
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics 

2019-07-01 

Runge–Kutta–Gegenbauer Explicit Methods for Advection-Runge–Kutta–Gegenbauer Explicit Methods for Advection-

Diffusion Problems Diffusion Problems 

Stephen O'Sullivan 
Technological University Dublin, stephen.osullivan@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Numerical Analysis and Computation Commons 

Recommended Citation Recommended Citation 
O'Sullivan, S. (2019) Runge–Kutta–Gegenbauer explicit methods for advection-diffusion problems, 
Journal of Computational Physics, Vol. 388, 1 July 2019, Pages 209-223, doi.org/10.1016/
j.jcp.2019.03.001 

This Article is brought to you for free and open access by 
the School of Mathematics at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301312398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=arrow.tudublin.ie%2Fscschmatart%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


ar
X

iv
:s

ub
m

it/
26

59
15

6 
 [

m
at

h.
N

A
] 

 1
8 

A
pr

 2
01

9

Runge–Kutta–Gegenbauer explicit methods for

advection-diffusion problems

Stephen O’Sullivan∗1

1School of Mathematical Sciences, Technological University

Dublin, Kevin Street, Dublin 8, Ireland

April 18, 2019

Abstract

In this paper, Runge–Kutta–Gegenbauer (RKG) stability polynomi-
als of arbitrarily high order of accuracy are introduced in closed form.
The stability domain of RKG polynomials extends in the the real direc-
tion with the square of polynomial degree, and in the imaginary direction
as an increasing function of Gegenbauer parameter. Consequently, the
polynomials are naturally suited to the construction of high order stabi-
lized Runge–Kutta (SRK) explicit methods for systems of PDEs of mixed
hyperbolic-parabolic type.

We present SRK methods composed of L ordered forward Euler stages,
with complex-valued stepsizes derived from the roots of RKG stability
polynomials of degree L. Internal stability is maintained at large stage
number through an ordering algorithm which limits internal amplification
factors to 10L2. Test results for mildly stiff nonlinear advection-diffusion-
reaction problems with moderate (<

∼ 1) mesh Péclet numbers are provided
at second, fourth, and sixth orders, with nonlinear reaction terms treated
by complex splitting techniques above second order.

Keywords: Stiff equations, Stability and convergence of numerical methods, Method
of lines
2010 MSC: 65L04 , 65L20 , 65M20

1 Introduction

Stabilized Runge–Kutta (SRK) explicit methods are particularly well suited to solving
mildly stiff systems of ODEs arising from the discretization of parabolic PDEs due to
their extended stability domains along the negative real axis. In this work, we will
consider an extension of this class of methods to systems of ODEs derived from PDEs
of mixed hyperbolic-parabolic type.

The canonical m-dimensional scalar advection-diffusion equation for a quantity w
is given by

wt +

m
∑

k=1

akwxk
= d

m
∑

k=1

wxkxk
, (1)
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where ak is the advection coefficient in the k-th direction and d is the diffusion coef-
ficient. Assuming a spatial mesh of uniform spacing hk in the k-th direction, spatial
discretization leads to a system of ODEs via the method of lines which may be written
in the form

w′ = f(t, w). (2)

Given an initial state w0, subsequent application of a numerical integration method
over n steps then yields an approximate solution wn at time tn.

Under the description given above, the mesh Péclet number associated with the
k-th dimension, Pk = |ak|hk/d, describes the relative significance of the hyperbolic
to the parabolic parts of eq. (1). In particular, the domain of the eigenvalues from a
von Neumann stability analysis increases in the imaginary direction with Pk. A well
constructed numerical method must therefore capture this stability domain to avoid
unbounded growth of errors.

SRK methods based on Chebyshev polynomials (eg. RKC [25], DUMKA [20], ROCK

[2], and FRKC [23]) are suitable for problems in the limit of vanishing Péclet num-
bers. The stability domains associated with these polynomials are extended along the
real axis, however, in unmodified form, they also possess internal points where the
domains become vanishingly narrow. In practice, damping procedures have been used
to introduce a finite imaginary extent at these points of marginal stability so as to
mitigate against instability arising through truncation errors. A damping process has
been exploited in [27] to extend applicability of RKC methods to problems with mod-
erate (<

∼ 1) mesh Péclet numbers.1 The Extrapolated Stabilized Explicit RungeKutta
(ESERK) methods of [19] are derived from Richardson extrapolation techniques and
demonstrate finite extent stability domains in the imaginary sense through damping.
Finally, we remark that methods based on Legendre polynomials have also been pro-
posed [21, 22] which do not suffer from marginally stable internal points and therefore
do not require damping for problems with very small (≪ 1) mesh Péclet numbers.

In this work, we demonstrate that the necessity for modification of SRK methods
through a damping procedure for problems with mild-to-moderate advection may be
avoided by appealing to the properties of the general class of Gegenbauer polynomials.
We seek a closed-form prescription for arbitrarily high order Runge–Kutta–Gegenbauer
(RKG) stability polynomials which natively generate stability domains with imaginary
extent determined by the Gegenbauer parameter.

