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Abstract

In this paper we consider the k-edge connected subgraph problem from a polyhedral
point of view. We introduce further classes of valid inequalities for the associated
polytope, and describe sufficient conditions for these inequalities to be facet defining.
We also devise separation routines for these inequalities, and discuss some reduction
operations that can be used in a preprocessing phase for the separation. Using these
results, we develop a Branch-and-Cut algorithm and present some computational
results.

Keywords: k-edge connected subgraph, polytope, facet, separation, reduction op-
erations, Branch-and-Cut.
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1 Introduction

One of the main concerns when designing telecommunication networks is to com-
pute network topologies that provide a sufficient degree of survivability. Survivable
networks must satisfy some connectivity requirements that is, networks that are still
functional after the failure of certain links. As pointed out in [30] (see also [28]), the
topology that seems to be very efficient (and needed in practice) is the uniform to-
pology, that is to say that corresponding to networks that survive after the failure
of k−1 or less edges, for some k ≥ 2. The 2-connected topology (k = 2) provides an
adequate level of survivability since most failure usually can be repaired relatively
quickly. However, for many applications, it may be necessary to provide a higher le-
vel of connectivity. In this paper, we consider this variant of the survivable network
design problem.

A graph G = (V, E) is called k-edge connected (where k is a positive integer) if
for every pair of nodes i, j ∈ V , there are at least k edge-disjoint paths between i
and j. Given a graph G = (V, E) and a weight function w on E that associates with
an edge e ∈ E the weight w(e) ∈ R, the k-edge connected subgraph problem (kECSP
for short) is to find a k-edge connected spanning subgraph H = (V, F ) of G such

that
∑

e∈F

w(e) is minimum.

The kECSP is NP -hard for k ≥ 2 ([20]). When k = 1, the kECSP is nothing but
the minimum spanning tree problem, and can be solved in polynomial time. The
kECSP has been extensively studied when k = 2 [4, 17, 19, 28, 29, 30, 31, 32, 33].
It has, however, received a little attention when k ≥ 3.

In this paper we consider the k-edge connected subgraph problem from a polyhe-
dral point of view. We introduce further classes of valid inequalities for the associated
polytope, and describe sufficient conditions for these inequalities to be facet defining.
We also devise separation routines for these inequalities, and discuss some reduction
operations that can be used in a preprocessing phase for the separation. Using these
results, we develop a Branch-and-Cut algorithm and present some computational
results.

Given a graph G = (V, E) and an edge subset F ⊆ E, the 0-1 vector xF ∈ R
E

such that xF (e) = 1 if e ∈ F and xF (e) = 0 if e ∈ E \ F is called the incidence
vector of F . The convex hull of the incidence vectors of the edge sets of the k-edge
connected subgraphs of G, denoted by kECSP(G), is called the k-edge connected
subgraph polytope of G.

Let G = (V, E) be a graph. Given w : E → R and F a subset of E, w(F ) will

denote
∑

e∈F

w(e). For W ⊆ V , we let W = V \ W . If W ⊂ V is a node subset of

G, then the set of edges that have only one node in W is called a cut and denoted
by δ(W ). We will write δ(v) for δ({v}). If xF is the incidence vector of the edge
set F of a k-edge connected spanning subgraph of G, then xF satisfies the following
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inequalities :

x(e) ≥ 0 for all e ∈ E, (1)

x(e) ≤ 1 for all e ∈ E, (2)

x(δ(W )) ≥ k for all W ⊂ V, W 6= V, W 6= ∅. (3)

Conversely, any integer solution of the system defined by inequalities (1)-(3) is the
incidence vector of the edge set of a k-edge connected subgraph of G. Constraints (1)
and (2) are called trivial inequalities and constraints (3) are called cut inequalities.
We will denote by P (G, k) the polytope given by inequalities (1)-(3).

The kECSP has been studied by Grötschel and Monma [23] and Grötschel et
al. [24] within the framework of a more general survivability model. In particular,
Grötschel and Monma [23] studied the dimension of the polytope associated with
that model as well as some basic facets. It follows from their results that kECSP
is full dimensional if G is (k + 1)-edge connected. In [24], Grötschel et al. studied
further facets and polyhedral aspects of that model and devised cutting plane algo-
rithms along with some computational results are discussed. A complete survey of
that model and related network design problems can be found in [28].

In [7], Chopra studies the k-edge connected subgraph problem for k odd when
multiple copies of an edge may be used. In particular, he characterizes the associated
polyhedron for outerplanar graphs (a graph is outerplanar if it can be drawn in the
plane on a cycle with none crossing chords). This polyhedron has been previously
studied by Cornuéjols et al. [8]. They showed that if a graph is series-parallel (a
graph is series-parallel if it can be obtained from a single edge by iterative applica-
tion of the two operations : (i) addition of a parallel edge, and (ii) subdivision of an
edge) and k = 2, then the polyhedron is completely described by the nonnegativity
and cut inequalities. In [14], Didi Biha and Mahjoub give a complete description
of kECSP(G) for all k when G is series-parallel. In particular, they show that if
G is series-parallel and k is even, then kECSP(G) = P (G, k). Didi Biha and Mah-
joub study in [13] the extreme points of P (G, k). They introduce an ordering on the
fractional extreme points of P (G, k) and describe some structural properties of the
minimal extreme points with respect to that ordering. Using these results, they give
sufficient conditions for P (G, k) to be integral.

Much work has been done on 2ECSP(G). In [31], Mahjoub shows that if G is
series-parallel then 2ECSP(G) is completely described by the trivial and cut inequa-
lities. This has been generalized by Bäıou and Mahjoub [3] to the Steiner 2-edge
connected subgraph polytope, and Didi Biha and Mahjoub [15] to the Steiner k-
edge connected subgraph polytope for k even. Mahjoub [31] introduces a general
class of valid inequalities for 2ECSP(G). Boyd and Hao [6] describe a class of ”comb
inequalities” which are valid for 2ECSP(G). This class, as well as that introduced
by Mahjoub [31], are special cases of a more general class of inequalities given by
Grötschel et al. [24] for the general survivable network polytope. In [4], Barahona
and Mahjoub characterize the polytope 2ECSP(G) for the class of Halin graphs.
Kerivin et al. [29] describe a general class of valid inequalities for 2ECSP(G) that
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generalizes the so-called F -partition inequalities [31]. They also develop a Branch-
and-Cut algorithm for the 2ECSP, based on these inequalities and trivial and cut
inequalities. In [5], Bienstock et al. describe structural properties of the optimal
solution of kECSP when the weight function satisfies the triangle inequalities (i.e.
w(e1) ≤ w(e2) + w(e3) for every three edges e1, e2, e3 defining a triangle). In parti-
cular, they show that every node of a minimum weight k-edge connected subgraph
have degree k or k + 1. This generalizes results given by Monma et al. [33] for the
case when k = 2. In [9, 10], Coullard et al. study the Steiner 2-node connected sub-
graph problem. They devise in [9] a linear time algorithm for this problem on some
special classes of graphs. And in [10], they characterize the dominant of the polytope
associated with this problem on the graphs which do not have K4 (the wheel on four
nodes) as a minor. In [18], Fonlupt and Naddef characterize the class of graphs for
which the system given by inequalities (1) and (3), when k = 2, defines the convex
hull of the incidence vectors of the tours of G (a tour is a cycle going at least once
through each node).

