

pointed [Yu, 1974, Wiecek, 2007, Engau, 2008]. In addition, the result pre-

sented in Proposition 8 guarantees that Θ is consistent.

Once we find the set of generators of (C(WΘ))∗ then we arrange them into the

rows of a matrix A (the number of rows of A is then equal to the number of

generators of (C(WΘ))∗). The matrix A is in general rectangular form (i.e., the

number of rows and columns are not necessarily equal in A) because the num-

ber of generators of (C(WΘ))∗ depends on the input preferences Θ [Dattorro,

2005]. The positive convex cone, C(WΘ), contains the set of vectors ~u ∈ Rp

such that A~u ≥ ~0 (the utility vector ~u here is arranged into a column matrix

of size p × 1). The following result gives a way to test the dominance between

utility vectors with respect to A.

Lemma 7 » Dominance with respect to A

Suppose matrix A is such that ~w ∈ C(WΘ) ⇐⇒ A~w ≥ ~0. Then for any
~u,~v ∈ Rp, ~u <Θ ~v if and only if A~u ≥ A~v where ≥ is the weak Pareto
order.
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Proof. ~u <Θ ~v ⇐⇒ ~u− ~v ∈ C(WΘ)⇐⇒ A(~u− ~v) ≥ ~0⇐⇒ A~u ≥ A~v.

The following result illustrates that the matrix A represents the induced pref-

erence relation <Θ. In fact, if A represents <Θ then the dual cone of C(WΘ) is

equal to the cone generated by the rows of A.

Lemma 8 » A represents <Θ

Matrix A represents <Θ if and only if the dual cone (C(WΘ))∗ is equal to
the cone generated by the rows of A, i.e., every row of A is in (C(WΘ))∗

and every element of (C(WΘ))∗ is a positive convex combination of rows of
A.

Proof. Let R be the set of all rows of matrix A. Let C(R) be the convex cone

generated by R then we have ~u ∈ (C(R))∗ if and only if A~u ≥ 0. If A represents

the induced preference relation <Θ then it easily follows from Theorem 1 and

Lemma 7 that for any ~u ∈ Rp, ~u ∈ C(WΘ) ⇐⇒ A~u ≥ ~0 ⇐⇒ ~u ∈ (C(R))∗. We

have every element of C(WΘ) is also a member of (C(R))∗ and vice versa, thus

if A represents <Θ then C(WΘ) = (C(R))∗.

Now, C(WΘ) = (C(R))∗ implies that (C(WΘ))∗ = (C(R))∗∗ = C(R) by Proposi-

tion 3. Conversely, if (C(WΘ))∗ = C(R) then C(WΘ) = (C(WΘ))∗∗ = (C(R))∗.

Thus A represents <Θ if and only if (C(WΘ))∗ = (C(R))∗.

Figure 4.4 compares the experimental results between matrix based and the lin-

ear program (LP) based dominance checks performed on the randomly gener-

ated influence diagrams with 3 and 5 objectives respectively. For these problem

instances the number of decision variables is fixed to 5. The experiments were

conducted on randomly generated 100 problem instances. Each data point on

the graphs represents an average over the number of instances solved by both

methods. The results show that the former method clearly dominates the latter

one. We can clearly see that the former method is almost one order of magni-

tude faster than the latter.
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Figure 4.4: Comparing matrix based versus LP based dominance checks on
influence diagrams with 3 and 5 objectives. CPU time in seconds as a function
of problem size. Time limit 20 minutes.

In the following example we present the representation of preferences discussed

above and also discuss preference representation in matrix form.

Example 16 » Matrix-based dominance test

Suppose that the decision maker reveals a unit of second objective is more valu-
able than a unit of first objective, i.e., (0, 1) is preferred over (1, 0). With just
this information we have Θ = {((0, 1), (1, 0))}. Let <Θ be the induced prefer-
ence relation. In addition, <Θ extends the Pareto ordering and satisfies the Scale-
Invariance and Independence properties. The Independence property implies that
(0, 1)+(−1, 0) <Θ (0, 1)+(0,−1), i.e., (−1, 1) <Θ (0, 0). We haveWΘ = {(−1, 1)}
and by Lemma 6, C(WΘ) is the (positive) convex cone generated by WΘ and
the unit vectors of R2. In Figure 4.5, C(WΘ) is represented by the shaded (grey
and blue coloured) region which is generated by the vectors (−1, 1) and (1, 0).
(C(WΘ))∗ is the dual cone of WΘ and using the approach of [Tamura, 1976],
we obtain its generators (0, 1) and (1, 1). In Figure 4.5, the dual cone (C(WΘ))∗

is represented by the convex region (only blue coloured surface) generated by its
generators. We arrange these generators into the rows of a matrix A, thus

A =
 0 1

1 1

 .

Using Lemma 7, the induced preference relation <Θ is given by ~u <Θ ~v if and only
if A(~u − ~v) ≥ ~0, where ~0 is the zero vector and ~u − ~v is arranged into a column
vector.

For instance, let ~u = (3, 37) and ~v = (12, 37) be two utility vectors, then ~u − ~v =
(−9, 14). To test whether ~u <Θ-dominates ~v, consider the product of the matrix A
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Figure 4.5: Dual cone.

and ~u− ~v, i.e.,

A · (~u− ~v) =
 0 1

1 1

 ·
 −9

14


=

 14
5


≥

 0
0

 = ~0.

Thus, ~u <Θ ~v.

With Pareto ordering, the MOCOP problem given in Example 5 in Sec-
tion 3.3.2 (Chapter 3), has the set {(14, 6), (13, 8), (3, 24), (10, 16), (9, 19),
(8, 21), (11, 14), (12, 12)} of Pareto optimal (or undominated) solutions corre-
sponding to the value assignments (00010), (00011), (01100), (01010), (01110),
(01111), (11010), and (11110) to the variables {X0, X1, X2, X3, X4} of the prob-
lem, where (00010) represents the value assignment X0 = 0, X1 = 0, X2 = 0, X3 =
1 and X4 = 0. With the additional preference information Θ = {((0, 1), (1, 0))},
we obtain that (3, 24) and (8, 21) are the only <Θ-undominated solutions. This
illustrates that even a single trade-off can greatly reduce the number of undom-
inated solutions. In Figure 4.6, we show both <Θ-dominated (red colour) and
<Θ-undominated (blue colour) solutions.

4.4.4 Testing Consistency

We need to check whether the decision maker is consistent with his prefer-

ences because he may state preference values which can conflict with his own
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Figure 4.6: A MOCOP problem (given in Example 5 in Section 3.3.2, Chapter
3) with <Θ-dominance.

preferences stated earlier. For instance, in a hotel booking scenario, one’s pref-

erences for the selected hotel can conflict with his limited budget. In many of

the multi-objective problem settings it is a common challenge that the revealed

preferences should maintain their consistency.

Suppose that Θ is the set of decision maker’s input preferences. The following

result gives a sufficient condition for Θ to be consistent.

Proposition 8 » Sufficient condition for consistency

Set of input preferences Θ = {(~ui, ~vi) | ~ui, ~vi ∈ Rp, i = 1, . . . , k} is con-
sistent if there exist real scalars wj (j = 1, . . . , p) such that the linear
inequalities

for all vectors i = 1, . . . , k;
p∑
j=1

wj(ui(j) − vi(j)) > 0 (4.3)

hold (where, ui(j) is the jth component of ~ui).

Proof. Given Θ = {(~ui, ~vi) | ~ui, ~vi ∈ Rp, i = 1, . . . , k} is a set of input preferences.

110



4. MULTI-OBJECTIVE CONSTRAINT

OPTIMIZATION WITH TRADE-OFFS 4.4 Handling Imprecise Trade-offs

Let WΘ = {~ui− ~vi : ~ui, ~vi ∈ Rp, i = 1, . . . , k} and C(WΘ) be the set of all positive

linear combination of the elements of WΘ, i.e.,

C(WΘ) = {~u ∈ Rp | ∃q1, . . . , qk ∈ R+ ∪ {0} such that ~u ≥
k∑
i=1

qi(~ui − ~vi)}

By Lemma 6, we have that C(WΘ) is a positive convex cone containing WΘ. By

Definition 28, the ordering <Θ is defined on Rp by: ~u <Θ ~v ⇐⇒ ~u−~v ∈ C(WΘ).

By Proposition 4 the relation <Θ is a pre-order extending Θ, extending Pareto

and satisfying Scale-Invariance and Independence properties.

Suppose that vector ~w satisfies (4.3), i.e., ~w · (~ui − ~vi) > 0 for all i = 1, . . . , k.

The definition of C(WΘ) implies that for all non-zero elements ~z ∈ C(WΘ),
~w · ~z > 0. Since ~z is a positive linear combination of the vectors (~ui − ~vi), for

all i = 1, . . . , k. This implies that if ~z and −~z are both in C(WΘ) then ~z = ~0:

since otherwise ~w · ~z > 0 and ~w · (−~z) > 0, which is a contradiction since

~w · (−~z) = −(~w · ~z) < 0.

This implies that <Θ is a partial order: since if ~u <Θ ~v and ~v <Θ ~u then ~u − ~v
and ~v − ~u are in C(WΘ), which implies that ~u− ~v = ~0, thus ~u = ~v.

This implies that Θ is consistent.

To check the satisfiability of the linear inequalities in (4.3), we can make use

of a linear programming solver (e.g., lpsolve). Since we can use a linear pro-

gramming solver, we can replace zero on the right-hand side of system of linear

inequalities in equation (4.3) with a small positive number δ and also add con-

straints relating to the positivity condition for each wj (j = 1, . . . , p), i.e., we

replace the system of linear inequalities in equation (4.3) with the following

system.

for all i = 1, . . . , k;
p∑
j=1

wj(ui(j) − vi(j)) ≥ δ and

for all j = 1, . . . , p;wj ≥ ε, ( for some ε > 0)

Since δ doesn’t effect the satisfiability of the system (4.3), we can use, e.g.,

δ = 1. Also, we can choose, e.g., ε = 10−6 and the objective function we

can set as, minimization of
p∑
j=1

wi. In summary, to check whether the set of
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input preferences Θ is consistent, we check the feasibility of the following linear

program by using a linear programming solver:

Minimize
p∑
j=1

wj (4.4)

subject to:

for all i = 1, . . . , k;
p∑
j=1

wj(ui(j) − vi(j)) ≥ δ

for all j = 1, . . . , p;wj ≥ ε

We make use of above result to validate the user preferences and to generate

the random trade-offs for experimental evaluation.

If the input preferences Θ is not consistent then the induced preference rela-

tion <Θ is not a partial order, consequently, it implies that everything else is

preferred to everything, i.e., ~u <Θ ~v and ~v <Θ ~u for any ~u,~v ∈ Rp.

4.5 Reducing the Upper Bound Sets

One of the important features of the MOAOBB (see Algorithm 1 in Section

4.3) is that it generates an upper bound at each node during the search for an

optimal solution. If n is the current node then for a single objective problem

the upper bound (generated by the mini-bucket heuristic estimates) is usually

a single element whereas for the case with p objectives since the utility vectors

are typically only partially ordered, it will be a subset of utility vectors in Rp.
The key property of the upper bound set is, any assignment below the current

node is weakly dominated by some element of it. Formally, an upper bound in

a multi-objective setting is defined as:

Definition 29 » Upper bound set

Let V be any finite subset of Rp then a set UB(V ) is an upper bound set of V if
∀~v ∈ V , ∃~u ∈ UB(V ) such that ~u weakly dominates ~v, i.e., ~u < ~v.

During the computation, the sizes of the upper bound sets can become very

large. Here we discuss the methods to restrict the cardinality of the upper

bound sets without damaging their key upper bound property.

Let B(≥ 1) be any positive integer. Suppose that one wants to restrict the upper
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bound sets to have cardinality at most B at each node during the search. Let

U be an upper bound set at some node. In this section, we develop methods

that iteratively choose a subset of k elements {~v1, . . . , ~vk} ⊆ U and generate

their upper bound denoted by ~u. The selected subset of elements in U is then

replaced with ~u. We also remove the other elements in U that are dominated

by newly added ~u. We repeat this process until U contains at most B elements.

The reduced U still satisfies the upper bound property. For the last iteration

we choose k = |U| − B + 1 to avoid removing too many elements so that the

cardinality of the final upper bound set is closer to B. For the special case when

B = 1 (i.e., choosing k = |U|) we replace all the elements of U with an upper

bound in one iteration.

In the following sections we will discuss in detail two cases, firstly no trade-

offs (Pareto), and secondly when the decision maker provides some additional

trade-offs. In each of these cases we make use of the Pareto least upper bound

(PLUB) of the subset of elements {~v1, . . . , ~vk}, given by ~v = maxkj=1 ~vj, where

the operation max is applied point-wise.

4.5.1 Pareto (no trade-offs) Case

When there are no additional trade-offs, we developed the following five dif-

ferent methods for reducing the upper bound sets during the search. In each

of these methods we replace only two elements in every iteration, i.e., we set

k = 2 for reducing the upper bound sets. In some of these methods we calculate

the Manhattan distance and the dot product between two vectors ~w1, ~w2 ∈ Rp,
where Manhattan distance is defined as, MD( ~w1, ~w2) = ∑p

i=1 |w1i − w2i |, and

dot product is defined as, DP ( ~w1, ~w2) = ∑p
i=1w1iw2i, where w1i and w2i are the

ith components of utility vectors ~w1 and ~w2. In all these five methods we assume

a finite subset U of Rp is an upper bound set that needs to be reduced.

Method 1 » Random-Manhattan (RM)

(i) Choose randomly ~wi ∈ U and locate an element ~wj ∈ U that minimizes

the Manhattan distance from ~wi.

(ii) Remove ~wi and ~wj from U and add their Pareto least upper bound ~v to U .

(iii) Remove the elements which are Pareto dominated by ~v.

