418 research outputs found

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    An extension of disjunctive programming and its impact for compact tree formulations

    Full text link
    In the 1970's, Balas introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result by extending the polyhedral structure of the variables coupling the polyhedra taken in the union. Using this generalized concept, we derive polynomial size linear programming formulations (compact formulations) for a well-known spanning tree approximation of Steiner trees, for Gomory-Hu trees, and, as a consequence, of the minimum TT-cut problem (but not for the associated TT-cut polyhedron). Recently, Kaibel and Loos (2010) introduced a more involved framework called {\em polyhedral branching systems} to derive extended formulations. The most parts of our model can be expressed in terms of their framework. The value of our model can be seen in the fact that it completes their framework by an interesting algorithmic aspect.Comment: 17 page

    Optimal Trees

    Get PDF
    Not Availabl

    Packing Steiner Trees

    Full text link
    Let TT be a distinguished subset of vertices in a graph GG. A TT-\emph{Steiner tree} is a subgraph of GG that is a tree and that spans TT. Kriesell conjectured that GG contains kk pairwise edge-disjoint TT-Steiner trees provided that every edge-cut of GG that separates TT has size ≥2k\ge 2k. When T=V(G)T=V(G) a TT-Steiner tree is a spanning tree and the conjecture is a consequence of a classic theorem due to Nash-Williams and Tutte. Lau proved that Kriesell's conjecture holds when 2k2k is replaced by 24k24k, and recently West and Wu have lowered this value to 6.5k6.5k. Our main result makes a further improvement to 5k+45k+4.Comment: 38 pages, 4 figure

    The k-edge connected subgraph problem: Valid inequalities and Branch-and-Cut

    Get PDF
    International audienceIn this paper we consider the k-edge connected subgraph problem from a polyhedral point of view. We introduce further classes of valid inequalities for the associated polytope, and describe sufficient conditions for these inequalities to be facet defining. We also devise separation routines for these inequalities, and discuss some reduction operations that can be used in a preprocessing phase for the separation. Using these results, we develop a Branch-and-Cut algorithm and present some computational results
    • …
    corecore