The paper is organised as follows. In the following section we introduce some
classes of valid inequalities and describe sufficient conditions for these inequalities
to be facet defining. In Section 3, we discuss some graph reduction operations. In
Section 4, we describe separation routines for the inequalities described in Section 2
and develop a Branch-and-Cut algorithm for the kECSP. Our computational results
are presented in Section 5, and finally some concluding remarks are given in Section
6.

In the rest of this section we give more definitions and notations. The graphs
we consider are finite, undirected, loopless and connected. A graph is denoted by
G = (V, E) where V is the node set and E is the edge set. If e ∈ E is an edge with
endnode u and v, we also write uv to denote e. Given a node subset W , the cut
δ(W ) is said to be proper if |W | ≥ 2 and |V \W | ≥ 2. If W and W ′ are two disjoint
subsets of V , [W, W ′] will denote the set of edges of G having one endnode in W and
the other one in W ′. If π = (V1, ..., Vp), p ≥ 2, is a partition of V , then we denote by
δ(π) the set of edges having their endnodes in different sets. For all F ⊆ E, V (F )
will denote the set of nodes of the edges of F . For W ⊂ V , we denote by E(W )
the set of edges of G having both endnodes in W and G[W ] the subgraph induced
by W . Given an edge e = uv ∈ E, contracting e consists in deleting e, identifying
the nodes u and v and in preserving all adjacencies. Contracting a node subset W
consists in identifying all the nodes of W and preserving the adjacencies. Given a
partition π = (V1, ..., Vp), p ≥ 2, we will denote by Gπ the subgraph induced by π
that is the graph obtained from G by contracting the sets Vi, for i = 1, ..., p. Note
that the edge set of Gπ is the set δ(V1, ..., Vp). Given a solution x ∈ P (G, k), an
inequality ax ≥ α is said to be tight for x if ax = α.
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2 Facets of kECSP(G)

In this section we present three classes of valid inequalities for kECSP(G). We
describe some conditions for these inequalities to be facet defining. Separation pro-
cedures for these inequalities will be described in Section 4.

2.1 Odd path inequalities

Let G = (V, E) be a (k + 1)-edge connected graph and π = (W1, W2, V1, ..., V2p)
a partition of V with p ≥ 2. Let I1 = {4r, 4r + 1, r = 1, ...,

⌈

p

2

⌉

− 1} and I2 =
{2, ..., 2p − 1} \ I1. We say that π induces an odd path configuration if

1) |[Vi, Wj]| = k − 1 for (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}),

2) |[W1, W2]| ≤ k − 1,

3) δ(Vi) = [Vi, W1]∪ [Vi−1, Vi]∪ [Vi, Vi+1] (resp. δ(Vi) = [Vi, W2]∪ [Vi−1, Vi]∪ [Vi, Vi+1])
if i ∈ I1 (resp. i ∈ I2) (see Figure 1 for k = 3 and p even).

Let C =

2p−1
⋃

i=1

[Vi, Vi+1]. As [Vl, Vt] = ∅, if |l − t| > 1, for l, t ∈ {1, ..., 2p}, C can be

seen as an odd path of extremities V1 and V2p in the graph Gπ. With an odd path
configuration we associate the inequality

x(C) ≥ p. (4)

Inequalities of type (4) will be called odd path inequalities.

V1

V3

V2

V4

W2W1

V5
V6

V2p V2p−1

Fig. 1 – An odd path configuration with k = 3 and p even.

We have the following.

Theorem 2.1 Inequalitiy (4) is valid for kECSP(G).
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Proof. As |[Vi, Wj]| = k − 1 and x(δ(Vi)) ≥ k is valid for kECSP(G), for (i, j) ∈
(I1 × {1}) ∪ (I2 × {2}), we have

x([V2s−1, V2s]) + x([V2s, V2s+1]) ≥ 1 for s = 1, ..., p − 1, (5)

x([V2s, V2s+1]) + x([V2s+1, V2s+2]) ≥ 1 for s = 1, ..., p − 1. (6)

By multiplying each inequality (5) (resp. inequality (6)), corresponding to s ∈
{1, ..., p − 1} by p−s

p
(resp. s

p
) and summing these inequalities, we obtain

∑

i∈I

x([Vi, Vi+1]) +
∑

i∈I

p − 1

p
x([Vi, Vi+1]) ≥ p − 1, (7)

where I = {2, 4, 6, ..., 2p− 2} and I = {1, ..., 2p − 1} \ I.

By considering the cut inequality induced by W1 ∪ V1 ∪ (
⋃

i∈I1

Vi) (resp. W1 ∪ V1 ∪

(
⋃

i∈I1

Vi) ∪ V2p) if p is odd (resp. even) we have

x([W1, W2]) +
∑

i∈I

x([Vi, Vi+1]) ≥ k.

As |[W1, W2]| ≤ k − 1, it follows that

1

p

∑

i∈I

x([Vi, Vi+1]) ≥
1

p
. (8)

By summing inequalities (7) and (8) and rounding up the right hand side, we get
inequality (4).

�

In what follows, we give sufficient conditions for inequality (4) to be facet defi-
ning.

Theorem 2.2 Inequality (4) defines a facet for kECSP(G) if the following hold.

1) The subgraphs G[W1], G[W2] and G[Vi], for i = 1, ..., 2p, are (k +1)-edge connec-
ted ;

2) |[W1, W2]| = k − 1, |[V1, W1]| = k and |[V2p, W1]| = k (resp. |[V2p, W2]| = k) if p
is even (resp. odd).

Proof. We will show the result for p even, the proof is similar if p is odd. Let ei

be a fixed edge of [Vi, Vi+1], for i = 1, ..., 2p − 1. Let E0 =

p
⋃

s=1

[V2s−1, V2s], E1 =

p−1
⋃

s=1

[V2s, V2s+1], E = δ(π) \ (E0 ∪ E1), Ẽ = E \ (E0 ∪ E1 ∪ E) and E ′ = E ∪ Ẽ.

Inequality (4) can be written as

x(E0) + x(E1) ≥ p. (9)
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Suppose that conditions 1) and 2) above hold and let us denote inequality (9) by ax ≥
α. Let F = {x ∈ kECSP(G) | ax = α}. Let S = E ′ ∪ {e2s−1, s = 1, ..., p}. Clearly,
S induces a k-edge connected subgraph of G and xS satisfies (9) with equality. This
implies that F is a proper face of kECSP(G). Now suppose that there exists a facet
defining inequality bx ≥ β such that F ⊆ {x ∈ kECSP(G) | bx = β}. We will show
that ax ≥ α and bx ≥ β are equivalent. As G is (k + 1)-edge connected and thus,
kECSP(G) is full dimensional, it suffices to show that b = ρa with ρ > 0.

To this end, first observe, from conditions 1) and 2) that Sf = S \{f}, for f ∈ Ẽ
induces a k-edge connected subgraph of G. Moreover, xSf satisfies (9) with equality.
Hence, axSf = α and then bxSf = β. This implies that b(f) = bxS − bxSf = 0.