(iv) If |U| ≤ B then stop. Otherwise go to (i).
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In step (i), method RM randomly selects a utility vector ~wi from U and finds a

utility vector ~wj in U , which is close to ~wi with respect to Manhattan distance. If

there is more than one ~wj then the method selects one of them randomly. In step

(ii), RM replaces both ~wi and ~wj with a Pareto least upper bound ~v computed as

~v = max( ~wi, ~wj), where max is applied point-wise. In step(iii), RM removes the

elements from U that are dominated by ~v. This process repeats until cardinality

of the upper bound set U reduces to less than or equal to B.

Method 2 » Minimum-Manhattan (MM)

(i) Find ~wi, ~wj ∈ U that minimize the Manhattan distance, i.e., MD( ~wi, ~wj) ≤
MD( ~wt, ~ws) for all ~wt, ~ws ∈ U , s 6= t.

(ii) Replace ~wi and ~wj from U and add their Pareto least upper bound ~v.

(iii) Remove the elements which are Pareto dominated by ~v from U .

(iv) If |U| ≤ B then stop. Otherwise go to (i).

Method MM is similar to method RM, the only differences being in step (i),

where method MM calculates Manhattan distance between every two elements

of the upper bound set U and selects a pair of vectors ~wi and ~wj that have

minimum Manhattan distance between them. In other words, method MM

selects a pair of vectors that are close to each other with respect to Manhattan

distance.

Method 3 » Dot Product (DP)

(i) Choose ~wi, ~wj ∈ Rp which maximize the dot product value, i.e.,

DP ( ~wi, ~wj) ≥ DP ( ~wt, ~ws) for all ~wt, ~ws ∈ U , s 6= t.

(ii) Remove ~wi and ~wj from U and add their Pareto least upper bound ~v.

(iii) Remove the elements which are Pareto dominated by ~v.

(iv) If |U| ≤ B then stop. Otherwise go to (i).

Method DP computes dot product values between every two elements of the

upper bound set U and selects a pair that has maximum dot product value. The

reason for choosing maximum dot product value is that it gives the vectors close

to each other. If there are two or more pair of vectors having the maximum dot

product value then the method selects randomly one of them.
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Method 4 » Normalized Dot Product (NDP)

(i) Find ~wi, ~wj ∈ Rp which maximize the normalized dot product (NDP)

value, where NDP between ~wi and ~wj is defined as:

NDP ( ~wi, ~wj) =

p∑
k=1

wik · wjk√
p∑

k=1
w2
ik

√
p∑

k=1
w2
jk

(ii) Remove ~wi and ~wj from U and add their Pareto least upper bound ~v.

(iii) Remove the elements which are Pareto dominated by ~v.

(iv) If |U| ≤ B then stop. Otherwise go to (i).

Method NDP is similar to method DP, the only difference is, it normalizes the

vectors before calculating the dot product values.

Method 5 » Random (RND)

(i) Choose randomly ~wi, ~wj ∈ Rp.

(ii) Remove ~wi and ~wj from U and add their Pareto least upper bound ~v.

(iii) Remove the elements which are dominated by ~v.

(iv) If |U| ≤ B then stop. Otherwise go to (i).

In each iteration, method RND chooses the vectors ~wi and ~wj randomly from

the upper bound set U and replace them with their Pareto least upper bound ~v.

Method RND is a simplest one, but because of the random selection, it might

select a pair of vectors that are far from each other, whereas, all other methods

try to find a pair of vectors close to each other.

Figure 4.7 shows the number of instances solved by MOAOBB using each of

these methods out of 50 randomly generated MOCOP graphs. The upper bound

set size B was set to 5, so that all the methods restrict the cardinality of the up-

per bound sets to at most 5 at each node during the search for optimal solution.

It can be seen that there is no huge difference in the results; however RM is

overall the best. Hereafter when B > 1 we only use RM to restrict the cardinal-

ity of the upper bound sets and we simply call this method as “PLUB”. For the

special case, when we set B = 1 to restrict the upper bound sets to singleton
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Figure 4.7: Number of problem instances solved for random networks with 4
objectives. Using different Pareto least upper bound based methods. Time limit
3 minutes.

sets, instead of removing only two elements in every iteration, we replace all

the elements with their Pareto least upper bound in a single iteration.

The following example illustrates how PLUB will be applied in solving MOCOPs.

Example 17 » Methods for reducing the upper bound set (Pareto case)

Continuing Example 16, suppose that we are given an upper bound set U =
{(21, 3), (3, 15), (24, 1)} and we want to reduce its size to 2, i.e., we set B = 2. Let
~w1 = (21, 3), ~w2 = (3, 15) and ~w3 = (24, 1). Assume that PLUB randomly selects
~w1 and then obtains Manhattan distances MD( ~w1, ~w2) = 30 and MD( ~w1, ~w3) = 5
from utility vectors ~w2 and ~w3, respectively. Since the utility vector ~w3 minimizes
the Manhattan distance from ~w1, PLUB replaces ~w1 and ~w3 with their Pareto least
upper bound ~v = (24, 3) from U . Since (24, 3) 6≥ (3, 15) then the reduced up-
per bound set will then be {(24, 3), (3, 15)} which still maintains the upper bound
property.

If we set B = 1, i.e., reducing U to a singleton set, then PLUB replaces ~w1, ~w2 and
~w3 with their Pareto least upper bound ~v = (24, 15) from U in a single iteration.
The new upper bound set will then be {(24, 15)}.

4.5.2 Trade-offs Case

As described above, we assume that we are given a consistent set of input pref-

erences Θ from which we derive a preference relation <Θ. As discussed in

Section 4.4.3, let us suppose matrix A represents <Θ. Assume that we are pro-

ducing an upper bound for a subset of utility vectors in U with respect to Θ.
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We will make use of the following result to generate an upper bound ~u of the

vectors ~v1, . . . , ~vk with respect to Θ.

Proposition 9 » Upper bound with respect to Θ

Let ~v1, . . . , ~vk be vectors in Rp, and let ~v = maxkj=1 ~vj be their Pareto least
upper bound, and let ~w = maxkj=1 A~vj (with max being applied point-wise
in both cases). Then,

(i) ~v <Θ ~v1, . . . , ~vk, i.e., the Pareto least upper bound is an upper bound
with respect to <Θ;

(ii) for ~u ∈ Rp, ~u <Θ ~v1, . . . , ~vk ⇐⇒ A~u ≥ ~w; and

(iii) A~v ≥ ~w.

Proof. (i): Since <Θ extends Pareto, also we have ~v ≥ ~vj, for all j ∈ {1, . . . , k}
it follows immediately that ~v <Θ ~vj, for all j ∈ {1, . . . , k}.

(ii): Let ~u ∈ Rp then ~u <Θ ~vj for all j ∈ {1, . . . , k} ⇐⇒ (using Lemma 7)

A~u ≥ A~vj for all j ∈ {1, . . . , k} ⇐⇒ A~u ≥ maxkj=1 A~vj ⇐⇒ A~u ≥ ~w.

(iii): From (i) we have ~v <Θ ~vj for all j ∈ {1, . . . , k}. It follows immediately

from (ii) that A~v ≥ ~w.

If <Θ is much stronger than the Pareto ordering ≥, then we can obtain a much

tighter upper bound, which can lead to much stronger pruning. Solving a sys-

tem of linear inequalities A~u ≥ w, given in Proposition 9(ii), may lead to an

upper bound ~u with respect to <Θ such that ~u ≥ ~v, or ~u and ~v may not be com-

parable. Thus, we may obtain an upper bound with respect to <Θ which is even

worse than the Pareto least upper bound. For this reason, we add an additional

constraint ~u ≤ ~v, i.e., ~u ≤ maxkj=1 ~vj, which guarantees that the generated up-

per bound with respect to the induced preference relation <Θ is tighter than the

Pareto least upper bound. Thus the additional constraint on the upper bound

with respect to <Θ may lead to stronger pruning.

To obtain an upper bound ~u with respect to <Θ we solve the following linear
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program:

Minimize
∑
i

ui (where ui is the ith component of ~u) (4.5)

subject to:

A~u ≥ ~w

~u ≤ kmax
j=1

vj

The above linear program is feasible because Proposition 9(iii) shows that the

system of linear inequalities are satisfiable, since ~v is a solution.

The following are the methods we tried with this approach, in all these methods

k is the cluster size:

Method 1 » k-nearest neighbours (KNN)

(i) Choose an element ~w in U and find its k− 1 nearest neighbours in U with

respect to Manhattan distance.

(ii) Remove ~w and its k − 1 nearest neighbours form U and add their upper

bound ~u generated with respect to <Θ by using (4.5).

(iii) Remove the elements which are dominated by ~u.

(iv) If |U| ≤ B then stop. Otherwise go to (i).

In step(i), method KNN selects a utility vector ~w randomly from the upper

bound set U and computes the Manhattan distance between ~w and the remain-

ing elements of U . It then selects k − 1 utility vectors that have the smallest

Manhattan distances from ~w, this clearly gives the k − 1 nearest neighbours of

~w with respect to Manhattan distance. In step (ii), the method replaces ~w and

its k − 1 nearest neighbours with the <Θ-based upper bound, ~u, computed by

using (4.5). In step (iii), the method removes the elements from U that are

dominated by the newly added upper bound ~u. The method repeats these steps

until the upper bound set U contains the at most B elements.

Method 2 » Random k-group (RKG)

(i) Choose randomly k elements ~v1, . . . , ~vk from U .

(ii) Replace ~v1, . . . , ~vk with their upper bound ~u generated with respect to <Θ

by using (4.5).
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Figure 4.8: Number of problem instances solved for random networks with 4
objectives using different linear program based methods (left) and for random
networks with 3 objectives using different cluster sizes (k) with method RKG
(right). Time limit 3 minutes.

(iii) Remove the elements which are dominated by ~u.

(iv) If |U| ≤ B then stop. Otherwise go to (i).

Method RKG randomly selects k (cluster size) different elements from U (step

(i)) and replaces them with the <Θ based upper bound, ~u, computed using

(4.5) (step (ii)). It also removes the elements in U dominated by ~u. This

process repeats until the upper bound set U contains at most B elements.

Method 3 » Random 2-group (R2G)

Choosing cluster size k = 2 in the above method we have the following.

(i) Set k = 2 and choose randomly two utility vectors ~v1, ~v2 ∈ U .

(ii) Replace ~v1 and ~v2 with their upper bound ~u generated with respect to <Θ.

(iii) Remove the elements which are dominated by ~u.

(iv) If |U| ≤ B then stop. Otherwise, go to (i).

The above method R2G is obtained by setting the cluster size k = 2 in method

RKG.

In Figure 4.8, the left-hand-side results show the number of problem instances

solved for randomly generated MOCOP graphs with 4 objectives using all the

three methods discussed above. Clearly, the results are similar, but for these

instances RKG is the best. The right-hand-side results in Figure 4.8 for random

graphs with 3 objectives show the number of problem instances solved by RKG

with cluster sizes k = 10, 15, 20, 25 and 30. These results indicate that changing

the cluster size does not really effect the number of instances solved much. In
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the following section for the experiments with trade-offs we use RKG which

we simply call “LP” and set the cluster size k = 30. For the special case, when

k = |U|, we replace all the elements of U with their upper bound generated

with respect to <Θ in a single iteration.

The following example illustrates the procedure for generating upper bound

with respect to induced preferences and how we apply LP method in solving

MOCOPs.

Example 18 » Method for reducing upper bound set (Trade-offs case)

Continuing Example 17 in Section 4.5.1, suppose that we are given an upper bound
set U = {(21, 3), (3, 15), (24, 1)}, where ~w1 = (21, 3), ~w2 = (3, 15) and ~w3 =
(24, 1); and B = 2. For simplicity assume that the cluster size k = 2. Suppose
LP randomly selects ~w1 and ~w2. As in Example 16, suppose we are given Θ =
{(0, 1), (1, 0)} leading to the matrix

A =
 0 1

1 1


Let ~u = (u1, u2) be <Θ-based upper bound, we have ~v = (21, 15) is the Pareto
least upper bound of ~w1 and ~w2. As described in Proposition 9, we get ~w =
max2

j=1 A~wj = (15, 24). To generate ~u we formulate and solve the following linear
program:

Minimize
u1 + u2

subject to the constraints:
u2 ≥ 15

u1 + u2 ≥ 24
u1 ≤ 21
u2 ≤ 15

Solving the above linear program (which in this case has a unique optimal solu-
tion) we get ~u = (9, 15), which is clearly a much tighter upper bound than (21, 15).
We then replace ~w1 and ~w2 with ~u. The reduced new upper bound set will then be
{(9, 15), (24, 1)}.
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4.6 Experiments

In this Section, we present the experimental evaluation of our new approach

to solve multi-objective constraint optimization problems. We focus mainly on

three classes of standard MOCOP benchmarks namely random networks, combi-
natorial auctions and vertex coverings. The algorithms for generating the prob-

lem instances and the proposed enhancements in MOCOP algorithms were im-

plemented in C++ (32 bits). The experiments were run on a 2.6GHz quad-core

processor with 4 GB of RAM.

The random generators for generating the problem instances are as follows:

Random Networks

These graphs are basically characterized by two parameters, the number of

variables (or vertices) n and the number of utility functions c. As described in

[Marinescu, 2009, Rollón and Larrosa, 2006b] the instances are generated by

randomly selecting the edges between the variables (or vertices), with values

n ∈ [10, 160] and c = 1.6n. The number of objectives are 2, 3, 4 and 5, respec-

tively and the objective values are uniformly distributed between 0 and 10. The

induced width of these graphs range between 5 and 14, respectively.