The paper is organized as follows. In section 2, the analytic form of the class of
RKG stability polynomials is presented and the construction of stable time-marching
explicit methods based on the roots of these polynomials is outlined. In section 3,
numerical tests are presented confirming the order and efficiency properties of RKG

methods. Conclusions are presented in section 4.

2 Runge-Kutta-Gegenbauer methods

2.1 Runge-Kutta-Gegenbauer stability polynomials

By appending t to the vector of dependent variables, eq. (2) may be written in au-
tonomous form,

w′ = f(w). (3)

We consider advancing the approximate solution explicitly over a single timestep
T from wn, at time level n, to wn+1, at time level n+1. In the following discussion, an
order N SRK method is implemented over L stages spanning an aggregate time T . For
clarity of notation, we omit the time level indexing and denote the L+1 internal stage

1The authors also consider large (> 1) mesh Péclet numbers, however, the benefits of using
SRK methods in terms of efficiency are largely lost.
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states W l (l = 0, · · · , L), with W 0 = wn, and WL = wn+1. The SRK integration then
takes the form

WL =W 0 + T

L
∑

l=1

alf(W
l−1), (4)

where the timestep related to each stage is given by τl = alT .
When applied to the scalar Dahlquist test equation

W ′(t) = λW (t), W (0) = 1, (5)

the RKG method of rank N , degree L = MN , and Gegenbauer parameter ν, may be
written as

WL = RνN
M (z), (6)

where z = Tλ. The associated RKG stability function,

RνN
M (z) = GνN

M

(

1 +
2z

βνN
M

)

, (7)

is obtained from the shifted RKG polynomial

GνN
M (z) = dνN

0 + 2
N
∑

k=1

dνN
k Cν

kM (z), (8)

where Cν
kM denotes the the Gegenbauer polynomial of degree kM and Gegenbauer

parameter ν. 2 We note that since any perturbation will be amplified by RνN
M (z) over

a timestep, the method’s stability domain is defined by {z ∈ C : |RνN
M (z)| ≤ 1}.

Linear order conditions are obtained by requiring that the first N terms of the
Taylor series for the exact solution of eq. (5) and RνN

M (z), coincide. Hence, the order
coefficients, dνN

k , are determined by

RνN
M

(n)(0) = 1, n = 1, . . . , N, (9)

where a superscript (n) indicates the nth derivative is taken. The order conditions
are met by solving an N-dimensional linear system







C
ν (1)
M (1) . . . C

ν (1)
NM (1)

...
. . .

...

C
ν (N)
M (1) . . . C

ν (N)
NM (1)













dνN
1

...
dνN
N






=

1

2







(βνN
M /2)1

...
(βνN

M /2)N






, (10)

coupled with a zeroth order condition

dνN
0 = 1− 2

N
∑

k=1

dνN
k Cν

kM (1). (11)

Once the value of βνN
M has been set, the above equations are sufficient to determine

RνN
M : for odd M , optimal values of βνN

M are found by solving GνN
M (−1) = (−1)N

iteratively; for even M , rational interpolation/extrapolation is used.
In this work, we consider RKG polynomials of order N = 1, . . . , 8 and adopt

geometric sequences of values for ν, from 0 to 2N , given by ν = 2i/2N/128, for
i = 0, . . . , 16, and also include the reference value ν = 0. In considering the gain in
efficiency achievable by methods constructed from the RKG polynomial, it is useful
to note that M aggregated steps of a standard RK methods at order N will have a
stability polynomial of degree L and a domain with a real extent of approximately
MβνN

1 . From fig. 1, it may be seen that the real extent, βνN
M , of an RKG polynomial

2We remark that for ν = 0 and ν = 1/2 the components are Chebyshev and Legendre
polynomials respectively.
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of the same degree is characteristically longer by a factor of between M and 1.5M
for ν = 0, falling to <

∼ 0.5M with increasing ν. This factor therefore represents a
significant potential gain in efficiency with respect to standard explicit RK methods.
A count of the number of evaluations, fcount, for the function f in eq. (4), may be used
as a measure of the work required to carry out an integration. We note here that the
optimal efficiency for SRK methods follows fcount ∝ (err)−1/2N (where err is a measure
of the error in the solution).

0
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β
ν
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M
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2
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ν
N
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25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

N = 1
νmax = 2

N = 2
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N = 3
νmax = 6

N = 4
νmax = 8

N = 5
νmax = 10

N = 6
νmax = 12

N = 7
νmax = 14

N = 8
νmax = 16

Figure 1: Stability domain extent, for |RνN
M | = 1, along the real axis normalized

to M2βνN
1 as a function of M for orders N = 1, . . . , 8. The Gegenbauer

parameter ν ranges from 0 to 2N (from top to bottom) with ν = 0 and ν =
2i/2N/128, for i = 0, . . . , 16.

2.2 Factorized Runge–Kutta–Gegenbauer methods

The Factorized Runge–Kutta–Gegenbauer (FRKG) coefficients of order N correspond-
ing to eq. (4) are defined according to

aνN
M l =

2

βνN
M

1

1− ζνN
M l

, (12)

4



where the roots ζνN
M l of the RKG polynomial GνN

M (z) are determined numerically.3

The maximum stable stepsize for the derived method is Tmax = βνN
M /|λ|max, where

the values of λ are the negative-definite eigenvalues of the Jacobian associated with
eq. (3).