Now, let e ∈ [V2s−1, V2s] \ {e2s−1} for some s ∈ {1, ..., p}. Let S1 = (S \ {e2s−1})∪
{e}. The set S1 induces a k-edge connected subgraph of G and axS1 = α. It then
follows that bxS1 = β, implying that

b(e) = ρ2s−1 for all e ∈ [V2s−1, V2s], for s = 1, ..., p, for some ρ2s−1 ∈ R
∗. (10)

Similarly, for an edge e ∈ [V2s, V2s+1] \ {e2s}, for some s ∈ {1, ..., p − 1}, one can

consider the edge sets S2 = E ′ ∪ (

p−1
⋃

i=1

{e2i})∪ {e1} and S3 = (S2 \ {e2s})∪ {e}. Since

S2 and S3 induce k-edge connected subgraphs of G and axS2 = axS3 = α, it follows
that bxS2 = bxS3 and then

b(e) = ρ2s for all e ∈ [V2s, V2s+1], for s = 1, ..., p − 1, for some ρ2s ∈ R
∗.

Consider the edge sets S4 = (S2 \ {e1}) ∪ {e2s−1} and S5 = (S2 \ {e1, e2s}) ∪
{e2s−1, e2s+1} for some s ∈ {1, ..., p − 1}. It is clear that S4 and S5 induce k-edge
connected subgraphs of G and that axS4 = axS5 = α. We have that bxS4 = bxS5 = β,
yielding

b(e1) = b(e2s) = b(e2s+1). (11)

From (10) and (11), it follows that

b(e) = ρ for all e ∈ E0 ∪ E1, for some ρ ∈ R
∗.

Let e ∈ [Vi, Wj] for (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}) and S6 = (S2 \ {e1}) ∪ {ei−1}
(resp. S6 = (S2 \ {e1}) ∪ {ei}) if i is even (resp. odd). It is not hard to see that S6

and S6 \{e} induce k-edge connected subgraphs of G and that their incidence vector
satisfy ax ≥ α with equality. Hence, b(e) = bxS6 − bxS6 = 0.

For all e ∈ [W1, W2], the edge set S7 = S \ {e} induces a k-edge connected
subgraph of G and satisfies ax ≥ α with equality. Hence axS7 = α and bxS7 = bxS =
β. Thus, we obtain b(e) = 0 for all e ∈ [W1, W2].

All together, we have then shown that

b(e) =

{

ρ if e ∈ E0 ∪ E1,
0 if not.

Thus, b = ρa with ρ ∈ R. Since bx ≥ β defines a facet of kECSP(G), one should
have that ρ > 0, which terminates the proof of the theorem.

�
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2.2 Lifting procedure for odd path inequalities

In what follows we are going to describe a lifting procedure for the odd path
inequalities. This will permit to extend these inequalities to a more general class of
valid inequalities.

A general lifting procedure for inequalities (4) can be described as follows (see
[34]). Consider a graph G = (V, E) and a valid inequality ax ≥ α for kECSP(G). Let
G′ = (V, E ′) be a graph obtained from G by adding an edge e, that is E ′ = E ∪{e}.
Then the inequality

ax + a(e)x(e) ≥ α (12)

is valid for kECSP(G′) where a(e) = α−γ with γ = min{ax | x ∈ kECSP(G′) and x(e) =
1}. Moreover, if ax ≥ α is facet defining for kECSP(G), then inequality (12) is also
facet defining for kECSP(G′). Note that if more than one edge have to be added to
G, then their lifting coefficients will depend on the order in which they will be added
to G. Moreover, if edges e1, ..., ek−1, ek, ..., et are added to G in this order and a(ek)
is the lifting coefficient of ek with respect to this order, then a(ek) ≤ a′(ek) where
a′(ek) is the lifting coefficient of ek in any order ei1 , ..., eik−1

, ..., eit such that il = l
for l = 1, ..., k − 1 and is = k for some s > k.

Theorem 2.3 Let G = (V, E) be a graph and π = (W1, W2, V1, ..., V2p), p ≥ 2, a
partition of V which induces an odd path configuration. Let C, I1 and I2 be defined

as in Section 2.1. Let U1 =
⋃

i∈I1

Vi, U2 =
⋃

i∈I2

Vi and W = U2 ∪ V2p (resp. W = U2)

if p is odd (resp. even). If G′ = (V, E ∪ L) is a graph obtained from G by adding an
edge set L, then the following inequality is valid for kECSP(G′)

x(C) +
∑

e∈L

a(e)x(e) ≥ p, (13)

with

a(e) =







































































1 if e ∈ (
⋃

j=1,2

[Wj, U1 ∪ U2] ∪ [W1, W2]) ∩ L or

e ∈ (
⋃

j=1,2p

[Vj, U1 ∪ U2] ∪ [([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W )]) ∩ L;

2 if e ∈ [Vi, Vj] ∩ L, i, j ∈ {2, ..., 2p − 1} with i < j and i even, j odd;

λ if e ∈ [Vi, Vj] ∩ L with i, j ∈ {2, ..., 2p − 1}, i < j and i odd
or i and j have same parity;

0 otherwise,

where λ is the lifting coefficient obtained using the lifting procedure above. Moreover,
we have 1 ≤ λ ≤ 2.

Proof. Easy.
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Observe that the lifting coefficients of the edges other than those between two
subsets Vi and Vj such that i, j ∈ {2, ..., 2p − 1}, i < j, i is odd or i and j have the
same parity do not depend on the order of their adding in G. Inequalities (13) will
be called lifted odd path inequalities. As it will turn out, these inequalities are very
useful for our Branch-and-Cut algorithm.

2.3 F -partition inequalities

In [31], Mahjoub introduced a class of valid inequalities for 2ECSP(G) as follows.
Let (V0, V1, ..., Vp), p ≥ 2, be a partition of V and F ⊆ δ(V0) with |F | odd. By adding
the inequalities

x(δ(Vi)) ≥ 2 for i = 1, ..., p, (14)

− x(e) ≥ −1 for e ∈ F, (15)

x(e) ≥ 0 for e ∈ δ(V0) \ F, (16)

we obtain 2x(∆) ≥ 2p − |F | where ∆ = δ(V0, V1, ..., Vp) \ F . Dividing by 2 and
rounding up the right hand side lead to

x(∆) ≥ p −
|F | − 1

2
. (17)

Inequalities (17) are called F -partition inequalities. These inequalities can be
straightforwardly extended for all k ≥ 2. In fact, in a similar way, one can show that
given a partition (V0, V1, ..., Vp), p ≥ 2, of V and F ⊆ δ(V0), the inequality

x(δ(V0, V1, ..., Vp) \ F ) ≥

⌈

kp − |F |

2

⌉

, (18)

is valid for kECSP(G). Note here that |F | can be either odd or even. Also note that
if kp and |F | have the same parity, then the corresponding inequality (18) is implied
by the cut and the trivial inequalities.

In what follows, we describe sufficient conditions for inequalities (18) to be facet
defining. Theorems 2.4 and 2.5 describe these conditions for k odd and k even,
respectively.