Weighted Vertex Coverings

Given a graphG = (V,E), where V is the set of vertices and E is the set of edges

between them, a vertex covering of G is a set of vertices S ⊆ V such that each

edge in E is incident to at least one vertex in S, i.e., ∀(u, v) ∈ E, either u ∈ S or

v ∈ S. Assume that each vertex u ∈ V has an associated multi-attribute utility

U(u) = (u1, . . . , up) then the task is to find S such that for each edge (u, v) ∈ E,

either u ∈ S or v ∈ S, and F (S) = ∑
u∈S U(u) is maximized.

Figure 4.9 shows a bi-attribute weighted graph G with six vertices V =
{v1, v2, v3, v4, v5, v6} and six edges E = {(v1, v2), (v2, v3), (v2, v4), (v3, v5), (v4, v5),
(v4, v6)}. By definition, the vertex cover of graph G having the maximum sum

of weights of its vertices is S = {v1, v3, v4} (orange coloured vertices), where

the sum of the weights is given by (3, 2) + (5, 6) + (6, 3) = (14, 11).

Following [Marinescu, 2009], we generated random vertex covers with |V | =
[10, 180] vertices, |E| = 1.6V edges and having 2, 3, 4 and 5 objectives. Problem
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Figure 4.9: A bi-attribute weighted graph G (left) and its vertex cover (right)

instances were generated by randomly selecting E edges. The utility vector

components were generated randomly between −10 between 0. The induced

width of these graphs ranged between 9 and 25, respectively.

Combinatorial Auctions

In a combinatorial auction, an auctioneer wants to sell a set of distinguishable

goods amongst a group of bidders, where the amount that the bidders are will-

ing to pay is either unknown or unpredictably changeable over time [Leyton-

Brown et al., 2000]. However, the auctioneer wants to allocate the goods in a

way that maximizes his revenue (for instance, selling a pair of shoe gives more

profit than the profit of selling a left shoe alone plus the profit of selling a right

shoe alone). On the other hand, he wants to control the risk of not being paid

after a bid has been accepted [Holland, 2005] and wants to improve the quality

of services associated with the bids.

Let α = {α1, . . . , αl} be the set of goods to be auctioned and β= {β1, . . . , βm} be

the set of bids. For our experiments, we define each bid βj ∈ β as a quadruple

(sβj , rβj , pβj , qβj), where

– sβj is the subset of goods that bid βj is placed for, i.e., sβj ⊆ α.

– rβj is the price of bid βj.

– pβj is the probability of failing the payment upon acceptance of βj.

– qβj is the quality of service measure associated with bid βj.

Given that each good is allocated to at most one bid, the goal of the auctioneer

is to determine the subset of winning bids that simultaneously maximize the

profit, minimize the risk of not getting the full revenue and maximize the overall

quality of the services represented by the selected bids.
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For our experiments, we adopt the technique of generating auctions with 30

goods (in each bundle) and increasing number of bids from the paths distri-

bution of the CATS (Combinatorial Auction Test Suite) given in [Leyton-Brown

et al., 2000]. The probabilities of failing payments will be generated randomly

between 0 and 0.3 and the quality of services associated with bids is uniformly at

random between 1 and 10. The induced width of these graphs ranged between

6 and 61.

Consistent random trade-offs

We generate consistent random trade-offs, namely two-way and three-way, be-

tween the objectives defined as follows.

Two-way trade-offs: Let i, j be the different elements in {1, . . . , p} (where each

element in the set is corresponding to an objective) and for i = 1, . . . , p let ~ei
be the unit vector in ith direction in Rp. We randomly choose real numbers

a, b, c ∈ [0.1, 1). Then we generate the vectors a~ei− b~ej and b~ej − ac~ei, which we

call two-way or binary trade-offs. These vectors correspond to the constraints

awi ≥ bwj and bwj ≥ acwi, where we consider a vector of unknown weights

(w1, . . . , wn) for the objectives. Moreover, the first vector represents that the

decision maker is willing to gain a units of objective i at the cost of losing b

units of objective j, and the second is vice versa. Note that the parameter c can

be used to control the strength of the trade-offs. For instance, if c = 1 then the

constraints on wi and wj imply awi = bwj, So, the i and j objectives collapse

into a single objective implying that we have precise rates of exchange between

objectives i and j.

For example, if p = 3 and i = 3, j = 1 then we get the trade-off vectors (−b, 0, a)
and (b, 0,−ac).

Three-way trade-offs: Let i, j and k be different elements in {1 . . . , p}. We

randomly choose real numbers a, b, c in [0.1, 1) then we generate the trade-off

vector a~ei + b~ej − c~ek, which corresponds to the constraint awi + bwj ≥ cwk; we

call it as three-way trade-off between the objectives i, j and k. This represents

the decision maker’s willingness to gain a units of objective i and b units of

objective j at the cost of losing c units of objective k.

For example, if p = 3 and i = 2, j = 3 and k = 1 then we get the three-way

trade-off vector (−c, a, b).

The algorithm RAND-TRADE-OFFS describes the whole process for generat-
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Algorithm 2: RANDOM-TRADE-OFFS

1 if p = 2 then
2 C ← ∅;
3 r ← Rand(0, 1);
4 if r ≤ 0.5 then
5 generate trade-offs for the pair (1, 2);
6 else
7 generate trade-offs for the pair (2, 1);
8 place all trade-offs in C;
9 else if p > 2 then

10 repeat
11 C ← ∅;

// generate binary trade-offs
12 for t = 1 to K do
13 pick random all different elements i, j in {1, . . . , p};
14 generate binary trade-offs for (i, j);

// generate 3−way trade-offs
15 for h = 1 to T do
16 pick random all different elements i, j, k in {1, . . . , p};
17 generate 3−way “+ +−" trade-offs for (i, j, k);
18 place all trade-offs in C;
19 until Proposition 8 implies that C is consistent, i.e., the linear program (4.4)

is feasible.;

20 return C;

ing consistent random trade-offs. The function Rand(0, 1) generates a random

real number between 0 and 1. For bi-objective case (p = 2), with chance 0.5
we generate trade-offs for the pair (1, 2) of objectives. Otherwise, we generate

trade-offs for the pair (2, 1) of objectives (lines 1-8). For more than two ob-

jectives case, we consider two input parameters K and T (positive integers),

and generate K binary (lines 12-14) and T 3-way random trade-offs (lines 15-

17). In this case, we apply Proposition 8 to ensure that the generated random

trade-offs are consistent (line 19).

For simplicity we use the following terminology in our experiments:

– MOAOBB(i) – is the multi-objective AND/OR branch and bound algo-

rithm described in Section 4.3, where i is the i-bound size which will be

passed as an argument to control the accuracy of the guiding heuristic. In

[Marinescu, 2009] it was shown that the larger values of i typically give

more accurate results but they are more expensive to compute.
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– B=b (PLUB) – is the MOAOBB(i) that uses the Pareto least upper bound

based method “PLUB” described above to reduce the upper bound sets

described in Section 4.5.1 to at most b(≥ 1) during the search at each

node. This will be used for both Pareto and trade-offs cases.

– B=b (LP) – is the MOAOBB(i) that uses the <Θ-based upper bound

method “LP” described above to reduce the upper bound sets described

in Section 4.5.2. This will be used for both Pareto and trade-offs cases.

For all experiments we replace a cluster of 30 elements from the upper

bound set in each iteration.

– VE – is the variable elimination algorithm given in [Marinescu et al.,

2012] for solving multi-objective influence diagrams. We use the same al-

gorithm to solve MOCOP instances. In contrast with a branch-and-bound

algorithm which is linear in space, VE is time and space exponential in the

underlying induced tree width of the problem instance.

All the algorithms we focus on here are restricted to a static variable ordering

that is obtained using a depth-first traversal of the corresponding pseudo tree.

The min-fill heuristic given in [Dechter and Mateescu, 2007b, Marinescu, 2009]

is used to compute these pseudo trees. On the other hand, the AND/OR search

algorithms use lexicographic order to order the sub-problems rooted at each

node in the search tree.

Comparison with State of the Art Approaches:

Figure 4.10 shows the results obtained using the Pareto ordering for random

networks with 5 objectives, combinatorial auctions with 3 objectives and vertex

covering problems with 5 objectives, respectively. The data points on the graph

represent the averages over 10 randomly generated instances. The mini-bucket

i-bounds (see Section 3.3.4.1, Chapter 3) are 8, 10 and 12 for random net-

works, combinatorial auctions and vertex covering problems, respectively. The

time allotted to solve each instance is 30 minutes. That means the instances

which are not solved within 30 minutes will be labelled as unsolved.

Overall, for Pareto case, among all the algorithms, the algorithm using B = 1

(PLUB), the single element upper bound set, is the best and it outperforms sig-

nificantly the state-of-the-art MOAOBB across all problem instances. The B = 2

(PLUB) is slightly slower than B = 1 (PLUB) because of the computational over-

head issues (such as computing Manhattan distances). For the case of auctions,
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Figure 4.10: CPU time in seconds (left) and number of problem instances solved
(right) for random networks with 5 objectives, combinatorial auctions with 3
objectives and vertex covering problems with 5 objectives, respectively. Using
the Pareto ordering. Time limit 30 minutes.

algorithms with B = 1 (PLUB) and B = 2 (PLUB) are able to solve instances

with 140 bids, whereas MOAOBB is hardly able to solve up to instances with

100 bids. Since VE is time and space exponential in the induced width of the

problem instance, it is competitive only for small and medium size problems

and runs out of memory on large size problems such as combinatorial auctions

with more than 100 bids.

Figure 4.11 shows the results obtained for the same problem classes for trade-

offs case. The number of two-way and three-way trade-offs used for each class is

given by the parameters K and T. Here we see a different picture, the algorithms

using B = 1 for both Pareto and trade-offs cases perform less well compared to

the algorithms with B = 2 for auctions and vertex coverings and B = 5 for
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Figure 4.11: CPU time in seconds (left) and number of problem instances solved
(right) for random networks with 5 objectives, combinatorial auctions with 3
objectives and vertex covering problems with 5 objectives, respectively. Trade-
offs generated with parameters (K = 6, T = 3) for random networks, (K =
2, T = 1) for combinatorial auctions and (K = 5, T = 2) for vertex covering.
Time limit 20 minutes.

random networks. The results suggest that the upper bound sets generated by

the algorithms for B = 1 (PLUB) case are very weak, and for B = 1 (LP) we

have additional computational overhead issues such as often calling LP solver

to solve the associated linear programs.

In summary, for the Pareto (i.e., no trade-offs) case, algorithms using singleton

upper bound sets dominate the algorithms using relatively small cardinality of

the upper bound sets. Most importantly, in many cases the singleton upper

bounds significantly dominate the current state-of-the-art algorithm. For the

trade-offs case, algorithms using relatively small cardinality of the upper bound
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Figure 4.12: CPU time in seconds for vertex covering problems with 3 objectives
and 110 variables (left); and 5 objectives with 110 variables (right) as a function
of the upper bound set size. Using the Pareto ordering. Time limit 20 minutes.

sets are superior over the singleton upper bound sets and the state-of-the-art

algorithm.

Impact of the Upper Bound Set Size

Pareto (no trade-offs) case:

Figure 4.12 shows the CPU times in seconds for varying the upper bound set

size B ∈ {1, 2, 4, 10, 50, 100} using vertex covering problems with 3 and 5 ob-

jectives. The results are averaged over 10 randomly generated instances. The

mini bucket i-bound is 10. We can see that the singleton upper bound set

performs best. However, the upper bound sets with relatively small cardinal-

ity (e.g., B = 2), with the slight additional computational overheads (such as

calculating the Manhattan distances) perform quite well. For problems with 5

objectives, the MOAOBB algorithm involves the use of large upper bound sets

with approximately 5000 elements, and is able to solve only one problem in-

stance. In contrast, the algorithm with B = 1 solved all the instances within 5

minutes on average.

Trade-offs case:

Figure 4.13 displays the average CPU time in seconds (left) and number of

problem instances solved (right) as a function of the upper bound set size (B)

for random network problems with 4 objectives and 80 variables. The methods

using Pareto least upper bounds (PLUB) and trade-offs based upper bounds

(LP) have been applied for B ∈ {1, 2, 4, 16, 32, 64, 128}. For each problem size

we generated 10 random instances and for each random instance we generated

10 random sets of consistent trade-offs. For the LP case we set the cluster size

to 30, replacing a collection of 30 elements with their LP based upper bound.
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Figure 4.13: CPU time in seconds (left) and number of problem instances solved
(right) for random networks with 4 objectives and 80 variables as a function of
the upper bound set size. Time limit 20 minutes.

The number of two-way trade-offs (K) and number of three-way trade-offs (T )
were set to 3 and 2 respectively. The mini-bucket i-bound was set to 8.

The graphs help us to choose the best value for B when using the Pareto and LP

based upper bounds. For instance, the algorithm using B = 1 (PLUB) has the

worst performance due to the loose upper bounds, whereas the algorithm using

B = 1 (LP) is not the worst but due to the computation of the upper bounds

(using LP solver) the average solving time is much higher than other cases. In

summary, the best option is to use an upper bound set with small cardinality

when using both PLUB and LP based bounding schemes.
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Figure 4.14: CPU time in seconds (left) and number of problem instances solved
(right) as a function of the number of pairwise trade-offs (K) for vertex cov-
ering problems with n = 160, 5 objectives and using T = 1. The mini-bucket
i-bound is 10. Time limit 20 minutes.
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Figure 4.15: CPU time in seconds (left) and number of problem instances solved
(right) as function of the mini-bucket i-bound for vertex covering problems with
n = 160, 5 objectives and (K = 5, T = 2) trade-offs. Time limit 20 minutes.

Impact of the Number of Trade-offs

Figure 4.14 displays the impact of the number of pair-wise trade-offs K for

vertex covering problems with n = 160 variables and for fixed number of three-

way trade-offs T = 1. As K increases we can see that the induced preference

relation <Θ gets stronger and consequently more problems are being solved,

with continuously reducing CPU time. The algorithms using B = 1 (PLUB) and

B = 1 (LP) have flatter performances due to their use of a weaker upper bound

set.