Over the extent of the stability domain on the real axis, with ν > 0, we remark
that |RνN

M
(n)| < 1. In the limiting case of ν = 0, the components of RνN

M (z) are
shifted Chebyshev polynomials and M − 1 marginally stable internal points exist for
which |RνN

M
(n)| = 1. For problems with formally real eigenvalues under von Neumann

stability analysis, truncation errors may give rise to eigenvalues with small imaginary
parts thereby introducing some susceptibility to instability. In this work, we therefore
choose a minimum value of ν = N/128 for all test cases so as to avoid this phenomenon.

For various standard discretization schemes, [29] determined geometric shapes
within which the eigenvalues derived from a von Neumann stability analysis will be
contained. While [27] adopt an oval approximation, we find that better results are
found for large M using the ellipse approximation

(

x

βνN
M /2

+ 1

)2

+

(

y

ανN
M

)2

= 1, (13)

where the centre point is (−βνN
M /2, 0), and the major and minor half-axes are βνN

M /2
and ανN

M respectively.

-100

100

-100

100

-100

100

-6000 -5000 -4000 -3000 -2000 -1000 0

ν = 1/8

ν = 2

ν = 8

Figure 2: Stability domains for fourth order RKG stability polynomials with
M = 40 and ν = 1/8, 2, 8. The shaded regions indicate the strict and ap-
proximate fitted ellipses, corresponding to the semi-minor axes ανN

sM and ανN
aM

respectively. (The cases shown are characteristic of the methods used in ob-
taining solutions with err >

∼
10−5 for the Brusselator problem with advection

presented in section 3 with weak, mild, and moderate advection, from top to
bottom.)

Under κ-scheme discretizations [26], the stability condition derived by [29] for the
ellipse approximation is given by

T ≤ min

(

ψ1β
νN
M , ψ2

(ανN
M )2

βνN
M

)

, (14)

3Root-finding is handled with the MPSolve [3] package. Multiple-precision calculations of
polynomial and method coefficients are carried out using the GMP [9] and MPFR [7] libraries.
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where

ψ1 =
1

2d
∑

h−2
k (2 + (1− κ)Pk)

, ψ2 =
4d

(2− κ)2
∑

a2k
. (15)

We identify an ellipse with semi-minor axis, ανN
sM , which is fit strictly to the interior

of the contour |RνN
M (z)| = 1. Typically, this strict ellipse turns out to be excessively

conservative and we therefore also make use of an approximate ellipse with semi-minor
axis ανN

aM . The value of ανN
aM is set by solving |RνN

M (iανN
aM )| = 1 for M mod 4 = 0,

and logarithmically interpolating for the intermediate cases. 4 Except for M ≤ 4, the
approximate ellipse semi-minor axis ανN

aM is larger than the strict value ανN
sM .

Examples of the stability domains for various RKG stability polynomials are shown
in fig. 2, superimposed with the exact and approximate ellipses corresponding to ανN

sM

and ανN
aM respectively. Evidently, the approximate ellipse is well captured within the

true stability domain, only overshooting marginally as ν becomes large. Furthermore,
as the amplitude of the ripples in the stability domain boundary decreases with increas-
ing ν, the approximate ellipse becomes an increasingly precise global approximation.

Algorithm 1 Selection of M and ν for timestep T (ν = ν(i), increasing with
i)

Initialize M = 1, i = 1
loop

if ψ1β
νN
M ≤ ψ2(α

νN
M )2/βνN

M then

if βνN
M /|λ|max < T then

Select M , ν = ν(i)
else

Increment M
end if

else

Increment i
end if

end loop

In cases where a fixed timestep is assigned, we find experimentally that ανN
M =

max(ανN
sM , (α

νN
sM + ανN

aM )/2) is an effective choice for eq. (14). Alternatively, when a
timestep controller is employed (discussed further in section 2.5), integration is less
sensitive to capturing the stability domain completely and ανN

M = max(ανN
sM , α

νN
aM )

proves to be a suitable choice. (The max function evaluates to ανN
sM only in a limited

number of cases for M ≤ 4.) As illustrated in fig. 3, the value of (ανN
M )2/βνN

M varies
approximately linearly with ν over two orders of magnitude (from ∼ 0.1 to ∼ 10)
for 0<

∼ ν ≤ 2N , and also demonstrates a general upward trend with increasing order
N . The integration method is chosen according to algorithm 1 by selecting from the
minimum available values of M and ν for which ψ1β

νN
M ≤ ψ2(α

νN
M )2/βνN

M .