Theorem 2.4 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π =
(W, V1, ..., V2l+1,
U1, ..., U2l+1), l ≥ 2 if k = 3 and l ≥ 1 if k ≥ 5, be a partition of V such that

1) G[W ], G[Vi], G[Ui], i = 1, ..., 2l + 1, are (k + 1)-edge connected ;

2) |[W, Vi]| ≥ k − 2 for i = 1, ..., 2l + 1 ;

3) |[Ui, Ui+1]| ≥
k−1

2
, i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) ;

4) |[Vi, Vi+1]| ≥ 1, i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) ;

5) |[Vi, Ui]| ≥ 1 and |[Vi, Ui−1]| ≥ 1, i = 1, ..., 2l + 1 (for convenience we will let
U0 = U2l+1) (See Figure 2 for an illustration with k = 5 and l = 2).

9



Let Fi be an edge subset of [W, Vi] such that |Fi| = k − 2, i = 1, ..., 2l + 1 and let

F =
2l+1
⋃

i=1

Fi. Then the F -partition inequality

x(δ(π) \ F ) ≥ l(k + 2) +

⌈

k

2

⌉

+ 1 (19)

induced by π and F , defines a facet of kECSP(G).

edge of δ(π) \ F

edge of F

U1

V1 V2 U2

V3

W

V5

U3

V4

U4

U5

Fig. 2 – An F -partition configuration with k = 5

Proof. First observe that, by conditions 1) - 5), G is (k + 1)-edge connected and
hence kECSP(G) is full dimensional. Let us denote inequality (19) by ax ≥ α and
let F = {x ∈ kECSP(G) | ax = α}. Clearly, F is a proper face of kECSP(G). Now
suppose that there exists a facet defining inequality bx ≥ β such that F ⊆ {x ∈
kECSP(G) | bx = β}. We will show that there exists ρ > 0 such that b = ρa.

Let ei be an edge of [Vi, Vi+1], i = 1, ..., 2l + 1 (the indices are modulo 2l + 1)
and fi and f ′

i be edges of [Vi, Ui−1] and [Vi, Ui], respectively, for i = 1, ..., 2l + 1.
Note that U0 = U2l+1. Let Ti be an edge subset of [Ui, Ui+1] of k−1

2
edges, for i =

1, ..., 2l + 1 (the indices are modulo 2l + 1).
Let E0 be the set of edges not in F and having both endnodes in the same

element of π. First, we will show that b(e) = 0, for all e ∈ E0 ∪ F . To this end, let
i0 ∈ {1, ..., 2l + 1} and consider the edge sets

E1 = {ei0+2r, r = 0, ..., l} ∪ {f ′

i , i = 1, ..., 2l + 1} ∪ (
2l+1
⋃

i=1

Ti),

E2 = E1 ∪ F ∪ E0.

It is not hard to see that E2 induces a k-edge connected subgraph of G. Note
that there is k+1 edges incident to Vi0 in E2. Now, observe that for any edge e ∈ Fi0 ,
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we have that E ′

2 = E2 \ {e} also induces a k-edge connected subgraph of G. As xE2

and xE′

2 belong to F, it follows that bxE2 = bxE′

2 = β, implying that b(e) = 0 for all
e ∈ Fi0 . As i0 is arbitrarily chosen, we obtain that b(e) = 0 for all e ∈ F . Moreover,
as the subgraphs induced by W , V1, ..., V2l+1, U1, ... , U2l+1 are all (k + 1)-edge
connected, the subgraph induced by E2 \ {e} for all e ∈ E0 is also k-edge connected.
This yields as before b(e) = 0 for all e ∈ E0. Thus, b(e) = 0 for all e ∈ F ∪ E0.

Next, we will show that b(e) = ρ for all e ∈ δ(π) \ F , for some ρ ∈ R. Let gi be
a fixed edge of Ti and let T ′

i = Ti \ {gi}, i = 1, ..., 2l + 1. Consider the edge sets

E3 = {fi, f
′

i , i = 1, ..., 2l + 1} ∪ (

l
⋃

i=1

T2i) ∪ T2l+1 ∪ (

l−1
⋃

i=0

T ′

2i+1),

E4 = E3 ∪ F ∪ E0,

E ′

4 = (E4 \ g2l+1) ∪ {g1}.

Note that g1 /∈ T ′

1 and thus g1 /∈ E4, and that g2l+1 ∈ E4. One can easily check that
E4 and E ′

4 both induce k-edge connected subgraphs of G. Moreover, we have that
xE4 and xE′

4 belong to F. Thus, bxE4 = bxE′

4 = β and therefore we get b(g2l+1) =
b(g1). As g1 and g2l+1 are arbitrary edges of T1 and T2l+1, respectively, it follows
that b(e) = b(e′) for all e ∈ T1 and e′ ∈ T2l+1. Moreover, we have that T1 and
T2l+1 are arbitrary subsets of [U1, U2] and [U2l+1, U1], respectively. This implies that
b(e) = b(e′) for all e ∈ [U1, U2] and e′ ∈ [U2l+1, U1]. Consequently, by symmetry, we
get

b(e) = ρ′ for all e ∈ [Ui, Ui+1], i = 1, ..., 2l + 1 (the indices are modulo 2l + 1)(20)

for some ρ′ ∈ R.

Now let

E5 = (E4 \ {f1}) ∪ {e2l+1}.

Clearly, E5 induces a k-edge connected subgraph of G and xE5 belongs to F, implying
that bxE4 = bxE5 = β. Hence b(f1) = b(e2l+1). In a similar way, we can show
that b(f ′

2l+1) = b(e2l+1). As f1, f ′

2l+1 and e2l+1 are arbitrary edges of [U2l+1, V1],
[V2l+1, U2l+1] and [V2l+1, V1], respectively, we obtain that b(e) = ρ′′

2l+1 for all e ∈
[U2l+1, V1]∪ [V2l+1, U2l+1]∪ [V2l+1, V1]. By exchanging the roles of V2l+1, V1, U2l+1 and
Vi, Vi+1, Ui, for i = 1, ..., 2l, we obtain by symmetry that

b(e) = ρ′′

i for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui], (21)

i = 1, ..., 2l + 1 (the indices are modulo 2l + 1), for some ρ′′

i ∈ R.

Consider the edge set

E ′

5 = (E5 \ {f1}) ∪ {e1}.

Obviously, E ′

5 induces a k-edge connected subgraph of G. As xE4 and xE′

5 belong to
F, it follows, in a similar way, that b(e1) = b(f1). From (21), we have that ρ′′

1 = ρ′′

2l+1.
By symmetry, it then follows that ρ′′

i = ρ′′

j for i, j = 1, ..., 2l +1, i 6= j, and therefore

b(e) = ρ′′ for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui], (22)

for i = 1, ..., 2l + 1 (the indices are modulo 2l + 1), for some ρ′′ ∈ R.
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Let e ∈ ([V2l+1, W ]\F2l+1)∪ [V2l+1, Vj], j ∈ {1, ..., 2l+1}\{1, 2l, 2l+1}. It is not
hard to see that E6 = (E4 \ {f

′

2l+1}) ∪ {e} induces a k-edge connected subgraph of
G and that xE6 ∈ F. This implies that bxE6 = bxE4 = β and hence b(e) = b(f ′

2l+1).
By (22), we then obtain that b(e) = ρ′′ for all e ∈ ([V2l+1, W ] \F2l+1)∪ [V2l+1, Vi] for
i ∈ {1, ..., 2l+1}\{1, 2l, 2l+1}. By exchanging the roles of V2l+1 and Vi, i = 1, ..., 2l,
we obtain by symmetry that b(e) = ρ′′ for all e ∈ ([Vi, W ]\Fi)∪[Vi, Vj], i = 1, ..., 2l+1
and j ∈ {1, ..., 2l + 1} \ {i − 1, i, i + 1} (the indices are taken modulo 2l + 1 and
V0 = V2l+1).