Impact of the Heuristic Information

Results in Figure 4.15 display the impact of increasing mini-bucket i-bound size

for vertex covering problems. We can see that each algorithm using the mini-

bucket heuristics produced a U-shaped curve because the mini-bucket heuristics

get stronger for a certain range of i-bound values and consequently prune the
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search space more effectively. For example, for i ∈ [0, 12] each algorithm overall

solving time decreased monotonically.

Using Proposition 9, and the additional constraints ensuring that the LP-based

upper bound to be weakly dominated by the Pareto upper bound, yielded a

much tighter upper bound that led to much stronger pruning of the search

space across all benchmarks. But having to solve the associated linear programs

to generate upper bounds the performance of LP-based algorithms bit slower

compare to the Pareto-based algorithms.

4.7 Summary and Conclusion

In this chapter, we presented the enhancements in the multi-objective constraint

optimization algorithms such as branch-and-bound and variable elimination.

In particular, we defined a formalism for the decision maker’s preference in-

formation and incorporating it in different variations of a branch-and-bound

algorithm. In addition to this, we showed that our approach for preference in-

ference can be given an alternative semantics based on Multi-Attribute Utility

Theory, where it is assumed that the decision maker compares utility vectors by

a weighted sum of the individual values.

We presented a method for testing of the dominance between multi-objective

utility vectors using a linear program approach, and introduced a much faster

approach for dominance testing which involved compilation to matrix multipli-

cation. We experimentally showed that the matrix based approach substantially

reduces the time for testing the dominance between utility vectors.

We focused on a branch-and-bound algorithm that uses a mini-buckets proce-

dure to generate an upper bound set at each node during the search for op-

timal solutions. Since the utility vectors are compared on p objective values,

the generating upper bound sets can be large in size. We introduced differ-

ent techniques which are simple, and at the same time are very effective, to

control the cardinality of the upper bound sets. These methods choose a col-

lection of elements and replace them with their upper bound. We presented

techniques for generating upper bounds for a set of elements for both Pareto

(no trade-offs) and trade-offs cases. It is clear that the trade-offs based upper

bound can be much tighter than the Pareto based one. Our experimental results

with different multi-objective constraint optimization benchmarks showed that
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using a singleton upper bound set for the Pareto case, and non-singleton upper

bound set with quite small cardinality for the trade-offs case, appears to be best.

The results clearly indicate that our proposed enhancements bring significant

improvement over the current approaches.

132



Chapter 5

Multi-objective Influence Diagrams
with Trade-offs

In this chapter we discuss sequential decision making problem under uncer-

tainty represented by using influence diagram. We extend standard influence

diagram to include p (> 1) objectives, in this case utility values are vectors

in Rp, and are typically only partially ordered. We present the variable elim-

ination algorithm to solve these models, which results in a set of maximal

values of expected utilities (or Pareto set). Since the Pareto ordering of the

multi-objective utility vectors is not very discriminating, these sets can grow

extremely large. We present an approximation technique which is based on the

notion of ε-covering of the expected utility sets, this allows us to scale up to

much larger problems than before. In addition, we also bring the formalism

defined in the previous chapter for modelling the decision maker’s imprecise

trade-offs between the objectives to solve multi-objective influence diagram,

and we experimentally demonstrate that this greatly improves the efficiency.

The chapter is set out as follows: Section 5.2 defines multi-objective influence

diagram and explains how a variable elimination can be applied to solve it

up to a form of equivalence; Section 5.3 discusses in detail ε-covering of the

maximal values of expected utility set; and Section 5.4 describes the formalism

for modelling imprecise trade-offs and presents a method to test the dominance

relation between the multi-objective utility vectors with respect to the induced

preference relation. Experimental results based on Pareto ordering, ε-covering

of the Pareto set and the dominance relation induced by the decision maker

trade-offs are presented in Section 5.5. Finally, Section 5.6 contains a summary

133



5. MULTI-OBJECTIVE INFLUENCE DIAGRAMS

WITH TRADE-OFFS 5.1 Introduction

of the chapter and the conclusions.

5.1 Introduction

The influence diagram [Howard and Matheson, 1984a] is used to represent and

analyse sequential decision making problems under uncertainty. It involves a

directed acyclic graph consisting of nodes representing variables in the decision

problem. The uncertainty is represented by chance variables (or random vari-

ables) whose outcomes are dependent on other variables known as its parents.

Decision variables represent points in time where the decision maker has to

make the decision based on some observation on other variables. Utility func-

tions (also known as value functions) assign utilities for each configuration of

its domain variables in the model. Similar to the Bayesian network, uncertainty

is modelled by a collection of conditional probabilities, one for each chance

variable.

As described in the previous chapter, in many situations, including our

daily activities, involve decisions with multiple, often conflicting and non-

commensurate, objectives such as selecting a hotel for dinner and buying fur-

niture for our house. It may not always be possible to map different objectives

into a single utility scale, since the decision maker may not be willing to do or

he may not have clear idea about the precise trade-offs between the objectives

[Keeney and Raiffa, 1993, Roy, 1996, Ehrgott, 1999]. For this reason, we con-

sider multi-objective influence diagrams, which include utility values elements

in Rp, where p (> 1) is the number of objectives associated with each decision.

Since utility vectors are only partially ordered, for example using the Pareto or-

dering, we no longer have a unique maximal expected utility value but a set of

them known as the maximal expected utility set (see Definition 18 of Chapter

4).

As we have already seen in Chapter 4, the Pareto ordering of the multi-objective

utility vectors is rather weak, in the sense that it does not discriminate much

between the utility vectors, and consequently the maximal expected utility set

can often be large. We introduce a method based on ε-covering which approxi-

mates the Pareto set. We show experimentally that this greatly reduces the size

of the undominated sets and solves much larger problems than the original one.

On the other hand, we make use of the formalism defined in Chapter 4 for
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handling the decision maker’s imprecise trade-offs, in the form of choosing one

multi-objective utility vector over another (discussed in Section 5.4), and use

these input preferences to infer other preferences. The induced preference rela-

tion is then used to eliminate the dominated utility vectors during the computa-

tion. Our experimental results indicate that even a small number of such input

preferences can greatly reduce the undominated set of expected utility values.

5.2 Multi-objective Influence Diagrams

Multi-objective influence diagrams are an extension of standard influence dia-

grams that include multi-objective utility functions which are additive decom-

posable [Gonzales et al., 2011]. In the following sections we discuss in detail

the graphical model and present a variable elimination algorithm to evaluate

the model. For simplicity and without loss of generality, we assume that all

objectives are to be maximized.

5.2.1 The Graphical Model

A multi-objective influence diagram (MOID) is similar to a standard influence

diagram (ID), the only difference is, it allows a multi-objective utility function

defined on p (> 1) objectives. As in the standard ID, the graphical model of

MOID is a directed acyclic graph that contains chance nodes (circles), which

represent discrete random variables denoted with X = {X1, . . . , Xn}, decision
nodes (rectangles) represent the decision variables D = {D1, . . . , Dm}, and util-
ity nodes (diamonds) for the local utility functions (also known as value func-
tions) U = {U1, . . . , Ur}.

The graphical model is built in such a way that the decision maker can easily

determine exactly what information is available before making each decision.

The directed arcs represent the information flow between the variables in the

model. The directed arc into a node for a random variable represents the prob-

abilistic dependence on the random variable. The directed arc into a node for

the decision variable denotes the information available before making that deci-

sion. A link into a node for local utility function denotes functional dependence.

The model contains a conditional probability distribution P (Xi | pa(Xi)) for

each discrete random variable Xi ∈ X, where pa(Xi) is the parent set of Xi.
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Figure 5.1: A bi-objective influence diagram.

We assign a utility function to each utility node Uj ∈ U which represents the

preference of the decision maker over the p-objectives, where Uj : ΩQj → Rp,
here Qj is called the scope of the utility function Uj.

A policy for a MOID is defined as an ordered sequence ∆ = (δ1, . . . , δk), where

each δi is called a decision rule for the decision variable Di and it is defined as

a mapping between Ωpa(Di) and ΩDi. Since the utility vectors are the members

of Rp then for each policy ∆ we have the expected utility EU∆ ⊆ Rp. Solving

a MOID is nothing but finding the policies with undominated expected utility

value. In other words, solving a MOID is equivalent to identifying the policies

that generate the maximal values of expected utility, i.e., finding the policies

that generate the set max<{EU∆ | all policies ∆}. A policy with undominated

expected utility is called optimal.

Example 19 » Multi-objective influence diagram

Figure 5.1 is the extension of the decision problem presented in Example 3 (Sec-
tion 2.4.2.1, Chapter 2), where the utility functions have two attributes, namely
testing/drilling payoff and environmental damage, respectively. The utility as-
sociated with testing for oil is (−10, 10), the utility of drilling when the hole is
dry is (−70, 18), the utility of drilling when the hole is wet is (50, 12) and when
the hole is soak the utility of drilling is (200, 8). The goal of the decision maker
is to find the policies that maximize the payoff and minimize the environmental
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damage as much as possible. If ~u = (u1, u2) and ~v = (v1, v2) are utility vec-
tors in R2 then the weak Pareto dominance relation for this problem is defined
as ~u ≥ ~v ⇔ u1 ≥ v1 and u2 ≤ v2. For instance, (10, 2) dominates (8, 4) because
10 ≥ 8 and 2 ≤ 4. Whereas (10, 2) does not dominate (8, 1) because 2 6≤ 1.
The Pareto or maximal set of the problem is {(22.5, 17.56), (20, 14.2), (11, 12.78),
(0, 0)} (i.e., max≥{EU∆ | policies ∆}), corresponding to the four optimal policies
shown in the following table.

∆1 ∆2 ∆3 ∆4

δT yes no yes no

δD yes (S = closed) yes (S = notest) yes (S = closed) no (S = notest)
yes (S = open) no (S = open)
no (S = diffuse) no (S = diffuse)

EU∆i
{(22.5, 17.56)} {(20, 14.2)} {(11, 12.78)} {(0, 0)}

5.2.2 Arithmetic Operations and Distributive Properties

Since the utility values are only partially ordered, the max (or maximization)

operator does not necessarily lead to a single element. Thus, we need to deal

with sets of utility values. In this section we present the arithmetic operations

addition, multiplication and max operator for finite sets of utility values. We as-

sume that < is a partial order on Rp that satisfies the properties Independence,

Scale-Invariance and extends the Pareto.

Suppose that U ,V are two finite subsets of Rp and q ≥ 0 be any non-negative

real number. The addition(+) and multiplication(×) operations defined as fol-

lows, U + V = {~u + ~v | ~u ∈ U , ~v ∈ V} and q × U = {q × ~u | ~u ∈ U}. The

max operator is defined as max(U) = max<{~u ∈ U | 6 ∃~v ∈ U , ~v � ~u} and also

between U and V the max operator is defined as max(U ,V) = max<(U ∪ V).
The operators +, × and max satisfies commutative and associative properties.

The key properties that we need for the variable elimination procedure are

distributive properties. It is clear that the left distributive property q×(U+V) =
(q × U) + (q × V) holds, whereas the right distributive property (q1 + q2)× U =
(q1 × U) + (q2 × U), where q1, q2 ≥ 0 are real numbers, does not always hold.

For instance, if we have q1 = q2 = 0.5 and U = {(1, 0), (0, 1)} then we obtain

(q1 + q2) × U = {(1, 0), (0, 1)} whereas q1 × U + q2 × U = {(0.5, 0), (0, 0.5)} +
{(0.5, 0), (0, 0.5)} = {(1, 0), (0.5, 0.5), (0, 1)}. Clearly, (q1 + q2) × U 6= (q1 × U) +
(q2 × U). However, if the utility sets U and V are restricted to convex then the

property holds. In the following section we discuss this in detail.
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5.2.3 Equivalent Sets of Utility Values

Recall the definition of dominance relation for the sets of utility vectors, i.e., for

given any U ,V ⊆ Rp, we say that U < V if and only if for every ~v ∈ V there

exists ~u ∈ U such that ~u < ~v, i.e., every element of V is weakly dominated (with

respect to <) by some element of U .

We define the relation ≈ between the sets of utility vectors as follows:

Definition 30 » Relation ≈

For any U ,V ⊆ Rp, U ≈ V if and only if U < V and V < U .

The convex closure C(U) of a (finite or infinite) subset U ⊆ Rp is defined as

the set of all the elements in Rp that are expressed as convex combination of

the elements of U , i.e., C(U) is defined to consist of every element of the form
k∑
i=1

(qi × ~ui), where k is any arbitrary natural number, each ~ui in U , each qi ∈

R+ ∪ {0}, where
k∑
i=1

qi = 1.

The equivalence relation ≡ between the finite sets of utility vectors in Rp is

defined as follows:

Definition 31 » Relation ≡

For given any U ,V ⊆ Rp, U ≡ V if and only if C(U) ≈ C(V).

That means two sets of utility vectors are considered to be equivalent if their

convex closures are equivalent. In other words, the two sets of utility vectors

are equivalent if, for every convex combination of elements of one, there exists

the convex combination of elements of the other which is at least as good with

respect to the partial order < on Rp.

The following result from [Wilson and Marinescu, 2012] shows that operations

on sets of utility vectors respect the ≡ relation.

Proposition 10 » Operations +,× and max respect ≡

Let U ,V ,W ⊆ Rp be finite sets and let q ≥ 0. The following properties hold: (1)
U ≡ max<(U); (2) if U ≡ V then q × U ≡ q × V, U + W ≡ V + W and
max(U ,W) ≡ max(V ,W).