2.3 Internal stability

Internal instability arises when the product of any internal sequence of stages generates
large values which drown out available numerical precision. Following an idea of
Lebedev [16, 15], but using the more effective method presented in [23], and described
here in algorithm 2, we order the stages in the L-tuple [aνN

M l ] to approximately minimize

4Interpolation yields more conservative values than solving the given equation for M mod
4 6= 0.
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Figure 3: The parameter (ανN
M )2/βνN

M governing the stable timestep limit for
the ellipse approximation to the stability domain as a function of M for orders
N = 1, . . . , 8 with ν = 2i/2N/128, for i = 0, . . . , 16 (bottom to top). As shown,
(ανN

M )2/βνN
M is approximately linear as a function of the Gegenbauer parameter

ν.
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the maximum realized internal amplification factor

Q = max(Qj, k(x)), 1 ≤ j, k ≤ L, x ∈ [−βνN
M , 0], (16)

where

Qj, k(x) =

k
∏

l=j

|1 + aνN
M lx|. (17)

This is a rapid calculation: trialing each swap consists of multiplying the pre-
existing forward amplification factor by vj, k, and dividing the reverse factor by the
same quantity. Adopting a slightly reduced stability range, [(1− 10−3n)βνN

M , 0] (n ∈
N), aids in meeting the imposed upper bound of 10L2 (particularly for small values of ν
and N , where the mean value of n reaches almost 3). Preserving 7 digits for precision,
a method consisting of ∼ 104 stages is therefore theoretically viable in a numerical
integration carried out at double (16 digit) precision - well beyond the requirements
of practical calculations.

The maximum realized internal amplification factor Q is illustrated for ν = 0 and
ν = 2N over orders N = 1, . . . , 8 in fig. 4. The imposed bound 10L2 is observed in
all cases, with Q falling away from this limit as ν increases.5

Algorithm 2 Internal stability ordering of L-tuple [aνN
M l ]

Shuffle [aνN
M l ]

Initialize n = 1
repeat

L points xk uniformly on [(1 − 10−3n)βνN
M , 0], with vj, k = |1 + ajxk|

for l = 1 to l = L do

for m = l to m = L do

Swap positions of aνN
M l and a

νN
Mm

if

∥

∥

∥
max

(

∏l
j=1

vj, k,
∏L

j=l+1
vj, k

)∥

∥

∥

1
is not new minimum over m

then

Revert positions of swapped coefficients aνN
M l and a

νN
Mm

end if

end for

end for

Increment n
until Q < 10L2 {confirmed over 10L uniformly spaced points}

2.4 Complex splitting

Up to second order, FRKG methods are suitable without further consideration for
nonlinear problems (since all order conditions are linear). At higher orders, nonlinear
order conditions are present which require additional treatment. One approach to
ensuring these nonlinear conditions are met is the composition of RK methods [5, 11],
which offers a means of combining a linear SRK method with finishing stages derived
from a nonlinear RK method [20, 2]. While composition methods are elegant, our
studies and [14] suggest that poor error propagation properties over the finishing stages
gives rise to erratic behaviour. Furthermore, the latter authors assert that composition
methods are prone to order reduction whereby temporal accuracy is lost when spatial
mesh refinement occurs.

5The ordered coefficients from first to eighth order, with M = 1, . . . , 257, are provided as
Electronic Supplementary Material.
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Figure 4: The maximum realized internal amplification factor Q as a function
of M for FRKG integration methods over orders N = 1, . . . , 8. The number of
internal stages is given by L =MN . Cases for ν = 0 (filled circles) and ν = 2N
(filled triangles) are shown with guidelines at L2 and 10L2.

9



An alternative approach for a linear evolution equation of the form w′ = (A + B)w,
is to employ a high order approximation of the operator eT (A+B) in terms of complex
valued coefficients [6, 13]. In this work, we adopt splitting of the form

wn+1 = eTkJ
Be

TkJ−1
A · · · eTk3

BeTk2
AeTk1

Bwn, (18)

where Tk ∈ Re+ for even k, corresponding to the partial timesteps for the operator A,
and Tk ∈ Im+ otherwise [6, 4].

The procedure extends immediately to the case w′ = Aw+fB(w), with B replaced
by a nonlinear operator. The factors eTkB are replaced by appropriate approximations
to the true flows given by fB(w) over the the intervals Tk.

Under Dirichlet or Neumann boundary conditions, splitting methods are known to
be prone to an order reduction phenomenon. However, the effect appears to remain
confined to the neighbourhood of the boundaries such that the order may be fully
recovered on the interior of the domain [13, 18].

2.5 Stepsize control

For reliable numerical integration, an appropriate control procedure based on local
error estimation is required to manage stepsize selection.

Starting from wn, the approximate solutions wn+1 and wn+1 are obtained at order
N , and at some lower order of accuracy N , respectively. A measure of the error over
the step is then given by

errn+1 =

∥

∥

∥

∥

wn+1 − wn+1

wt

∥

∥

∥

∥

2

, (19)

where
wt = atol +max(|wn|, |wn+1|) × rtol, (20)

with atol and rtol being tuning parameters for the absolute and relative errors respec-
tively.