For any edge e between U2l+1 and either W , Uj, j ∈ {1, ..., 2l+1}\{1, 2l, 2l+1},
or Vt, t ∈ {1, ..., 2l + 1} \ {1, 2l + 1}, the edge set

E7 = (E4 \ {f
′

2l+1, f1}) ∪ {e, e2l+1}

induces a k-edge connected subgraph of G. Since xE4 and xE7 belong to F we have
that bxE7 = bE4 = β and b(f ′

2l+1) + b(f1) = b(e) + b(e2l+1). As by (22), b(f ′

2l+1) =
b(f1) = b(e2l+1) = ρ′′, we get b(e) = ρ′′. By exchanging the roles of U2l+1 and
Ui, i = 1, ..., 2l we obtain that b(e) = ρ′′ for all e ∈ [Ui, W ] ∪ [Ui, Uj] ∪ [Ui, Vt],
i = 1, ..., 2l + 1, j ∈ {1, ..., 2l + 1} \ {i, i + 1} and t ∈ {1, ..., 2l + 1} \ {i− 1, i, i + 1}.

As xE2 and xE4 belong to F, we have that bxE2 = bxE4 = β. Thus, from (20) and
(22), we obtain that ρ′ = ρ′′ = ρ, for some ρ ∈ R.

All together we obtain that

b(e) =

{

ρ if e ∈ E \ (E0 ∪ F ),
0 if not.

Thus, b = ρa with ρ ∈ R. Since bx ≥ β defines a facet of kECSP(G), one should
have ρ > 0, which ends the proof of the theorem.

�

In what follows, we describe sufficient conditions for inequalities (18) to be facet
defining when k is even. Consider a graph G = (V, E) and an even integer k = 2q
with q ≥ 1, a generalized odd-wheel configuration is given by an integer l ≥ 1, a set
of positive integers {p1, ..., p2l+1} and a partition π = (V0, V

s
i , i = 1, ..., 2l + 1, s =

0, ..., pi) of V such that

1) G[V0] and G[V s
i ] are (k + 1)-edge connected, for s = 1, ..., pi and i = 1, ..., 2l + 1 ;

2) |[V 0
i , V 0

i+1]| ≥ 2q, for i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) ;

3) |[V s
i , V s+1

i ]| ≥ 2q, for s = 0, ..., pi and i = 1, ..., 2l + 1 (for convenience we will let
V pi+1

i = V0) ;

4) [V s
i , V t

i ] = ∅, for s, t ∈ {1, ..., pi}, |s − t| > 1 and (s, t) 6= (0, pi + 1), and i =
1, ..., 2l + 1 ;

5) [V s
i , V t

t ] = ∅, for s ∈ {1, ..., pi}, t ∈ {1, ..., pt}, i, t ∈ {1, ..., 2l + 1}, i 6= t (See
Figure 3).

Let F 0
i be an edge subset of [V0, V

pi

i ] of q (resp. q − 1) edges if q is odd (resp. even)

and F =

2l+1
⋃

i=1

F 0
i .
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Fig. 3 – A generalized odd-wheel configuration with k = 4

With a generalized odd-wheel configuration with q odd (resp. even) we associate
the following F -partition inequality induced by the partition π and F

x(δ(π) \ F ) ≥ q

2l+1
∑

i=1

pi + ql +
q + 1

2

(resp. x(δ(π) \ F ) ≥ q
2l+1
∑

i=1

pi + (q + 1)l +
q + 2

2
).

(23)

Inequality of type (23) will be called generalized odd-wheel inequality. We have the
following theorem given without proof, the proof follows the same lines as that of
Theorem 2.4.

Theorem 2.5 Inequalities (23) define facets of kECSP(G).

2.4 SP -partition inequalities

In [7], Chopra introduces a class of valid inequalities for the kECSP when the
graph G is outerplanar, k is odd, and each edge can be used more than once. Let
G = (V, E) be an outerplanar graph and k ≥ 1 an odd integer. He showed that if
π = (V1, ..., Vp), p ≥ 2, is a partition of V , then the inequality

x(δ(V1, ..., Vp)) ≥

⌈

k

2

⌉

p − 1 (24)

is valid for kECSP(G).
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Didi Biha and Mahjoub [14] extended this result for a general graph and when
each edge can be used at most once. They showed that if G is a graph and π =
(V1, ..., Vp), p ≥ 2, is a partition of V such that Gπ is series-parallel, then inequality
(24) is valid for kECSP(G). They called inequalities (24) SP -partition inequalities.
They also described necessary conditions for inequality (24) to be facet defining and
showed that if G is series-parallel and k is odd then kECSP(G) is defined by the
trivial, cut inequalities and SP -partition inequalities. More necessary conditions for
inequalities (24) to be facet defining are given in [12]. In particular, Diarrassouba
and Slama [12] show the following.

Theorem 2.6 [12] Let G = (V, E) be a (k + 1)-edge connected graph and k ≥ 3 an
odd integer. Let π = (V1, ..., Vp), p ≥ 2, be a partition of V such that Gπ is series-
parallel. If the SP -partition inequality induced by π defines a facet of kECSP(G)
different from trivial inequalities then

1) |[Vi, Vi+1]| ≥
⌈

k
2

⌉

, for i = 1, ..., p (the indices are modulo p) ;

2) Gπ is outerplanar.

In what follows, we shall give some sufficient conditions for inequalities (24) to
be facet defining.

Theorem 2.7 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π =
(V1, ..., Vp), p ≥ 2, be a partition of V such that Gπ is outerplanar. Then the SP -
partition inequality induced by π is facet defining for kECSP(G) if the following
conditions hold

1) G[Vi] is (k + 1)-edge connected for i = 1, ..., p ;

2) |[Vi, Vi+1]| ≥
⌈

k
2

⌉

, i = 1, ..., p (the indices are modulo p) (See Figure 4 for an
illustration with k = 3).

V1

V2
V6

V4

V3
V5

Fig. 4 – An outerplanar configuration with k = 3

Proof. Note that since Gπ is outerplanar and conditions 1) and 2) hold, G is
(k + 1)-edge connected. It then follows that kECSP(G) is full dimensional. Let
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us denote by ax ≥ α the SP -partition inequality induced by π and let F = {x ∈
kECSP(G) | ax = α}. Clearly F is a proper face of kECSP(G). Now suppose that
there exists a facet defining inequality bx ≥ β different from the trivial inequalities
such that F ⊆ {x ∈ kECSP(G) | bx = β}. We will show that there exists ρ > 0 such
that b = ρa.

Let Ti be an edge subset of [Vi, Vi+1], i = 1, ..., p (the indices are modulo p) of
k+1
2

edges and let T ′

i = Ti \ {gi}, where gi is a fixed edge of Ti. Consider

E0 =

p
⋃

i=1

E(Vi),

E1 = (

i0−1
⋃

i=1

Ti) ∪ (

p
⋃

i=i0+1

Ti) ∪ T ′

i0
, for some i0 ∈ {1, ..., p},

E2 = E1 ∪ E0.

