2,094 research outputs found

    Does error control suppress spuriosity?

    Get PDF
    In the numerical solution of initial value ordinary differential equations, to what extent does local error control confer global properties? This work concentrates on global steady states or fixed points. It is shown that, for systems of equations, spurious fixed points generally cease to exist when local error control is used. For scalar problems, on the other hand, locally adaptive algorithms generally avoid spurious fixed points by an indirect method---the stepsize selection process causes spurious fixed points to be unstable. However, problem classes exist where, for arbitrarily small tolerances, stable spurious fixed points persist with significant basins of attraction. A technique is derived for generating such examples

    Numerical Solution of ODEs and the Columbus' Egg: Three Simple Ideas for Three Difficult Problems

    Full text link
    On computers, discrete problems are solved instead of continuous ones. One must be sure that the solutions of the former problems, obtained in real time (i.e., when the stepsize h is not infinitesimal) are good approximations of the solutions of the latter ones. However, since the discrete world is much richer than the continuous one (the latter being a limit case of the former), the classical definitions and techniques, devised to analyze the behaviors of continuous problems, are often insufficient to handle the discrete case, and new specific tools are needed. Often, the insistence in following a path already traced in the continuous setting, has caused waste of time and efforts, whereas new specific tools have solved the problems both more easily and elegantly. In this paper we survey three of the main difficulties encountered in the numerical solutions of ODEs, along with the novel solutions proposed.Comment: 25 pages, 4 figures (typos fixed

    Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method

    Get PDF
    BackgroundBiochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities.ResultsIn this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler ?-leap, as well as two more recent ?-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments.ConclusionsThe Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations

    Runge-Kutta-Gegenbauer explicit methods for advection-diffusion problems

    Get PDF
    In this paper, Runge-Kutta-Gegenbauer (RKG) stability polynomials of arbitrarily high order of accuracy are introduced in closed form. The stability domain of RKG polynomials extends in the the real direction with the square of polynomial degree, and in the imaginary direction as an increasing function of Gegenbauer parameter. Consequently, the polynomials are naturally suited to the construction of high order stabilized Runge-Kutta (SRK) explicit methods for systems of PDEs of mixed hyperbolic-parabolic type. We present SRK methods composed of LL ordered forward Euler stages, with complex-valued stepsizes derived from the roots of RKG stability polynomials of degree LL. Internal stability is maintained at large stage number through an ordering algorithm which limits internal amplification factors to 10L210 L^2. Test results for mildly stiff nonlinear advection-diffusion-reaction problems with moderate (≲1\lesssim 1) mesh P\'eclet numbers are provided at second, fourth, and sixth orders, with nonlinear reaction terms treated by complex splitting techniques above second order.Comment: 20 pages, 7 figures, 3 table

    Variable stepsize variable order multistep methods for stiff ordinary differential equations

    Get PDF
    Backward differentiation methods are used extensively for integration of stiff systems of ordinary differential equations. During the integration, the steplength and order are controlled so that the estimated local error is less than some user prescribed tolerance. There are two techniques commonly used to implement variable stepsize multistep methods. One technique is based on fixed coefficient formulas and the other is based on variable coefficient formulas. The latter does not require past values to be equally spaced and the coefficients are computed during the integration;In this thesis, a class of multistep formulas which includes the backward differentiation formulas as a subclass is considered. These formulas have two first derivative terms compared to one first derivative term in backward differentiation formulas. For these methods, the variable coefficient implementation is used. When the stepsize is fixed, these formulas are stable up to order seven while the backward differentiation formulas are stable up to order six. Some bounds of the stepsize ratios are obtained for the stability of the order two and three methods when the stepsize is allowed to change during the integration. Some numerical bounds of the stepsize ratios for order four and five cases are also given. Selection of the formulas in the above class is done and comparisons are made with the variable coefficient backward differentiation formulas. A computer code which uses the above type formulas of orders one through five is given. Numerical testing and comparison with two other computer codes are made on a set of test problems
    • …
    corecore