The following result from [Wilson and Marinescu, 2012] shows that for any fi-

nite sets of (partially ordered) utility values in Rp the (right) distributive prop-
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erty that we require holds with respect to the ≡ relation. It also gives other

important properties that we require for the variable elimination procedure.

Theorem 2 » Operations on sets of utility values

Let < be a partial order on Rp satisfying Independence and Scale-Invariance. Then,
for all q, q1, q2 ≥ 0 and for all finite sets U ,V ,W ⊆ Rp, we have that: (i)
q × (U + V) = q × U + q × V; (ii) (q1 + q2) × U ≡ (q1 × U) + (q2 × U); (iii)
q1 × (q2 × U) = (q1 × q2) × U ; (iv) max(q × U , q × V) = q × max(U ,V); (v)
max(U +W ,V +W) ≡ max(U ,V) +W.

5.2.4 Variable Elimination

A legal elimination sequence [Wilson and Marinescu, 2012] for an influence

diagram is a permutation Y1, . . . , Yn of the variables X ∪ D, which extends the

relation < given by: I0 < D1 < I1 . . . < Dm < Im, so that, for i = 0, . . . ,m, each

chance variable X of Ii comes after Di (if i ≥ 1) and before Di+1 (if i < m). For

instance, if Yj ∈ D1 and Yk ∈ I1 then we must have j < k.

Given a legal elimination ordering of the variables, Theorem 2 allows us to elim-

inate the variables using iterative variable elimination procedure ELIM-MOID

described by Algorithm 3. It eliminates chance variables by +′, which is defined

as U +′ V = max<(U + V), and eliminates the decision variables by max. The

probability and (set-valued) utility values are combined by the operations ×
and +, respectively. The maximal expected utility values will then be equiva-

lent to:

∑
I0

max
D1

∑
I1

· · ·
∑

Im−1

max
Dm

∑
Im

 n∏
i=1

Pi ×
r∑
j=1

Uj

 .

The algorithm 3 is based on Dechter’s bucket elimination framework [Dechter,

2000b]. Given a legal elimination ordering it finds the maximal set

max<{EU∆| policies ∆} and the associated optimal policies. If τ = Y1, . . . , Yt

is the legal elimination ordering, it partitions the input utility functions into a

bucket structure called as buckets. Each variable Yl has exactly a bucket associ-

ated with it, and it contains all input utility functions and probability distribu-

tions whose highest variable in their scope is Yl.

Algorithm ELIM-MOID operates in two phases namely, top-down (lines 3-11)
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Algorithm 3: ELIM-MOID

Data: A MOID 〈X,D,P,U〉 with p > 1 objectives, a legal elimination ordering of the variables
τ = (Y1, . . . , Yt)

Result: An optimal policy ∆
// partition the functions into buckets

1 for l = t downto 1 do
2 place in buckets[l] all remaining components in P and U that contain variable Yl in their

scope;

// top-down step
3 for l = t downto 1 do
4 let Φl = {φ1, . . . , φj} and Ψl = {ψ1, . . . , ψk} be the probability and utility components in

buckets[l];
5 if Yl is a chance variable then
6 φl ←

∑
Yl

∏j
i=1 φi;

7 ψl ← (φl)−1 ×
∑′
Yl

((
∏j
i=1 φi)× (

∑k
j=1 ψj));

8 else if Yl is a decision variable then
9 φl ← maxYl

∏j
i=1 φi;

10 ψl ← maxYl
((

∏j
i=1 φi)× (

∑k
j=1 ψj)) ;

11 place each φl and ψl in the bucket of the highest-index variable in its scope;

// bottom-up step
12 for l = 1 to t do
13 if Yl is a decision variable then
14 δl ← arg maxYl

((
∏j
i=1 φi)× (

∑k
j=1 ψj));

15 ∆← ∆ ∪ δl;

16 return ∆

and bottom-up (lines (12-16). During the top-down approach it applies from

last to first, a iterative variable elimination procedure to compute the new prob-

ability (denoted by ψ) and utility (denoted by φ) components. These are then

placed into the corresponding lower buckets. If Yl is a chance variable then

the algorithm computes the ψ-message by multiplying all the probability com-

ponents in the corresponding bucket of Yl. The variable Yl is then eliminated

by summation operation. Similarly, the φ-message is computed adding all the

utility functions in that bucket and then normalize it by buckets compiled ψ-

message. The variable Yl is then eliminated using
∑′ operation. If Yl is a

decision variable, then ψ and φ-messages are computed in the same manner

and the variable Yl is eliminated using the maximization (max) operation. The

product of all probability components of the bucket is a constant when viewed

as a function of the bucket’s decision variable [Jensen et al., 1994, Wilson and

Marinescu, 2012], i.e., ψ-message is a constant.

During the bottom-up phase, the algorithm computes optimal policies (lines

12-16). It operates the decision buckets in the reverse order, i.e., from first to
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the last. For each decision variable, the algorithm computes the decision rule

by applying the maximization operation on the combination of probability and

utility components of each configuration of the variables in the bucket’s scope,

where the bucket’s scope is the union of all the scopes of the functions in that

bucket. The algorithm records the values assigned to the previous decisions.

Since the utility values are only partially ordered (i.e., the utility vectors are

in Rp), it is not possible to predict the size of the undominated set of expected

utility values.

5.3 Approximating the Pareto Set

Since the weak Pareto ordering (≥) on Rp is not very discriminating the max-

imal set with respect to the Pareto ordering, max≥{EU∆ : policies ∆} often

gets quite large, and consequently the number of optimal policies greatly in-

creases. In this section we present a method that approximates the Pareto set.

Our approximation method largely depends on the Pareto ordering and con-

structs a set which contains all the elements that approximately dominate all

other elements belong to the set {EU∆ : policies ∆}.

We take the approach based on ε-dominance between utility vectors given by

[Papadimitriou and Yannakakis, 2000] and it is defined as follows (also see

Section 3.4.4 in Chapter 3):

Definition 32 » ε-dominance

If ε > 0 be any small positive real number, we define the ε-dominance relation on
positive vectors of Rp+ by ~u ≥ε ~v ⇐⇒ (1 + ε)~u ≥ ~v.

We now define the ε-covering of a finite subset of Rp+ based on the notion of

ε-dominance defined above.

Definition 33 » ε-covering

Let U ⊆ Rp+ and ε > 0. Then a set Uε ⊆ U is called an ε-approximate Pareto set or
an ε-covering, if every vector ~v ∈ U is ε-dominated by at least one vector ~u ∈ Uε,
i.e., ∀~v ∈ U ∃~u ∈ Uε such that ~u ≥ε ~v.

The ε-covering Uε of the set U ⊆ Rp is constructed using the mapping ϕ : Rp+ →
Zp+, defined by ϕ(~u) = (ϕ(u1), . . . , ϕ(up)) where ∀i, ϕ(~ui) = dlog ui/ log(1 +
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Figure 5.2: Examples of ε-covering.

ε)e [Papadimitriou and Yannakakis, 2000]. The mapping ϕ transforms every

element of U onto a logarithmic grid, for every component ~ui of utility vector ~u

it returns an integer k such that (1 + ε)k ≤ ui ≤ (1 + ε)k+1. Each cell on the grid

represents a class of utility vectors having the same image through ϕ and every

utility vector in the cell ε-dominates all the other utility vectors in that cell. This

means selecting one vector from each cell yields ε-covering of the entire set.

In figure 5.2 the left-hand-side graph is an example of this method for bi-

objective case. The dotted lines form the logarithmic grid and ε-covering of

the Pareto frontier can be obtained by selecting one utility vector (red dots)

from each non-empty cell of the grid. We can further process the resulting ε-

covering by removing the dominated vectors from the covering, the red dots

(undominated utility vectors) in the right-hand-side graph shows the refined

ε-covering [Marinescu, 2011].

The following result shows that any two elements of a cell ε-dominates each

other. Therefore, for given any smallest positive real ε we can construct the

ε-covering of a finite set U ⊆ Rp by choosing exactly one element from each

cell and keeping only undominated cells occupied. Moreover, if we restrict each

~u ∈ U to have the components bounded between 1 and a positive integer B then

the size of Uε is polynomial in logB and 1/ε [Papadimitriou and Yannakakis,

2000]. In addition, we can easily see that any cell of the grid represents a

different class of vectors having the same image through ϕ.
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Proposition 11 » Sufficient condition for ε-dominance

∀~u,~v ∈ Rp+, ϕ(~u) ≥ ϕ(~v)⇒ ~u ≥ε ~v.

Proof. Suppose ~u,~v ∈ Rp+, by definition, for ϕ(~u) there exists an integer k such

that (1 + ε)k ≤ ui ≤ (1 + ε)k+1 for all i ∈ {1, . . . , p}. Similarly, for ϕ(~v) there

exists an integer h such that (1 + ε)h ≤ vi ≤ (1 + ε)h+1 for all i ∈ {1, . . . , p}.
Consider ϕ(~u) ≥ε ϕ(~v), this implies k ≥ h. Then (1 + ε)k+1 ≥ (1 + ε)h+1, also we

have ui ≥ (1+ ε)k which implies ui(1+ ε) ≥ (1+ ε)k+1, i.e., ui(1+ ε) ≥ (1+ ε)h+1,

it follows ui(1 + ε) ≥ vi, for all i ∈ {1, . . . , p}, implying that u ≥ε v.

The following example gives the clear picture of the above result.

Example 20 » ε-dominance

Let U = {~u,~v} where ~u = (3.1, 2.9) and ~v = (3, 3.05). Clearly, neither ~u � ~v nor
~v � ~u. Choose ε = 0.1 then we have ϕ(~u) = ϕ(~v) = (12, 12), and it is easy to verify
that ~u ≥ε ~v and ~v ≥ε ~u. Therefore, Uε = {~u} (or Uε = {~v}) is a valid ε-covering of
U .

We next extend the algorithm ELIM-MOID to compute an ε-covering of the

expected utility set {EU∆| policies ∆}. However, it is not possible to just re-

place the Pareto dominance with ε-dominance because ε-dominance does not

satisfy the key transitive property. For instance, if ~u = (10, 50), ~v = (9, 54) and

~w = (7, 58) then for ε = 0.1 we have ~u ≥ε ~v and ~v ≥ε ~w but ~u 6≥ε ~w. Neverthe-

less, [Dubus et al., 2009] defined a finer ε-dominance relation that satisfies the

transitivity, which is defined as:

Definition 34 » (ε, λ)-dominance

For any reals ε > 0 and λ ∈ (0, 1), the (ε, λ)-dominance relation on Rp+ is defined
as ~u ≥λε ~v ⇔ (1 + ε)λ~u ≥ ~v. Given a set U ⊆ Rp+, a subset U(ε,λ) ⊆ U is called an
(ε, λ)-covering, if ∀~v ∈ U ∃~u ∈ U(ε,λ) such that ~u ≥λε ~v.

For given ε > 0 and any λ ∈ (0, 1) we can define a mapping ϕλ : Rp+ → Zp+ which

is defined by ϕλ(~u) = (ϕλ(u1), . . . , ϕλ(up)) where ∀i, ϕλ(ui) = dlog ui/ log(1 +
ε)λe. We can see that the mapping ϕλ transforms the elements of Rp+ onto the

logarithmic grid.
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Proposition 12 » Sufficient condition for (ε, λ)-dominance

∀~u,~v ∈ Rp+, ϕλ(~u) ≥ ϕλ(~v)⇒ ~u ≥λε ~v.

Proof. The proof is analogous to the proof of Proposition 11.

The following result shows that the (ε, λ)-dominance relation satisfies the prop-

erties that we need for the variable elimination algorithm to compute the ε-

covering of the expected utility set {EU∆ : policies ∆}.

Proposition 13 » Properties of (ε, λ)-dominance

Let ~u,~v, ~w ∈ Rp+ and λ, λ′ ∈ (0, 1). The following properties hold: (i) if
~u ≥λε ~v then ~u+ ~w ≥λε ~v + ~w, and if ~u ≥λε ~v and q ≥ 0 then q~u ≥λε q~v; (ii)
if ~u ≥λε ~v and ~v ≥λ′ε ~w then ~u ≥λ+λ′

ε ~w.

Proof. Suppose that ~u,~v, ~w ∈ Rp+ and ε > 0.

(i): Assume that ~u ≥λε ~v; then we have (1 + ε)λ~u ≥ ~v. For any ~w we have,

(1+ε)λ ~w ≥ ~w. By adding two inequalities we get, (1+ε)λ(~u+ ~w) ≥ (~v+ ~w),
which implies ~u + ~w ≥λε ~v + ~w. Suppose q ≥ 0 is any real, multiplying it

on both sides of (1 + ε)λ~u ≥ ~v, we get (1 + ε)λ(q~u) ≥ (q~v), this implies

q~u ≥λε q~v.

(ii): Suppose that ~u ≥λε ~v and ~v ≥λ′ε ~w, then for any λ, λ′ ∈ (0, 1) we have

(1 + ε)λ~u ≥ ~v and (1 + ε)λ′~v ≥ ~w. Multiplying (1 + ε)λ′ on both sides of the

first inequality we get, (1 + ε)λ+λ′~u ≥ (1 + ε)λ′~v. Transitivity of ≥ implies

that (1 + ε)λ+λ′~u ≥ ~w, thus ~u ≥λ+λ′
ε ~w.

For given any finite set U ⊆ Rp+ Algorithm 4 computes its (ε, λ)-covering by

removing (ε, λ)-dominated elements from U (steps 2− 6).