Note that gi0 /∈ T ′

i0
and hence gi0 /∈ E2, and gi0+1 ∈ E2. It is not hard to see that E2

and E ′

2 = (E2\{gi0+1})∪{gi0} induce k-edge connected subgraphs of G and that xE2

and xE′

2 belong to F. Thus, we have that bxE2 = bxE′

2 = β and that b(gi0) = b(gi0+1).
As gi0 and gi0+1 are arbitrary edges of Ti0 and Ti0+1, respectively, it follows that
b(e) = b(e′) for all e ∈ Ti0 and e′ ∈ Ti0+1. Moreover, since Ti0 and Ti0+1 are arbitrary
subsets of [Vi0 , Vi0+1] and [Vi0+1, Vi0+2], respectively, we obtain b(e) = b(e′) for all
e ∈ [Vi0 , Vi0+1] and e′ ∈ [Vi0+1, Vi0+2], i0 = 1, ..., p. Consequently, by symmetry, we
have that

b(e) = ρ, for all e ∈ [Vi, Vi+1], i = 1, ..., p (the indices are modulo p), for some ρ ∈ R.

Now let e ∈ [Vi0 , Vj0], i0, j0 ∈ {1, ..., p} with |i0 − j0| > 1. Note that the indices
are modulo p and that, for convenience, we will let T0 = Tp, T−1 = Tp−1 and T ′

0 = T ′

p.
Consider

E3 = (

i0−2
⋃

i=1

Ti) ∪ (

p
⋃

i=i0+1

Ti) ∪ (T ′

i0−1 ∪ T ′

i0
) ∪ {e},

E4 = E3 ∪ E0.

E ′

4 = (E4 \ {e}) ∪ {gi0}

One can easily check that E4 and E ′

4 induce k-edge connected subgraphs of G. Since
xE4 and xE′

4 belong to F, it follows that bx4 = bxE′

4 = β and that b(e) = b(gi0) = ρ.
Thus, we obtain

b(e) = ρ, for all e ∈ [Vi0 , Vj0], i0, j0 ∈ {1, ..., p} with |i0 − j0| > 1.

Consider now the edge set

E5 = E2 \ {e}, for some e ∈ E0.
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Since G[Vi], i = 1, ..., p, are (k + 1)-edge connected, E5 induces a k-edge connected
subgraph of G. As xE2 and xE5 belong to F, we have that bxE2 = bxE5 = β, and
thus

b(e) = 0, for all e ∈ E0.

All together, we obtain

b(e) =

{

ρ if e ∈ E \ E0,
0 if not.

Thus, we get b = ρa with ρ ∈ R. Since bx ≥ β defines a facet of kECSP(G)
different from the trivial inequalities, we have that ρ > 0, which ends the proof of
the Theorem.

�

Chopra [7] described a lifting procedure for inequalities (24). Let G = (V, E) be
a graph and k ≥ 3 an odd integer. Let G′ = (V, E ∪ L) be a graph obtained from
G by adding an edge set L. Let π = (V1, ..., Vp) be a partition of V such that Gπ is
series-parallel. Then the following inequality is valid for kECSP(G′)

x(δG(V1, ..., Vp)) +
∑

e∈L∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈

k

2

⌉

p − 1, (25)

where a(e) is the length (in terms of edges) of a shortest path in Gπ between the
endnodes of e, for all e ∈ L ∩ δG′(V1, ..., Vp). We will call inequality (25) lifted SP -
partition inequality. Chopra [7] also showed, when G is outerplanar, that inequality
(25) defines a facet of kECSP(G′) if G is maximal outerplanar, that is adding one
edge e in G lets the resulting graph not outerplanar. This procedure can be easily
extended to the case when each edge can be used at most once.

3 Reduction operations

In this section, we are going to describe some graph reduction operations. These
are based on the concept of critical extreme points of P (G, k) introduced by Fonlupt
and Mahjoub [17] for k = 2 and extended by Didi Biha and Mahjoub [13] for k ≥ 3.

Before giving these operations, we shall first introduce some notations and defi-
nitions. Let G = (V, E) be a graph and k ≥ 2 an integer. If x is a solution of P (G, k),
we will denote by E0(x), E1(x) and Ef (x) the sets of edges e ∈ E such that x(e) = 0,
x(e) = 1 and 0 < x(e) < 1, respectively. We also denote by Cd(x) the set of degree
tight cuts δ(u) such that δ(u)∩Ef(x) 6= ∅, and by Cp(x) the set of proper tight cuts
δ(W ) with δ(W ) ∩ Ef(x) 6= ∅. Let x be an extreme point of P (G, k). Thus, there is
a set of cuts C∗

p(x) ⊆ Cp(x) such that x is the unique solution of the system

S(x)















x(e) = 0 for all e ∈ E0(x);
x(e) = 1 for all e ∈ E1(x);
x(δ(u)) = k for all δ(u) ∈ Cd(x);
x(δ(W )) = k for all δ(W ) ∈ C∗

p(x).
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Suppose that x is fractional. Let x′ be a solution obtained by replacing some
(but at least one) fractional components of x by 0 or 1 (and keeping all the other
components of x unchanged). If x′ is a point of P (G, k), then it can be written as
a convex combination of extreme points of P (G, k). If y is such an extreme point,
then y is said to be dominated by x, and we write x � y. Note that if x dominates
y, then {e ∈ E | 0 < y(e) < 1} ⊂ {e ∈ E | 0 < x(e) < 1}, {e ∈ E | x(e) = 0} ⊆ {e ∈
E | y(e) = 0} and {e ∈ E | x(e) = 1} ⊆ {e ∈ E | y(e) = 1}. The relation � defines
a partial ordering on the extreme points of P (G, k). The minimal elements of this
ordering (i.e. the extreme points x for which there is no extreme point y such that
x � y) correspond to the integer extreme points of P (G, k). The minimal extreme
points of P (G, k) are called extreme points of rank 0. An extreme point x is said to
be of rank p, if x only dominates extreme points of rank ≤ p− 1 and if it dominates
at least one extreme point of rank p − 1. We notice that if x is an extreme point of
rank 1 and if we replace one fractional component of x by 1, keeping unchanged the
other integral components, we obtain a feasible solution x′ of P (G, k) which can be
written as a convex combination of integer extreme points of P (G, k).

Didi Biha and Mahjoub [13] introduced the following reduction operations with
respect to a solution x of P (G, k).

θ1 : delete an edge e ∈ E such that x(e) = 0 ;

θ2 : contract a node subset W ⊆ V such that G[W ] is k-edge connected and x(e) = 1
for all e ∈ E(W ) ;

θ3 : contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ 2, |δ(W )| = k and
E(W ) contains at least one edge with fractional value ;

θ4 : contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ 2, G[W ] is
⌈

k
2

⌉

-edge
connected, |δ(W )| = k + 1 and x(e) = 1 for all e ∈ E(W ).

Starting from a graph G and a solution x ∈ P (G, k) and applying θ1, θ2, θ3, θ4,
we obtain a reduced graph G′ and a solution x′ ∈ P (G′, k). It is not hard to see that
x′ is an extreme point of P (G′, k) if and only if x is an extreme point of P (G, k).
Didi Biha and Mahjoub [13] showed the following results.