If errn+1 > 1, the step is rejected and wn+1 is recalculated with a revised timestep
Tnew. Otherwise, the solution is accepted and a trial solution wn+2 is determined over
Tnew. In order to prescribe Tnew, it is observed that the error behavior for the FRKG

methods follows err ≈ CT (N+1)/(N−N). Hence, the constant C may be specified in
terms of the error measure, and the revised stepsize may be estimated. For unsplit
problems (when the previous step has been accepted) this is done by means of the the
predictive controller [28, 10, 12] given by

Tn+1
new = safeTn

(

1

errn+1

)
N−N

N+1
(

Tn

Tn−1

)(

errn

errn+1

)
N−N

N+1

. (21)

In all other cases, the non-predictive value obtained by deleting the third term in
parentheses in eq. (21) is used. In practice, we choose N = 1 for second order integra-
tions, and N = 2 at higher orders where splitting is applied. Additionally, we set the
safety factor safe to 0.8 (after the initial step) and allow the revised timestep Tnew to
vary by at most a factor of two with respect to the previously trialed value.

For the initial step, following [25], the error is estimated over a trial step Ttrial =
1/|λ|max by comparing forward Euler steps using function evaluations calculated at
t = 0 and t = Ttrial. The initial step is then assigned using T = safe × Ttrial/

√
err,

with safe = 0.1.
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2.6 Convex Monotone Property

Methods based on Chebyshev polynomials applied to pure diffusion problems with
spatially varying diffusion coefficients may give rise to a staircase profile in the solu-
tion when discontinuities are present [22]. The effect arises when the coefficients of
the equation stencil admit negative values. Methods which have strictly non-negative
stencil coefficients for a given problem are described as possessing the Convex Mono-
tone Property (CMP) by [22]. These authors also note that that damping is effective
in recovering the CMP in Chebyshev polynomial based methods. However, they as-
sert that to maintain the CMP with increasing stage number L, damping must be
increased, with a resultant reduction in efficiency such that the extent of the stability
domain on the real axis goes as L3/2.

In this section, we consider the CMP in the more general case of advection-diffusion
problems of the form

wt + awx = dwxx, (22)

in the presence of an initial discontinuity

w(x, 0) =

{

wL if x < 0,

wR otherwise
. (23)

The exact solution to eqs. (22) and (23) is given by

w(x, t) =
1

2

[

(wR + wL) + (wR −wL) erf

(

x− at

2
√
dt

)]

. (24)

A uniform mesh is assumed with spacing h = 0.1 over the domain −20 < x < 20,
with Dirichlet boundary conditions imposed using the exact solution. The particular
parameters chosen here are a = 0.2, d = 1, giving a mesh Péclet number of P = 0.2.
We consider a first order upwind discretization of the advection term and a second
order centred discretization of the diffusion term.

The effect of the CMP is evident in fig. 5(a), where solutions from FRKG methods
are presented at second order for M = 11 over 10 timesteps, with comparisons of the
cases ν = 0.5 (corresponding to a Legendre polynomial-based method) and ν = 1.
While both cases are stable, imposing M > 1 on the initial discontinuity results in
severe oscillations in the solutions derived with ν = 0.5, due to an absence of the CMP.
We note that the observed oscillatory behaviour is no longer present in the case with
ν = 1. Evidence as to the origin of this behaviour may be found by inspecting the
sample coefficients from the equation stencil shown over the stable range in fig. 5(b):
at several points, the coefficients corresponding to ν = 0.5 become negative, whereas
the coefficients for ν = 1 are strictly non-negative over the stable range.

The minimum equation stencil coefficient values are illustrated in fig. 5(c) for
different mesh Péclet numbers, P = 0, 0.2, and stage numbers M = 7, 11. The
suggested characteristics of the CMP for FRKG methods are that it is not maintained
for odd N > 1, however, for even N , or N = 1, the CMP is recovered for some critical
value νCMP. Furthermore, this value of νCMP is independent ofM for P = 0, occurring
at 0.5 for N = 1, 2, and subsequently rising slightly for even N . This is consistent
with the observed behaviour of the first and second order Legendre polynomial based
methods RKL1 and RKL2 [22]. In the case of finite advection with P = 0.2, νCMP

appears to rise with M more rapidly than the stable estimate provided by algorithm 1.
As a consequence, while increasing ν will significantly dampen the observable staircase
artefacts, it is not feasible in practice to fully enforce the CMP for advection-diffusion
problems at large M above second order.

We emphasize that the discussions presented here are based on fixed stage number
integrations, and that with suitable stepsize control procedures, which will restrict the
stage number while discontinuities are diffused, absence of CMP does not generate
staircasing in the numerical solution [24].
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Figure 5: Illustrations of CMP for advection-diffusion problems. Panel (a):
Solutions to eqs. (22) and (23) for ν = 0.5 and 1.0 at second order accuracy
over 10 timesteps for M = 11 at times 4.9710 and 4.1425 respectively, shown
in heavy lines. The exact solutions are also shown in fine lines. Panel (b):
Examples of the equation stencil coefficients with timesteps up to the stable
limit. For the given case, there are 45 coefficients. Heavy lines show the 39th
coefficient (the largest negative value). Fine lines show the 29th coefficient.
Panel (c): Mimima of equation stencil coefficients as a function of ν for P = 0.0
and P = 0.2. Heavy lines correspond to M = 11 and fine lines to M = 7.
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3 Brusselator with advection