In order to extend the ELIM-MOID for (ε, λ)-dominance case we need the op-

erations maximization and addition of finite sets of utility values. If max∗ is
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Algorithm 4: (ε, λ)−COVERING(U)
1 Γ← ∅; V ← ∅;
2 foreach ~u ∈ U do
3 if ϕλ(~u) /∈ Γ then
4 remove from Γ all ϕλ(~v) such that ϕλ(~u) ≥ ϕλ(~v);
5 Γ← Γ ∪ {ϕλ(~u)};

6 foreach ϕλ(~u) ∈ Γ do V ← V ∪ {~u};
7 return V;

the maximization and +∗ is the addition operation then we defined them as

max∗(U ,V) = max≥λε (U ∪ V) and U +∗ V = max≥λε (U + V), where max≥λε (U) is

an (ε, λ)-covering of the finite set U ⊆ Rp+ computed using Algorithm 4.

We replace max and
∑′ by max∗ and

∑∗ in Algorithm 3 and call the refined al-

gorithm as ELIM-MOIDε, which computes the ε-covering of the expected utility

set. During the top-down phase, the algorithm executes t buckets, one for each

variable, and eliminates the bucket variable via max∗ operation. That means

it needs to compute (ε, λi)-covering for t number of times. To obtain a valid

(ε, λ)-covering the sufficient condition is to choose each λi in (0, 1) such that

sum of all λ’s is equal to 1. Since we have t variables, we choose each λi = 1/t,
i = 1, . . . , t such that

∑t
i=1 λi = 1. The algorithm ELIM-MOIDε is now guaran-

teed to compute the valid ε-covering of the expected utility set and the following

theorem gives the correctness of the algorithm.

Theorem 3 » Correctness of algorithm ELIM-MOIDε

Given a MOID instance 〈X,D,P,U〉 with L variables, p > 1 objectives
and any finite ε > 0, algorithm ELIM-MOIDε computes an ε-covering of
the expected utility set.

Proof. We prove this by induction on t, the number of variables (or buckets) in

the problem and the main focus will be on the ψ-messages which are combined

in chance buckets by summation (+) and decision buckets by set union (∪).

Suppose t = 1, then the proof is immediate by the definition of the max opera-

tor, namely the ψ-message generated by eliminating the variable in line 7 is an

ε-covering.

Let A be the source bucket containing ΨA = {~u1, . . . , ~un} utility vectors and
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assume that ψA = {~u′1, . . . , ~u′t}, the ψ-message generated from the bucket is an

(ε, t
L

)-covering of ΨA. Let B be the target bucket where ψA will be placed, and

let ΨB = {~v1, . . . , ~vm} be the utility values residing in bucket B. We need to

show that ψB, the ψ-message generated by bucket B, is an (ε, t+1
L

)-covering of

ΨA + ΨB, where ΨA + ΨB = {~ui + ~vj|~ui ∈ ΨA, ~vj ∈ ΨB} and similarly we can

define ψA + ΨB = {~u′ + ~vj|~u′ ∈ ψA, ~vj ∈ ΨB}.

Clearly, ΨA ⊆ ΨA and by definition, for every ~ui ∈ ΨA, ∃~u′ ∈ ψA such that

~u′ ≥
t
L
ε ~ui, and Proposition 13(i) implies (~u′ + ~vj) ≥

t
L
ε (~ui + ~vj).

By definition, ψB = max≥(ε, 1
L

)
{ψA+ΨB} such that ψB ⊆ ψA+ΨB and ∀(~u′+~vj) ∈

ψA + ΨB, ∃~v′′ ∈ ψB such that ~v′′ ≥
1
L
ε (~u′ + ~vj).

We have ~v′′ ≥
1
L
ε (~u′+~vj) and (~u′+~vj) ≥

t
L
ε (~ui+~vj) then Proposition 13(ii) implies

~v′′ ≥
1
L

+ t
L

ε (~ui + ~vj), i.e., ~v′′ ≥
t+1
L
ε (~ui + ~vj). Therefore, ψB is an (ε, t+1

L
)-covering

of ΨA + ΨB.

The time and space complexity of the ELIM-MOIDε is bounded by the induced

width of the legal elimination ordering. However, the experimental results in

section 5.5 show that in many cases the cardinality of the ε-coverings of the

corresponding Pareto sets are significantly smaller.

5.4 Handling Imprecise Trade-offs

In this section we summarize our approach for handling the imprecise trade-

offs, which is described in the previous chapter. We also discuss how a variable

elimination can be used to compute the set of maximal values of expected utility

with respect to these input preferences.

As described in the previous chapter (for MOCOP case) and in Section 5.1, very

often the decision maker allows some trade-offs between the objectives. For

instance, in Example 19, imagine that the decision maker is presented with a

situation in which the content of the oil is known to be ‘wet’, and asked whether

they have any preference for drilling. In response, suppose that the decision

maker reveals a preference of (50, 12) over (0, 0), i.e., they will be happy to gain

$50 at the cost of allowing 12 percent environmental damage.
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Such elicited input preferences are represented by the set Θ consisting the el-

ements of the form (~u,~v) such that ~u is preferred to ~v, where ~u,~v ∈ Rp. As

described in Section 4.4 (of Chapter 4), if <Θ is the induced preference relation

then we assume that it extends Θ and extends the Pareto on Rp (i.e., if ~u ≥ ~v

then ~u <Θ ~v). Also <Θ satisfies the Independence (i.e., if ~u <Θ ~v and ~w ∈ Rp

then ~u + ~w <Θ ~v + ~w) and Scale-Invariance (i.e., if ~u <Θ ~v and q ∈ R+ then

q~u <Θ q~v) properties.

If Θ = {(~ui, ~vi) | ~ui, ~vi ∈ Rp, i = 1, . . . , k} be the set of input preferences and

WΘ = {~ui − ~vi | (~ui, ~vi) ∈ Θ, i = 1, . . . , k} the set of (difference) vectors then we

have shown (in Lemma 6, Chapter 4) that the set defined by:

C(WΘ) = {~u ∈ Rp | ∃q1, . . . , qk ∈ R+ ∪ {0}, such that ~u ≥
k∑
i=1

qi(~ui − ~vi)}

is a positive convex cone. We defined (in Definition 28, Chapter 4) a pre-order

relation <Θ on Rp as:

~u <Θ ~v ⇔ ~u− ~v ∈ C(WΘ) (5.1)

In Proposition 4 (Section 4.4, Chapter 4), we have shown that <Θ extends the

Pareto and satisfies Scale-Invariance and Independence properties. Proposition

6 ( Section 4.4, Chapter 4) gives that the relation <Θ and the induced prefer-

ence relation <Θ are equal. That means, for given any ~u,~v ∈ Rp to test whether

~u <Θ ~v it is equivalent to check if ~u <Θ ~v. In Section 4.4.3, we presented

three different approaches for testing ~u <Θ ~v. The first is based on the linear

programming approach, where we we solve the system of p linear inequalities.

The second is using the distance algorithm, which measures the distance be-

tween point and a convex cone. The third is based on the matrix multiplication,

where the matrix is constructed using the input preferences.

The dominance between finite sets of utility values is defined in similar fashion,

i.e., for given U ,V ⊂ Rp we define

U <Θ V ⇔ ∀~v ∈ V ∃~u ∈ U such that ~u <Θ ~v.

For given U ⊂ Rp, the maximal set of U is defined as max<Θ(U) = {~u ∈ U | 6
∃~v ∈ U , ~v <Θ ~u}.

We obtain the algorithm ELIM-MOID-TOF from Algorithm 3, which makes use
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of the decision maker’s imprecise trade-offs. We just replace the operations

+′ and max with the operations +Θ and maxΘ, which are defined as follows:

maxΘ(U ,V) = max<Θ(U ∪V) and U+ΘV = max<Θ(U+V), where the max<Θ(U)
is the undominated set of elements of the finite set U ⊆ Rp with respect to the

relation <Θ.

The algorithm ELIM-MOID-TOF eliminates <Θ-dominated utility vectors during

the computation leading to the set of maximal values of expected utility. Alter-

natively, one can first generate the Pareto optimal set of the utility values and

then eliminate <Θ-dominated elements. However, the experimental results in

Section 5.5 (Table 5.2) indicate that this will typically be much less computa-

tionally.

Approximating the Maximal Values of Expected Utility Set

We extend the algorithm ELIM-MOID-TOF to compute the (ε, λ)-covering (given

in Algorithm 4, Section 5.3) of the maximal (or undominated) values of ex-

pected utility with respect to <Θ. The extended algorithm ELIM-MOID-TOFε is

obtained from Algorithm 3, by replacing the +′ and max operators with +Θ
ε and

maxΘ
ε , respectively, which are defined as follows: U +Θ

ε V = max≥λε (maxΘ(U +
V)), maxΘ

ε (U ,V) = max≥λε (maxΘ(U ∪ V)), where maxΘ
ε (U) is the (ε, λ)-covering

of the set of <Θ-undominated utility values.

The results in Section 5.5 (Tables 5.2 and 5.1) indicate that the ε-covering and

<Θ-undominated utility values are significantly smaller than the correspond-

ing Pareto set. The algorithm ELIM-MOID-TOFε is the combination of these

two, so we can expect that the maximal values of expected utility generated by

ELIM-MOID-TOFε is even smaller than that of ELIM-MOID-TOF. This indicates

that ELIM-MOID-TOFε will eliminate some maximal expected utility values gen-

erated with respect to <Θ. In order to see how far the sets of maximal values of

expected utility generated by ELIM-MOID-TOF and ELIM-MOID-TOFε we com-

pute the closeness between them using the following procedure:

If meu and meuε be the maximal expected utility value sets generated by

ELIM-MOID-TOF and ELIM-MOID-TOFε, respectively, then we define the func-

tion dist, which measures the closeness of the set meu to the meuε, and it is
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defined as

dist(meu,meuε) = max
~u∈meu

min
~v∈meuε

ed(~u,~v)

where ed is the Euclidean distance between ~u and ~v, which is defined as,

ed(~u,~v) =

√√√√ p∑
i=1

(ui − vi)2.

dist(meu,meuε) gives the closeness of the set meu to the set meuε, which is

computed by taking the maximum of the minimum Euclidean distances from

every ~u ∈ meu to each ~v ∈ meuε.

5.5 Experiments

In this section, we present the experimental results obtained with the proposed

variable elimination algorithms on randomly generated multi-objective influ-

ence diagrams. Experiments are run on a 2.6GHz quad-core processor with 4GB

of RAM. The algorithms ELIM-MOID (Section 5.2.4), ELIM-MOIDε (Section

5.3) and ELIM-MOID-TOF (Section 5.4) respectively, were implemented in

C++ (32 bit). For the trade-offs case, firstly we implemented the algorithm

ELIM-MOID-TOF using both the linear program based technique and the ap-

proach of [Zheng and Chew, 2009] that measures the distance between point

and the convex cone, and we present only the results obtained with the for-

mer because the individual performances of both the methods are very much

comparable. We denote the results obtained using this approach with ELIM-

MOID-TOF (LP). Secondly, the algorithm ELIM-MOID-TOF is implemented

for the faster <Θ-based dominance checks compiled by use of a matrix. We

name ELIM-MOID-TOF (MATRIX) for the results obtain using matrix-based

<Θ dominance checks.

Problem Instances

We generate a class of random influence diagrams defined by the tuple

〈C,D, k, par, r, art, p〉, where C is the number of chance variables, D is the num-

ber of decision variables, k is the maximum domain size of the utility functions,

par is the number of parents for each variable in the graph, r is the number of

root nodes, art is the arity, i.e., the number of arguments of the utility functions
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and finally p is the number of objectives for each decision.

The graph of the influence diagram is created by picking C + D − r number of

variables out of C +D number of variables. For each selected variable we then

assign par parents from all the variables which precede it. The parent variables

are selected relative to some ordering and we ensure that the decision variables

are connected by a direct path. In the end we add D utility nodes where each

one is assigned art parent variables selected randomly from the chance and

decision variables.

In all our experiments we generate random influence diagram instances with

the following parameter settings: C ∈ {15, 25, 35, 45, 55}, D ∈ {5, 10}, k = 2,

par = 2, r = 5, and art = 3, respectively. For each generated instance around

25% of the chance variables are assigned deterministic conditional probability

tables (CPTs), i.e., they contain 0 and 1 entries in their tables. The remaining

CPTs are filled randomly using a uniform distribution. The utility vectors with

p objectives are generated randomly, where each objective value is allocated

uniformly at random between 1 and 30.

For analysing the results we focus on the average CPU time (in seconds) taken

for solving each problem instance along with its average size, standard devia-

tion and median of the maximal expected utility sets. In addition to this, we

also report the average induced width (w∗) of the instances, obtained using a

minfill elimination ordering [Dechter, 2000b].

Random Trade-offs

The crucial part of the experimental evaluation is generating consistent random

trade-offs. We make use of the random generator from the previous chapter

(Section 4.6) for generating consistent random trade-offs. As we have already

seen, the random generator is characterized by the two parameters, namely

the number of two-way or binary trade-offs K and the number of three-way

trade-offs T , respectively, where each of them is defined as follows.

Two-way trade-offs: Select randomly a pair of objectives (i, j), where i 6= j, out

of p objectives. Choose randomly a, b and c in [0.1, 1) with a uniform distribu-

tion. Generate the binary trade-offs aei− bej and bej − acei, where ei and ej are

the i-th and j-th unit vectors in Rp, respectively. These two vectors represents

that the decision maker is willing to allow a decrease in one objective in order

to gain in the other.
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Three-way trade-offs: Choose randomly three objectives (i, j, k) out of p objec-

tives and generate a trade-off vector aei+bej−cek. It represents that the decision

maker is willing to allow c units of decay in objective k to gain a units of the

i-th objective plus b units of the j-th objective.