Lemma 3.1 [13] x′ is an extreme point of rank 1 of P (G′, k) if and only if x is an
extreme point of rank 1 of P (G, k).

Lemma 3.2 [13] Let G = (V, E) be a graph, k ≥ 2 an integer and x an extreme
point of P (G, k) of rank 1. Suppose that C∗

p(x) = ∅. Then the graph induced by Ef(x)
is an odd cycle C ⊆ E such that

1) x(e) = 1
2

for all e ∈ C ;

2) x(δ(u)) = k for all u ∈ V (C).

An extreme point x of P (G, k) will be said to be critical if x is of rank 1 and if
none of the operations θ1, θ2, θ3, θ4 can be applied to x.

Operations θ1, θ2, θ3, θ4 can be used in a Branch-and-Cut algorithm for the
kECSP. As it will turn out, they can be used in a preprocessing phase for the
separation and may be very effective in solving the problem.
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4 A Branch-and-Cut algorithm for the kECSP

In this section, we describe a Branch-and-Cut algorithm for the kECSP. Our aim
is to address the algorithmic applications of the theoritical results presented in the
previous sections and describe some strategic choices made in order to solve that
problem. So, let us assume that we are given a graph G = (V, E) and a weight vector
w ∈ R

E associated with the edges of G. Let k ≥ 3 be the connectivity requirement
for each node of V .

Grötschel et al. [24] introduced a class of valid inequalities for kECSP(G) called
partition inequalities that generalizes the cut inequalities. Let π = (V1, ..., Vp), p ≥ 3,
be a partition of V . The partition inequality induced by π is given by

x(δ(V1, ..., Vp)) ≥

⌈

kp

2

⌉

. (26)

Clearly, if kp is even, then inequality (26) is redundant with respect to the cut
inequalities. Grötschel et al. [24] gave sufficient conditions for the partition inequa-
lities (26) to be facet defining.

Given a fractional solution x of P (G, k), we let G′ = (V ′, E ′) and x′ be obtained
by repeated applications of operations θ1, θ2, θ3, θ4 with respect to x. As pointed
out above, x′ is an extreme point of P (G′, k) if and only if x is an extreme point of
P (G, k). Moreover, we have the following lemmas which can be easily seen.

Lemma 4.1 Let a′x ≥ α be an F -partition inequality (resp. partition inequality)
valid for kECSP(G′) induced by a partition π′ = (V ′

0 , V
′

1 ..., V
′

p), p ≥ 2, (resp. π′ =
(V ′

1 , ..., V
′

p), p ≥ 3) of V ′. Let π = (V0, V1, ..., Vp), p ≥ 2, (resp. π = (V1, ..., Vp),
p ≥ 3) be the partition of V obtained by expanding the subsets V ′

i of π′. Let ax ≥ α
be an inequality such that

a(e) =







a′(e) for all e ∈ E ′,
1 for all e ∈ (E \ E ′) ∩ δG(π),
0 otherwise.

Then ax ≥ α is valid for kECSP(G). Moreover, if a′x ≥ α is violated by x′, then
ax ≥ α is violated by x.

Lemma 4.2 Let a′x ≥ α be an odd path inequality (resp. SP -partition inequality)
valid for kECSP(G′) induced by a partition π′ = (W ′

1, W
′

2, V
′

1 , ..., V
′

2p), p ≥ 2 (resp.
π = (V ′

1 , ..., V
′

p), p ≥ 3). Let π = (W1, W2, V1, ..., V2p), p ≥ 2 (resp. π = (V1, ..., Vp),
p ≥ 3), be the partition of V obtained by expanding the elements of π ′. Let ax ≥ α
be the corresponding lifted odd path inequality (resp. lifted SP -partition inequality)
obtained from a′x ≥ α by application of the lifting procedure described in Section 2.2
(resp. Section 2.4) for the edges of E \ E ′. Then ax ≥ α is violated by x if a′x ≥ α
is violated by x′.
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Lemmas 4.1 and 4.2 show that looking for an odd path, F -partition, SP -partition
or a partition inequality violated by x reduces to looking for such inequality violated
by x′ on G′. Note that this procedure can be applied for any solution of P (G, k) and,
in consequence, may permit to separate fractional solutions which are not necessa-
rily extreme points of P (G, k). In consequence, for more efficiency, our separation
procedures will be performed on the reduced graph G′. The violated inequalities ge-
nerated in G′ with respect to x′ are lifted to violated inequalities in G with respect
to x using Lemmas 4.1 and 4.2.

We now describe the framework of our algorithm. To start the optimization we
consider the following linear program given by the degree cuts associated with the
vertices of the graph G together with the trivial inequalities, that is

Min
∑

e∈E

w(e)x(e)

x(δ(u)) ≥ k for all u ∈ V,

0 ≤ x(e) ≤ 1 for all e ∈ E.

The optimal solution y ∈ R
E of this relaxation of the kECSP is feasible for the

problem if y is an integer vector that satisfies all the cut inequalities. Usually, the
solution y is not feasible for the kECSP, and thus, in each iteration of the Branch-
and-Cut algorithm, it is necessary to generate further inequalities that are valid for
the kECSP but violated by the current solution y. For this one has to solve the
so-called separation problem. This consists, given a class of inequalities, in deciding
whether the current solution y statisfies all the inequalities of this class, and if not,
in finding an inequality that is violated by y. An algorithm solving this problem is
called a separation algorithm. The Branch-and-Cut algorithm uses the inequalities
previously described and their separations are performed in the following order

1. cut inequalities ;

2. SP -partition inequalities ;

3. odd path inequalities ;

4. F -partition inequalities ;

5. partition inequalities.

We remark that all inequalities are global (i.e. valid for all the Branch-and-Cut
tree) and several inequalities may be added at each iteration. Moreover, we go to
the next class of inequalities only if we haven’t found any violated inequalities. Our
strategy is to try to detect violated inequalities at each node of the Branch-and-Cut
tree in order to obtain the best possible lower bound and thus limit the generated
nodes. Generated inequalities are added by sets of 200 or less inequalities at a time.

Now we describe the separation procedures used in our Branch-and-Cut algo-
rithm. All these procedures are applied on G′ with weights (y′(e), e ∈ E ′) associated
with its edges where y′ is the restriction on E ′ to the current LP-solution y (G′ and
y′ are obtained by repeated applications of operations θ1, θ2, θ3, θ4).
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The separation of the cut inequalities (3) can be performed by computing mini-
mum cuts in G′. This can be done in polynomial time using Gomory-Hu algorithm
[22]. This algorithm produces the so-called Gomory-Hu tree with the property that
for all pairs of nodes s, t ∈ V ′, the minimum (s, t)-cut in the tree is also a minimum
(s, t)-cut in the graph G′. Actually, we use the algorithm developed by Gusfield [26]
which requires |V ′| − 1 maximum flow computations. The maximum flow compu-
tations are handled by the efficient Goldberg and Tarjan algorithm [21] that runs
in O(m′n′ log n′2

m′
) time where m′ and n′ are the number of edges and nodes of G′,

respectively. Thus, our separation algorithm for the cut inequalities is exact and
runs in O(m′n′2 log n′2

m′
) time.