We consider the Brusselator diffusion-reaction problem [17, 12] extended to include
advection,

∂v

∂t
= ǫ

(

∂2v

∂x1
2
+

∂2v

∂x2
2

)

+A− (B + 1)v +wv2 + µ

(

U1
∂v

∂x1
+ U2

∂v

∂x2

)

,

∂w

∂t
= ǫ

(

∂2w

∂x1
2
+
∂2w

∂x2
2

)

+Bv − v2w + µ

(

V1
∂w

∂x1
+ V2

∂w

∂x2

)

, (25)

with initial conditions v(0, x) = 22x2(1− x2)
1.5, w(0, x) = 27x1(1− x1)

1.5. Tests are
configured with diffusion and reaction parameters ǫ = 0.01, A = 1.3, B = 1; advection
vectors U = (−0.5, 1)T , V = (0.4, 0.7)T ; and µ = 0.1, 0.5, 1.0, corresponding to
weak, mild, and moderate advection respectively. Numerical solutions are obtained
at t = 1 on a uniform mesh with periodic boundary conditions over 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1, with h1 = h2 = 1/800. We employ second order upwind discretizations
of the advection terms (corresponding to κ = −1 under the κ-scheme formalism) with
second order centred discretization of the diffusion terms. For the stated advection
parameters, the largest mesh Péclet numbers (given by P2 for species v) are 0.0125,
0.0625, 0.125. The order of the system of ODEs is 2/h2 = 640000, with the spectral
radius of the Jacobian matrix estimated by ψ−1

1 ≈ 5.17 × 104, 5.36 × 104, 5.60 × 104

respectively. Hence, the problem is moderately stiff and not readily tractable via
standard RK techniques.
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βνN
M

ν
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1
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1 102 104 106

N = 4

0.1

1
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1 102 104 106

N = 6

Var
Fixed

Figure 6: The Gegenbauer parameter, ν, as selected by algorithm 1, plotted
against βνN

M for fixed timestep methods (grey lines) and variable timestep meth-
ods using a stepsize controller (black lines). ν ranges from N/128 to 2N at 17
logarithmically uniformly spaced values. The methods corresponding to the
weak, mild and moderate advection (P2 = 0.0125, 0.0625, 0.125) are shown
from left to right. Guidelines are linear in βνN

M .

Complex splitting of the form given by eq. (18) is employed at fourth and sixth
orders using coefficients from [6] and [4] (also presented in table 1). Reaction terms are
treated using standard adaptive RK integrators from the GNU Scientific Library [8].

The methods implemented in the tests are selected via algorithm 1, for both fixed
stepsizes, and stepsizes controlled via local error estimates. The associated Gegenbauer
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Figure 7: Work-precision diagram for Brusselator problem with advection. Sec-
ond order unsplit method results are shown in the left column, with fourth and
sixth order split method results in the second and third columns. Mesh Péclet
numbers, from bottom row to top, are 0.0125, 0.0625, 0.125, corresponding to
weak, mild, and moderate advection respectively. Data from FRKG method in-
tegrations with stepsize control (FRKGc) and fixed stepsizes (FRKGf) are shown
as filled circles and filled triangles respectively. Unfilled circles and triangles
correspond to results from Chebyshev polynomial based methods with stepsize
control (FRKCc) and fixed stepsizes (FRKCf). Guidelines shown are proportional
to (err)−1/2N .
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parameter, ν, is shown as a function of the maximum timestep size in fig. 6. It can
be seen that increasing ν up to the maximum value of 2N extends the stable stepsize
by approximately two orders of magnitude, whilst continuing to contain the domain
of the methods’ eigenvalues within the ellipse approximations given by eq. (13). The
realized timesteps represent a gain in efficiency over standard RK integrations of 1.5M ,
down to 0.5M with increasing ν. Typical RKG stability domains for the integration of
the linear parts of section 3 encountered at fourth order may be seen in fig. 2.

Work-precision test results for the Brusselator problem with advection are shown
in fig. 7 for unsplit second order and split higher order FRKG methods. Cases are
considered with both fixed stepsize over the full integration, and variable stepsizes
controlled by the error estimation procedure described in section 2.5. (Indicative
numerical data for the tests are also provided in appendix B.) For comparison, results
from integrations carried out with Chebyshev polynomial based FRKC methods are
also presented.

Stepsize control is clearly an effective counter-measure to the growth of numerical
instabilities. In fact, where the advective term is weak-to-mild, or where the internal
stage number is low, the stepsize controller is adequate in managing instability growth
arising due to eigenvalues with imaginary parts extending into the exterior of the
method’s stability domain. For large internal stage number with large advection, as
seen in the top row of fig. 7, instability develops excessively within a single timestep
and stepsize control is no longer effective. We note that splitting appears to generate
a complex error behaviour which is significantly overestimated by eq. (19). This is
managed by adopting tolerance parameters atol and rtol for the controller at values
larger than the target precision in eq. (19). We find that integrations utilizing stepsize
control are more efficient in general than fixed stepsize integrations, particularly for
higher order split methods.