Impact of the ε-covering

Table 5.1 is the summary of the results obtain with algorithms ELIM-MOIDε

where ε ∈ {0.1, 0.2, 0.3} and ELIM-MOID. The algorithms are run on the prob-

lem instances with 5 and 10 decision variables. For each problem class (i.e.,

the combination (C,D, p)), we record the number of instances solved (#) out

of 20 instances within the time (20 minutes) or memory limit, average time

(time) taken for solved instances, average size (avg) of the Pareto frontier or

ε-covering, standard deviation (std) of the Pareto frontier or ε-covering and

median (med) of the Pareto frontier or ε-covering. We can notice that ELIM-

MOIDε dominates ELIM-MOID across all problem instances, further, ELIM-

MOID solves instances with relatively small number of variables and easily

runs out of time or memory for the instances with large number of variables.

Whereas, the algorithm ELIM-MOIDε solves relatively large problem instances

while generating smaller ε-coverings. As ε gets bigger we can see that a large

number of problems are being solved; the reason is that the corresponding log-

arithmic grid gets coarser (i.e., fewer cells) as the value of ε increases. For

example, ELIM-MOID manages to solve only 55% of the problem instance in

an average of about 60 seconds resulting the Pareto sets with approximately

2,100 elements on problem class 〈35, 5, 2〉. On the same problem class, ELIM-

MOIDε solves all the problem instances for ε = 0.01, 0.1, 0.3 and we can see that

both solving time and size of the Pareto sets reduce as ε increases.

Figure 5.3 shows the mean and standard deviation distributions of the size of

the ε-coverings generated for problem classes 〈35, 5, 2〉, 〈35, 5, 3〉, 〈35, 5, 5〉 and

〈35, 5, 10〉, respectively, as a function of ε. The results clearly indicate that, as

ε increases the size of the ε-covering decreases significantly. In addition, as ε

increases the algorithm solves considerably more number of problems.
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Table 5.1: Results with algorithms ELIM-MOID and ELIM-MOIDε on random
influence diagrams. Time limit 20 minutes.

size w∗ ELIM-MOID ε = 0.01 ε = 0.1 ε = 0.3
(C,D,O) # time avg stdev med # time avg stdev med # time avg stdev med # time avg stdev med

(15,5,2) 9 16 10.77 3,601 7,422 1,330 20 18.48 2,051 4,811 92 20 0.06 87 150 14 20 0.03 18 24 5
(25,5,2) 11 12 17.28 3,663 6,952 1,623 16 58.47 1,340 2,835 137 20 0.76 157 321 13 20 0.17 24 42 6
(35,5,2) 14 11 60.63 2,104 2,092 2,046 20 141.86 4,554 8,979 344 20 1.49 112 167 23 20 1.12 16 20 5
(45,5,2) 16 5 304.08 7,131 6,086 6,917 18 56.57 1,791 3,183 804 20 24.44 121 199 69 20 2.53 21 27 12
(55,5,2) 18 5 267.74 8,227 11,166 4,266 18 58.91 3,428 6,363 1,270 20 17.59 80 113 23 20 16.60 10 14 5
(15,5,3) 9 13 21.12 3,827 9,993 429 8 8.52 1,247 1,477 973 17 51.31 7,220 12,355 140 19 1.89 470 675 16
(25,5,3) 11 2 163.84 4,638 4,518 4,578 8 103.75 5,167 8,122 2,063 18 77.98 2,641 4,409 876 20 1.43 139 229 62
(35,5,3) 14 0 1 49.56 2,200 0 2,200 13 83.25 6,113 8,614 390 20 37.26 1,326 2,713 200
(45,5,3) 16 1 0.74 907 0 907 3 317.34 30,025 22,643 35,248 15 57.58 5,689 15,495 55 20 76.48 1,256 3,746 20
(55,5,3) 18 0 3 19.95 711 794 220 14 165.69 898 1,918 106 20 85.02 1,434 4,715 43
(15,5,5) 9 7 183.32 19,973 21,437 9,659 3 111.53 7,267 3,789 6,628 7 80.26 2,368 4,541 586 13 10.97 156 235 59
(25,5,5) 11 1 199.13 25,021 0 25,021 0 6 222.08 5,142 5,993 6,499 9 106.95 6,432 17,449 133
(35,5,5) 14 0 0 1 36.04 636 0 636 6 305.37 21 9 27
(45,5,5) 16 0 0 0 7 51.94 6,620 5,898 8,250
(55,5,5) 18 0 0 0 4 77.25 1,556 2,488 3,091

(15,10,2) 12 11 221.24 5,516 6,653 1,946 17 192.55 11,783 27,315 173 20 10.74 1,074 3,122 23 20 6.01 153 470 9
(25,10,2) 17 1 0.62 688 0 688 14 208.05 4,391 12,479 235 19 49.35 186 544 16 20 14.18 42 125 6
(35,10,2) 20 0 2 490.39 3,788 1,601 2,695 15 95.18 266 475 73 16 79.63 68 152 18
(45,10,2) 22 0 1 512.51 4,136 0 4,136 9 196.46 493 647 189 9 125.28 87 111 54
(55,10,2) 26 0 0 1 590.92 20 0 20 1 148.03 7 0 7
(15,10,3) 12 0 0 2 53.32 312 17 164 12 118.71 4,429 9,303 47
(25,10,3) 17 0 0 2 104.96 2,822 2,584 2,703 8 215.39 1,960 2,005 2,678
(35,10,3) 20 0 0 1 15.38 49 0 49 4 272.04 3,496 5,659 6,918
(45,10,3) 22 0 0 2 280.15 956 809 882 2 98.59 87 70 78
(55,10,3) 26 0 0 0 0
(15,10,5) 12 0 0 0 1 112.00 429 0 429
(25,10,5) 17 0 0 0 1 790.34 584 0 584
(35,10,5) 20 0 0 0 0
(45,10,5) 22 0 0 0 0
(55,10,5) 26 0 0 0 0
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Figure 5.3: Distribution (mean and standard deviation) of the ε-covering size as

a function of the ε value and plots showing the percentage of instances solved

out of 100. Time limit 20 minutes.

Impact of Imprecise Trade-offs

Table 5.2 shows the results obtained with the algorithms ELIM-MOID and

ELIM-MOID-TOF. The algorithm ELIM-MOID-TOF is compiled using both
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linear programming (ELIM-MOID-TOF(LP)) and matrix-based (ELIM-MOID-

TOF(MATRIX)) approaches. For each problem class 〈C,D, p〉, we generated 10
random influence diagram instances. Each instance is then solved using 10 sets

of random trade-offs generated using the algorithm RANDOM-TRADEOFFS.

The setting of the parameters K,T, a, b, c is given in the header of each horizon-

tal block. The column labeled by # represents the number of problem instances

solved by the algorithms out of 10 and 100 instances, respectively. Clearly, we

can see that there is a significant difference in results obtained with both the al-

gorithms. First, the sizes of the expected utility sets computed by ELIM-MOID-

TOFs are orders of magnitude smaller in comparison with the Pareto optimal

sets generated by ELIM-MOID. Second, the median sizes obtained with ELIM-

MOID-TOFs are much smaller than the ELIM-MOID ones and in some cases

median values of the size of the expected utility sets are 1, implying that the

decision maker has strong preferences between the objectives which makes the

induced preference relation <Θ to be equivalent to a total order. Third, the

amount of time taken to solve a large instance using ELIM-MOID-TOFs are

orders of magnitude smaller than the time taken by ELIM-MOID.

We can clearly see that the algorithm ELIM-MOID-TOF (MATRIX) using the

matrix-based dominance check between the utility vectors is much faster than

the linear programming based approach ELIM-MOID-TOF (LP) and is able to

solve noticeably more number of problems.

Table 5.3 reports the results obtained on bi-objective influence diagrams with 5
decision variables by varying the parameter c (from 0 to 1) that determines the

strength of the trade-offs. If c = 0 then we get a single tradeoff between the

pair (1, 2) of objectives generated using RANDOM-TRADEOFFS, as c increases

from 0 to 1 the preference relation <Θ gets stronger and we can see this from

the results obtained with c = 0.1 and by keeping c > 0.1.

Figures 5.4 and 5.5 show the distribution of the size of the maximal sets gen-

erated by ELIM-MOID-TOF as a function of the number of two-way trade-offs

K on problem classes 〈35, 5, 5〉 and 〈35, 5, 10〉, respectively. For these experi-

ments, we generated 10 random influence diagrams for each problem class and

then solved each instance with 10 randomly generated consistent trade-offs.

That means the data points on the graphs and error bars represents the mean

and standard deviation over 100 instances. We can see from the results that as

the number of trade-offs increase the relation <Θ gets stronger. Consequently,

greater number of problems are solved quickly and the sizes of the maximal
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Table 5.2: Results comparing algorithms ELIM-MOID and ELIM-MOID-TOFs on
random influence diagrams with random trade-offs. Time limit 20 minutes.

size w∗ ELIM-MOID ELIM-MOID-TOF (LP) ELIM-MOID-TOF (MATRIX)
(C,D,O) # time avg stdev med # time avg stdev med # time avg stdev med

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,5,2) 9 9 139.58 2,714 2,864 1,673 90 40.77 68 180 2 96 5.14 189 631 3
(25,5,2) 11 7 18.25 2,344 2,614 269 90 22.23 30 105 1 95 7.01 114 400 1
(35,5,2) 14 2 283.29 9,115 8,934 9,024 73 76.01 67 173 1 81 35.60 186 634 1
(45,5,2) 16 2 397.72 7,596 7,536 7,566 70 28.54 34 107 1 75 12.98 87 243 1
(55,5,2) 18 4 717.68 10,422 5,851 14,896 70 36.13 28 68 1 80 75.39 249 682 2

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,5,3) 9 6 10.69 4,889 4,069 5,830 85 34.62 48 135 2 87 5.72 255 801 4
(25,5,3) 11 2 4.42 4,000 3,938 3,969 70 18.20 41 95 2 71 39.61 445 1265 7
(35,5,3) 14 0 50 89.51 119 198 13 75 66.85 687 1813 26
(45,5,3) 16 2 242.68 15,431 1,729 8,580 52 28.18 41 73 4 57 82.37 361 1140 5
(55,5,3) 18 0 51 94.63 75 154 4 65 57.66 150 493 4

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,5,5) 9 3 65.73 15,062 12,229 14,741 84 19.70 41 104 4 88 1.92 102 315 4
(25,5,5) 11 1 50.35 21,074 0 21,074 74 83.30 97 217 4 85 32.55 361 1119 6
(35,5,5) 14 0 59 63.69 101 225 8 68 23.34 616 1781 9
(45,5,5) 16 0 61 96.59 107 216 8 69 20.87 215 522 13
(55,5,5) 18 0 41 84.32 51 101 12 55 117.91 742 1867 33

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,10,2) 12 5 91.82 6,856 8,280 3,175 65 53.28 31 95 1 76 28.47 387 1443 2
(25,10,2) 17 1 808.94 4,964 0 4,964 26 82.89 21 50 1 39 83.62 436 1158 1
(35,10,2) 20 0 12 283.73 2 1 1 21 231.13 89 236 1
(45,10,2) 22 0 7 206.47 78 175 7 11 73.83 387 588 16
(55,10,2) 26 0 0 0

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,10,3) 12 0 45 157.48 86 191 12 58 15.87 178 510 6
(25,10,3) 17 0 11 204.78 74 83 73 28 136.96 994 1995 67
(35,10,3) 20 0 3 303.42 8 8 4 12 231.19 313 669 3
(45,10,3) 22 0 3 158.17 4 4 1 4 234.08 11 12 5
(55,10,3) 26 0 0 0

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,10,5) 12 0 40 106.50 27 64 5 57 50.60 704 2157 11
(25,10,5) 17 0 21 104.70 67 114 10 26 24.13 493 1449 55
(35,10,5) 20 0 5 244.45 72 80 48 8 26.71 353 413 153
(45,10,5) 22 0 0 0
(55,10,5) 26 0 0 0

Table 5.3: Impact of the quality of the random trade-offs on bi-objective influ-
ence diagrams. Time limit 20 minutes.

size w∗ ELIM-MOID ELIM-MOID-TOF

(C,D,O) # time avg stdev med # time avg stdev med # time avg stdev med # time avg stdev med
K = 1;c = 0 K = 1;c = 0 K = 1;c = 0.1 K = 1;c > 0.1

(15,5,2) 9 9 139.58 2,714 2,864 1,673 84 48.30 243 542 23 84 37.10 167 304 9 94 24.93 98 232 1
(25,5,2) 11 7 18.25 2,344 2,614 269 61 16.83 79 260 10 72 80.25 127 377 4 92 7.12 33 126 1
(35,5,2) 14 2 283.29 9,115 8,934 9,024 42 94.89 190 344 11 36 46.01 88 223 18 83 59.18 147 378 1
(45,5,2) 16 2 397.72 7,596 7,536 7,566 42 76.83 130 297 5 47 116.08 155 459 2 76 23.08 86 1 1
(55,5,2) 18 4 717.68 10,422 5,851 14,896 41 144.64 268 312 78 41 117.88 182 328 29 76 48.02 90 233 2

sets reduced dramatically. Moreover, as the number of trade-offs increase the

relation <Θ gets closer to the total order and therefore the maximal expected

utility sets contain only one element.

Imprecise Trade-offs and ε-covering

Table 5.4 summarizes the results obtained with the algorithms ELIM-MOID-

TOF and ELIM-MOID-TOFε. The algorithms are compiled using the matrix-

based dominance approach. For ELIM-MOID-TOFε the ε value is set to 0.01
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Figure 5.4: Distribution of the maximal sets as a function of the number of pair-
wise trade-offs K and fixed 3-way trade-offs (T ). Mean and standard deviation
are shown as well as the percentage of instances solved. Time limit 20 minutes.

and 0.1. We can notice that ELIM-MOID-TOFε outperforms ELIM-MOID-TOF in

all problem classes. In addition, the algorithm ELIM-MOID-TOFε solves sig-

nificantly more problems as ε value increases, generating even smaller (ε, λ)-
coverings. For instance, for the problem class (55, 5, 2) with ε = 0.01 it man-

aged to solve only 85% of the problem instances, whereas it solved 100% of

the problem instances with ε = 0.1. The column (dist) (see Section 5.4) indi-

cates the closeness of the set of maximal expected utility values generated by

ELIM-MOID-TOF and ELIM-MOID-TOFε. Clearly, as ε increases the distance, dist

between ELIM-MOID-TOF and ELIM-MOID-TOFε is also increase, which indicates

that the the maximal expected utility value sets generated by ELIM-MOID-TOFε

move farther away from the original maximal expected utility sets generated by

ELIM-MOID-TOF.