In the absence of stepsize control, the Chebyshev polynomial based FRKC meth-
ods with weak damping are largely ineffective, with the exception of cases where the
advection term is very small (see the bottom row of fig. 7). As noted by [27], increas-
ing damping improves the performance of these methods. In contrast, RKG methods
rely solely on the natural characteristics of the Gegenbauer polynomials forming the
underlying RKG stability polynomials and do not require explicit damping procedures.

4 Conclusions

In this paper, we have presented the class of Runge–Kutta–Gegenbauer (RKG) stability
polynomials in closed form to arbitrarily high order of accuracy. The RKG polynomi-
als of order N , and degree L = MN , comprise a linear combination of Gegenbauer
polynomials of degree kM , for k = 1, . . . , N , and common Gegenbauer parameter.
The particular weighting of the combination is chosen to conform to the linear or-
der conditions, subject to maximizing the extent of the stability domain along the
negative real axis, which scales as L2. Crucially, for the consideration of systems of
mixed hyperbolic-parabolic type, the domain extends in the imaginary direction as an
increasing function of the Gegenbauer parameter.

We have demonstrated the construction of Factorized Runge–Kutta–Gegenbauer
(FRKG) explicit methods to high order, consisting of ordered sequences of forward Euler
stages with complex-valued stepsizes. The algorithm implemented in ordering the L
stages of a given method prevents internal amplification factors from overwhelming
available numerical precision by bounding their magnitudes to 10L2.

RKG stability polynomials are shown to be effective in the construction of high
order explicit methods for mildly stiff advection-diffusion problems with moderate
(<
∼ 1) mesh Péclet numbers. 6

6An implementation of second order FRKG methods is available as Electronic Supplemen-
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A Splitting methods

Table 1: Complex operator splitting parameters, corresponding to eq. (18), at
orders N = 4, 6 [6, 4, 1]. For each quoted value of N , the rows show: j, the
index for a distinct sweep, with Re(Tj) and Im(Tj), the real and imaginary
components of the associated timescale; J (in the last row), the number of
distinct sweeps required; and the sequence of labels j identifying k1 · · · kJ .

N j Re(Tj)
Im(Tj)

J k1 · · · kJ
4 1 1/4

0
2 1/10

−1/30
3 4/15

2/15
4 4/15

−1/5

9 2 1 3 1 4 1 3 1 2

6 1 0.0625
0.0

2 0.024 694 876 087 018 064 640 910 864 996 842 247 838 60
−0.007 874 795 562 906 877 058 171 577 949 526 942 163 20

3 0.063 813 474 021 302 699 779 366 304 188 200 146 963 20
0.035 365 761 034 143 327 804 629 404 649 714 741 812 70

4 0.068 425 094 030 316 441 970 397 007 821 744 684 058 50
−0.062 262 244 450 748 676 995 332 540 644 447 596 046 10

5 0.088 047 701 092 267 837 626 997 195 869 408 667 577 20
0.045 473 871 502 298 704 383 762 549 187 977 426 444 69

6 0.023 689 611 129 847 060 696 141 912 470 009 364 325 33
0.009 624 326 064 089 624 057 698 035 290 637 306 663 95

7 0.042 729 722 386 773 382 202 964 300 577 074 218 553 88
−0.033 994 403 923 957 610 554 083 948 457 844 358 264 99

8 0.122 334 686 316 845 772 960 428 517 001 962 563 078 80
−0.010 435 859 079 752 510 669 380 827 100 590 549 551 78

9 0.041 898 432 829 693 886 043 536 850 607 262 239 764 26
0.069 362 492 631 696 384 275 158 174 307 144 262 130 30

10 0.048 732 804 211 869 708 158 514 092 934 991 735 680 80
−0.090 518 296 429 724 730 488 558 538 566 128 582 051 30

33 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2

tary Material.
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B Work-precision data tables for Brusselator with

advection.

Table 2: Second order (N = 2) FRKG method results for the Brusselator problem
with advection detailed in section 3. Columns show: L2 (and L∞) errors; count
of function evaluations, fcount; number of timesteps attempted, Timesteps; and
the maximum value ofM required,Mmax. Weak, mild, and moderate advection
data (µ = 0.1, 0.5, 1.0) are presented, from bottom to top respectively. For rows
where values of atol are given, the stepsize controller is implemented and fcount
values refer to accepted (rejected) function evaluations.

atol L2 (L∞) error fcount (rej) Timesteps Mmax

N = 2
µ = 1.0

10−2 5.09e-03 (3.06e-02) 6030 (0) 52 51
10−3 1.35e-03 (8.61e-03) 7975 (0) 154 51
10−4 1.22e-04 (7.71e-04) 12559 (0) 533 20
10−5 5.86e-06 (3.70e-05) 21898 (0) 1766 9

1.12e-04 (4.84e-04) 12870 322 10
1.08e-03 (4.61e-03) 9120 76 30

µ = 0.5
1 2.81e-02 (2.06e-01) 2561 (0) 14 126
10−1 1.40e-02 (9.53e-02) 2814 (0) 20 126
10−2 3.49e-03 (2.28e-02) 3628 (0) 44 122
10−3 4.52e-04 (2.92e-03) 5423 (0) 124 48
10−4 4.66e-05 (3.00e-04) 9065 (0) 382 21
10−5 2.22e-06 (1.43e-05) 16525 (0) 1209 11

3.75e-05 (1.74e-04) 9230 231 10
7.99e-04 (3.67e-03) 5010 42 30
1.51e-03 (6.85e-03) 4480 28 40
2.11e-03 (9.37e-03) 4400 22 50
4.29e-03 (1.89e-02) 3780 16 60
3.94e-03 (1.74e-02) 4130 15 70
6.59e-03 (2.90e-02) 3520 11 80

µ = 0.1
1 4.87e-02 (4.00e-01) 1373 (0) 14 105
10−1 3.32e-03 (1.55e-02) 1733 (0) 21 80
10−2 9.91e-04 (5.46e-03) 2517 (0) 42 65
10−3 1.26e-04 (6.48e-04) 4106 (0) 105 38
10−4 1.42e-05 (7.12e-05) 7277 (0) 307 23
10−5 6.90e-07 (3.44e-06) 13609 (0) 950 13

8.91e-06 (4.74e-05) 7870 197 10
2.02e-04 (8.44e-04) 4000 50 20
6.78e-04 (3.04e-03) 2760 23 30
1.78e-03 (8.67e-03) 2200 14 40
2.75e-01 (5.07e+00) 1950 10 50
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Table 3: Fourth and sixth order (N = 4, 6) split FRKG method sample results.

atol L2 (L∞) error fcount (rej) Timesteps Mmax

N = 4
µ = 1.0

10−2 1.37e-04 (6.68e-04) 8178 (0) 22 51
10−3 5.24e-06 (3.16e-05) 10672 (410) 49 49
10−4 4.18e-08 (2.74e-07) 14886 (130) 107 46
10−5 1.09e-09 (8.14e-09) 21444 (0) 235 24

8.74e-08 (3.48e-07) 16900 65 10

µ = 0.5
10−1 1.10e-04 (3.37e-04) 4912 (0) 16 123
10−2 1.26e-05 (4.49e-05) 5936 (0) 24 113
10−3 7.47e-07 (2.75e-06) 7996 (326) 45 73
10−4 3.92e-08 (1.44e-07) 11244 (116) 85 43
10−5 8.93e-10 (3.27e-09) 16718 (0) 177 27

6.21e-08 (2.52e-07) 12420 48 10
1.07e-05 (4.55e-05) 8320 15 20
7.99e-05 (3.44e-04) 7260 9 30
4.93e-04 (1.83e-03) 6400 6 40
2.77e-03 (1.11e-02) 5600 4 50
6.29e-03 (2.22e-02) 5760 4 60

µ = 0.1
1 1.95e-05 (6.33e-05) 3108 (0) 12 101
10−1 3.22e-06 (1.04e-05) 3714 (0) 16 77
10−2 5.69e-07 (2.00e-06) 4842 (426) 26 66
10−3 9.29e-08 (3.46e-07) 6500 (310) 41 53
10−4 6.59e-09 (2.47e-08) 9486 (114) 74 40
10−5 2.26e-10 (8.40e-10) 14024 (82) 149 28

2.55e-08 (1.08e-07) 10640 41 10
1.12e-05 (4.07e-05) 5600 11 20
1.45e-04 (6.48e-04) 3840 5 30
1.60e-03 (5.10e-03) 3200 3 40

N = 6
µ = 1.0

10−2 1.31e-06 (9.22e-06) 12584 (0) 18 49
10−3 1.72e-09 (6.92e-09) 20164 (1334) 47 49
10−4 7.18e-10 (3.20e-09) 33140 (644) 101 48
10−5 1.67e-10 (7.54e-10) 53002 (0) 221 25

3.03e-06 (1.62e-05) 15080 9 10
3.52e-04 (1.23e-03) 10380 2 30

µ = 0.5
1 1.08e-06 (5.30e-06) 8308 (0) 12 123
10−1 4.47e-08 (1.66e-07) 9224 (0) 15 123
10−2 3.98e-09 (1.49e-08) 12328 (0) 23 123
10−3 3.17e-10 (1.06e-09) 17534 (1188) 44 79
10−4 2.95e-10 (1.25e-09) 26278 (1484) 85 44

7.68e-06 (3.09e-05) 11400 7 10
9.64e-05 (3.53e-04) 9040 3 20

µ = 0.1
1 1.65e-07 (1.00e-06) 7188 (0) 12 101
10−1 1.32e-08 (8.79e-08) 8222 (0) 15 91
10−2 3.03e-10 (1.27e-09) 11090 (1062) 25 67
10−3 1.60e-10 (5.95e-10) 15694 (1798) 42 59
10−4 2.14e-10 (8.17e-10) 22804 (1468) 74 40
10−5 1.13e-11 (3.81e-11) 36440 (1250) 146 29

1.12e-06 (3.72e-06) 10720 7 10
1.05e-04 (4.79e-04) 5880 2 20
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C Supplementary material

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.jcp.2019.03.001.
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