5.6 Summary and Conclusion

We extended the variable elimination algorithm for influence diagrams to the

case where there are more than one objective. Since the Pareto ordering for
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Figure 5.5: Distribution of the maximal sets as a function of the number of pair-
wise trade-offs K and fixed 3-way trade-offs (T ). Mean and standard deviation
are shown as well as the percentage of instances solved. Time limit 20 minutes.

multi-objective utility vectors is usually weak, as a result the expected utility

sets become extremely large. We presented an efficient method to approximate

the expected utility sets based on the notion of ε-covering which is much more

practical computational approach than the exact method.

We introduced a formalism for bringing the imprecise preferences of the de-

cision maker during the computation and presented a method for testing the

dominance condition. We experimentally demonstrated that the proposed for-

malism generates maximal expected utility sets with relatively small cardinality

and in some cases they contain only one element. Results indicate that adding

even a small number of trade-offs can greatly reduce the maximal expected

utility values. Also we showed that as the number of trade-offs increases the

induced preference relation acts almost like a total order on the multi-objective

utility values.

156



5. MULTI-OBJECTIVE INFLUENCE DIAGRAMS

WITH TRADE-OFFS 5.6 Summary and Conclusion

Table 5.4: Results comparing algorithms ELIM-MOID-TOF (MATRIX) and ELIM-
MOID-TOFε (MATRIX) with varying ε values on random influence diagrams with
random tradeoffs. Time limit 20 minutes.

size w∗ ELIM-MOID-TOF (MATRIX) ELIM-MOID-TOFε (MATRIX, ε = 0.01) ELIM-MOID-TOFε (MATRIX, ε = 0.1)
(C,D,O) # time avg stdev med # time avg stdev med dist # time avg stdev med dist

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,5,2) 9 96 5.14 189 631 3 100 0.17 51 157 4 0.13 100 0.018 9 20 1 1.37
(25,5,2) 11 95 7.01 114 400 1 100 0.56 13 36 1 0.1 100 0.16 2 4 1 0.8
(35,5,2) 14 81 35.60 186 634 1 100 6.65 24 75 1 0.1 100 0.62 3 4 1 0.9
(45,5,2) 16 75 12.98 87 243 1 100 28.18 356 1270 2 0.06 100 3.16 6 12 1 0.38
(55,5,2) 18 80 75.39 249 682 2 98 20.08 164 670 1 0.14 100 13.17 10 36 1 0.85

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,5,3) 9 87 5.72 255 801 4 99 8.72 120 436 6 0.26 100 0.11 23 160 2 2.56
(25,5,3) 11 71 39.61 445 1265 7 98 18.29 336 981 9 0.21 100 0.53 20 55 2 2.02
(35,5,3) 14 75 66.85 687 1813 26 92 25.43 248 715 8 0.27 100 6.20 13 33 2 2
(45,5,3) 16 57 82.37 361 1140 5 85 47.18 203 796 10 0.13 100 16 30 217 3 1.38
(55,5,3) 18 65 57.66 150 493 4 85 38.87 210 713 5 0.2 100 30.57 43 185 2 1.5

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,5,5) 9 88 1.92 102 315 4 93 19.50 223 998 4 0.13 100 0.19 38 156 2 1.66
(25,5,5) 11 85 32.55 361 1119 6 92 26.26 288 1100 6 0.14 98 14.20 19 57 2 1.54
(35,5,5) 14 68 23.34 616 1781 9 75 17.56 328 1022 7 0.14 98 5.86 111 731 3 1.16
(45,5,5) 16 69 20.87 215 522 13 80 30.50 525 2150 11 0.29 96 14.79 96 498 2 2.26
(55,5,5) 18 55 117.91 742 1867 33 80 71.68 552 1868 12 0.18 96 33.14 265 1255 4 1.4

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,10,2) 12 76 28.47 387 1443 2 99 30.52 11 22 2 0.42 100 0.46 2 2 1 4.27
(25,10,2) 17 39 83.62 436 1158 1 91 53.83 48 197 2 0.33 97 18.20 3 6 1 2.08
(35,10,2) 20 21 231.13 89 236 1 48 59.63 57 238 1 0.12 77 81.03 17 58 3 0.72
(45,10,2) 22 11 73.83 387 588 16 24 176.63 38 104 7 0.45 36 138.74 2 3 1 3.43
(55,10,2) 26 0 13 235.84 9 24 1 - 17 225.03 2 3 1 -

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,10,3) 12 58 15.87 178 510 6 89 34.46 67 205 7 0.5 100 2.14 10 50 2 5.68
(25,10,3) 17 28 136.96 994 1995 67 58 106.94 53 138 12 0.68 90 50.65 9 41 2 4.36
(35,10,3) 20 12 231.19 313 669 3 42 188.94 286 1057 8 0.48 77 81.03 17 58 3 1.92
(45,10,3) 22 4 234.08 11 12 5 19 224.65 1134 3431 13 0.39 31 108.60 19 32 4 0.94
(55,10,3) 26 0 0 0

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,10,5) 12 57 50.60 704 2157 11 80 24.74 282 828 16 0.53 97 18.72 112 471 4 4.89
(25,10,5) 17 26 24.13 493 1449 55 53 93.48 315 1470 13 0.27 91 31 63 223 4 2.03
(35,10,5) 20 8 26.71 353 413 153 37 123.33 242 880 9 0.6 41 55.44 54 127 3 3.19
(45,10,5) 22 0 15 172.98 19 28 5 - 20 224.75 3 3 2 -
(55,10,5) 26 0 0 0
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Chapter 6

Conclusion and Future Directions

In this chapter, we summarize the achievements of this thesis and briefly discuss

a number of possible future directions we would like to look at in the future.

6.1 Summary and conclusion

The aim of this thesis is to help the decision maker to make better decisions

in a multi-objective optimization context, under certainty and uncertainty. We

considered multi-objective constraint optimization framework for representing

the decision making problems with multiple objectives under certainty. We

looked at the algorithms to solve multi-objective constraint optimization prob-

lems, including branch-and-bound and variable elimination algorithms. The

branch-and-bound algorithms that we considered were recently developed in

[Marinescu, 2009], which perform a depth-first traversal of an AND/OR search

tree that captures the underlying structure of the problem instance, and use a

mini-buckets algorithm to generate an upper bound, which is a set of utility

vectors, at each node of the search tree.

The utility vectors associated with the solutions are compared using the Pareto

ordering. However, the Pareto ordering does not discriminate the multi-

objective utility vectors, consequently, the Pareto-undominated sets often be-

come too large for the decision maker to handle. To overcome this issue, we

defined a simple formalism for representing the imprecise trade-offs of the de-

cision maker, which allows the decision maker, during the elicitation stage, to

specify a preference for one multi-objective utility vector over another, and use
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such input preferences to infer other preferences. In addition, we gave a suf-

ficient condition for testing whether the input preferences are consistent. The

consistent set of input preferences then induce a preference relation, which

eliminates the dominated utility vectors during the computation. We showed

that our trade-offs inference technique can be given an alternative semantics

based on Multi-Attribute Utility Theory, where it is assumed that the decision

maker compares utility vectors by a weighted sum of the individual values.

We developed a computational method based on the linear programming ap-

proach for checking the dominance between multi-objective utility vectors,

which can be determined by using a linear programming solver and we showed

that the (incomplete) algorithm of [Zheng and Chew, 2009] can be an alter-

native approach for testing the dominance between multi-objective utility vec-

tors. Since the multi-objective constraint optimization algorithms need to make

many dominance checks with respect to the preference relation induced by the

imprecise trade-offs, for computational efficiency we constructed a matrix that

represents the preferences of the decision maker. We then compiled the dom-

inance check by use of this matrix and showed that it can achieve almost an

order of magnitude speed up over the linear programming approach.

During the search, the guiding upper bound sets can become large and there-

fore can have a dramatic impact on the performance of the search algorithms.

We developed efficient methods for both the Pareto and trade-offs case, which

reduce the upper bound sets by incrementally replacing a selection of the ele-

ments by an upper bound of them, ensuring that the new reduced upper bound

sets still maintain the key upper bound property. Our experimental results for

the Pareto case indicated that using a singleton upper bound sets is best, and

this considerably improved the current state-of-the-art. For the trade-offs case,

the results suggested that it is usually best to use non-singleton upper bound

set but of quite small cardinality.

We considered the framework of multi-objective influence diagrams, for rep-

resenting the decision making problems with multiple objectives under uncer-

tainty. We mainly focused on extending the variable elimination algorithm for

solving these models, which results in a set of maximal values of expected util-

ity, for the trade-offs case. Our experimental results showed that the proposed

formalism for trade-offs generates maximal expected utility sets with relatively

small cardinality and in some cases even a small number of consistent input

preferences can greatly reduce the maximal expected utility values.
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In addition, we explored the notion of ε-covering for approximating the Pareto

frontier, which heavily depends on the Pareto ordering. Since the ε-dominance

does not satisfy the transitive property, we used a finer dominance relation,

known as (ε, λ)-dominance, where λ ∈ (0, 1). We showed that the (ε, λ)-
dominance satisfies the transitivity and other properties which are needed for

the variable elimination algorithm. We experimentally demonstrated that this

new approximation technique allows us to scale up to much larger problems

than the original Pareto dominance.

6.2 Future Directions

In this section, we discuss some possible future directions of the work in this

thesis. The first possible future work is distributed constraint optimization prob-

lems, which are a general model for distributed problem solving that have a

wide range of applications in multi-agent systems. The second is limited mem-

ory influence diagrams which are the generalization of standard influence dia-

grams.

6.2.1 Distributed Constraint Optimization Problem

A Distributed Constraint Satisfaction Problem (DisCSP) is a constraint satisfac-

tion problem, which gives a way to model and reason about the interactions

between agents local decisions. In a DisCSP each agent has some variables and

needs to choose their values. Variables owned by different agents are connected

by constraints, these constraints are known as inter-agent constraints. However,

agents must coordinate their choice of values to their variables so that all inter-

agent constraints are satisfied [Yokoo et al., 1998]. Finding a value assignment

to variables that satisfy inter-agent constraint is viewed as consistency among

agents. In order to achieve this, agents check value assignment to their variables

for local consistency and exchange messages among them to check consistency

of their proposed assignment against constraints that contain variables which

belong to other agents [Wahbi, 2012].

A Distributed Constraint Optimization Problem (DCOP) is a DisCSP with an

additional objective function which is modelled as a set of constraints. Each

agent in DCOP is only assumed to have knowledge about the constraints in

which their variables are involved. The goal is to find the value assignment
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of the variables such that the objective function is maximized or minimized.

Formally, a DCOP is defined in [Modi et al., 2005] as a quadruple 〈A,X,D, F〉,
where:

• A = {A1, . . . , Ap} is a set of p agents.

• X = {X1, . . . , Xn} is a set of n variables such that each variable Xi is

controlled by one agent in A.

• D = {D1, . . . , Dn} is a set of finite domains of variables in X.

• F = {f1, . . . , fr} is a set of utility constraints, where each fi is defined over

some subset of variables in X.

Several algorithms have been proposed for solving DCOPs in the last decade,

which include BnB-Adopt [Modi et al., 2005] that uses a depth-first branch-

and-bound strategy, the synchronous branch-and-bound (SyncBB) [Hirayama

and Yokoo, 1997] that performs assignments sequentially and synchronously,

non-commitment branch-and-bound [Chechetka and Sycara, 2006] which is

another synchronous polynomial-space search algorithm, asynchronous for-

ward bounding [Gershman et al., 2006] that can be seen as an improvement of

SyncBB.

We propose, in brief, as a possible area of future work to consider DCOPs ex-

tended to the case where utility functions take values in Rp, for instance see

[Okimoto et al., 2013], in this case DCOPs as multi-objective DCOPs and de-

velop different algorithms, such as AND/OR branch-and-bound described in

Section 4.3 to solve multi-objective DCOPs. We plan to, develop formalisms,

such as the formalism presented in Section 4.4.1 for combining and compar-

ing information about agents preferences, and using this information to solve

MO-DOSPs.

6.2.2 Limited Memory Influence Diagrams

In this thesis, we presented the framework of influence diagrams for reason-

ing about decision making under uncertainty. The two important assumptions

of the influence diagram representation are the no-forgetting assumption, that

implies a perfect recall of the past decisions, and the assumption of a total or-

der on the decisions. The limited memory influence diagram (LIMID) [Nilsson

and Lauritzen, 2000] relaxes these two assumptions. That means, with a LIMID
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representation, it is possible to model multi-stage decision problems with an un-

ordered sequence of decisions and decision problems in which the no-forgetting

assumption is not appropriate.

LIMIDs can also be used for modelling decision making problems under uncer-

tainty involving multiple decision makers with limited information. In addition,

every decision problem under uncertainty that can be represented as an influ-

ence diagram can also be represented as a LIMID. The structure of a LIMID is

identical to an influence diagram but due to the relaxation of the two funda-

mental assumptions the solution process of LIMID is more complex than the

solution process of influence diagrams.

As a possible future work, we plan to look at extending the LIMIDs to include

multi-objective utility functions, in this case we call LIMIDs as multi-objective

LIMIDs. We will investigate the development of the algorithms to solve when

there is no information available about the preferences of the decision maker,

and also the case when we have some partial information of the preferences of

the decision maker.
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