In what follows, we consider the separation procedure of the odd path inequalities
(4). For this, we need the following lemma.

Lemma 4.3 Let x ∈ R
E be a fractional solution of P (G, k) and π = (W1, W2, V1, ..., V2p),

p ≥ 2, a partition of V , which induces an odd path configuration. If each edge set
[Vi, Vi+1], i = 1, ..., 2p − 1, contains an edge with fractional value and

x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1, for i = 2, ..., 2p − 1,

then the odd path inequality induced by π is violated by x.

Proof. As x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1, i = 2, ..., 2p − 1, we have that

x([V2s−1, V2s]) + x([V2s, V2s+1]) ≤ 1, s = 1, ..., p − 1, (27)

x([V2s, V2s+1]) + x([V2s+1, V2s+2]) ≤ 1, s = 1, ..., p − 1. (28)

By multiplying inequality (27) by p−s

p
and inequality (28) by s

p
and summing the

resulting inequalities, we obtain

∑

i∈I

x([Vi, Vi+1]) +
∑

i∈I

p − 1

p
x([Vi, Vi+1]) ≤ p − 1, (29)

where I = {2, 4, 6, ..., 2p− 2} and I = {1, 2, ..., 2p − 1} \ I. Since each set [Vi, Vi+1],
i = 1, ..., 2p−1, contains an edge with fractional value, we have that x([Vi, Vi+1]) < 1,
for i ∈ I. Hence, it follows that

∑

i∈I

x([Vi, Vi+1]) < p. (30)

By multiplying inequality (30) by 1
p

and summing the resulting inequality and in-

equality (29), we obtain
2p−1
∑

i=1

x([Vi, Vi+1]) < p,

and the result follows.
�
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Using Lemma 4.3 we can devise a separation procedure for inequalities (4). The
idea is to find a partition π = (W ′

1, W
′

2, V
′

1 , ..., V
′

2p), p ≥ 2, which induces an odd path
configuration that satisfies the conditions of Lemma 4.3. The procedure works as
follows. We first look, using a greedy method, for a path Γ = {e1, ..., e2p−1}, p ≥ 2, in
G′ such that the edges e1, ..., e2p−1 have fractional values and y′(ei−1)+y′(ei) ≤ 1, for
i = 2, ..., 2p−1. If v′

1, ..., v
′

2p are the nodes of Γ taken in this order when going through

Γ, we let V ′

i = {v′

i}, i = 1, ...2p, and T1 = (
⋃

i∈I1

V ′

i )∪V ′

1 (resp. T1 = (
⋃

i∈I1

V ′

i )∪V ′

1 ∪V ′

2p)

if p is odd (resp. even) and T2 = (
⋃

i∈I2

V ′

i ) ∪ V ′

2p (resp. T2 = (
⋃

i∈I2

V ′

i )) if p is odd

(resp. even) where I1 and I2 are as defined in Section 2.1. In order to determine
W ′

1 and W ′

2, we compute a minimum cut separating T1 and T2. If δ(W ) is such a
cut with T1 ⊆ W , we let W ′

1 = W \ T1 and W ′

2 = V ′ \ (W ∪ T2). If the partition
π = (W ′

1, W
′

2, V
′

1 , ..., V
′

2p) thus obtained induces an odd path configuration, then, by
Lemma 4.3, the corresponding odd path inequality is violated by y′. If not, we apply
again that procedure by looking for an other path. In order to avoid the detection
of the same path, we label the edges of the previous paths, so that they won’t
be considered in the search of a new path. This procedure continue until either a
violated odd path inequality is found or all the edges having fractional values are
labeled. The routine that permits to look for an odd path runs in O(m′n′) time.
To compute the minimum cut separating T1 and T2, we use Goldberg and Tarjan
algorithm [21]. Since this algorithm runs in O(m′n′log n′2

m′
) time our procedure is

implemented to run in O(m′2n′ log n′2

m′
) time.

In the lifting procedure for inequalities (4) given in Section 2.2 we have to com-
pute a coefficient λ for some edges e ∈ E\E ′. Since the computation of this coefficient
is itself a hard problem, and λ ≤ 2, we consider 2 as lifting coefficient rather than λ
for those edges.

Now we discuss our separation procedure for the F -partition inequalities (18).
These inequalities can be separated in polynomial time using the algorithm of Bäıou
et al. [2] when k is even and the edge set F is fixed. For the general case, we devised
three heuristics to separate them.

Our first heuristic is based on Lemma 3.2. As pointed out in Lemma 3.2, for some
extreme points of P (G, k) of rank one, that is those extreme points x ∈ P (G, k)
such that C∗

p(x) = ∅, the edges with fractional values form an odd cycle C such that
x(e) = 1

2
, for all e ∈ C and x(δ(u)) = k, for all u ∈ V (C). The heuristic works as

follows. It starts by determining a node set {v′

1, ..., v
′

p}, p ≥ 3, that induces an odd
cycle in G′. Then we let V ′

i = {v′

i}, for i = 1, ..., p, and V ′

0 = V ′ \ {v′

1, ..., v
′

p}. We
choose the edges of F among those of δ(V ′

0) having values greater than 1
2

and in
such a way that |F | and kp have different parities (if such an edge set F is empty
then we look for an other partition). The node set {v ′

1, ..., v
′

p} is obtained by a simple
labeling procedure. Hence, the heuristic runs in a linear time.

Before introducing our second heuristic, we first give the following lemma.

Lemma 4.4 Let x ∈ R
E be a fractional solution of P (G, k) and π = (V0, V1, ..., Vp),

p ≥ 2, a partition of V such that x(δ(Vi)) = k, i = 1, ..., p. Then an F -partition
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inequality, induced by π and an edge set F ⊆ δ(V0) such that |F | and kp have
different parities is violated by x if the following inequality holds

|F | − x(F ) + x(δ(V0) \ F ) < 1. (31)

Proof. As x(δ(Vi)) = k, i = 1, ..., p, we have that

p
∑

i=1

x(δ(Vi)) = 2x(δ(V1, ..., Vp)) + x(δ(V0)) = kp.

This together with (31) yield

− 2x(F ) + 2x(δ(V0)) + 2x(δ(V1, ..., Vp)) < kp − |F | + 1,

and thus, the statement follows.
�

The heuristic is based on Lemma 4.4. It starts by determining all the nodes u of
V ′ such that y′(δ(u)) = k and δ(u) contains at least one edge with fractional value.
In fact, it is this kind of nodes which may lead to violated F -partition inequalities.
Let {v′

1, ..., v
′

p} be the set of such nodes. We consider the partition (V ′

0 , V
′

1 , ..., V
′

p)
such that V ′

i = {v′

i}, for i = 1, ..., p, and V ′

0 = V ′ \ {v1, ..., vp} and we choose the
edges of F in a similar way as in the first heuristic. If inequality (31) holds with
respect to F and V ′

0 , then, by Lemma 4.4, the F -partition inequality corresponding
to (V ′

0 , V
′

1 , ..., V
′

p) and F is violated by y′.
Before presenting our last heuristic, let us first remark that a partition (V ′

0 , V
′

1 , ..., V
′

p)
and an edge set F ⊆ δ(V ′

0) may induces a violated F -partition inequality if y′(δ(V ′

0))
is high and the edges of F are among those of δ(V ′

0) with high values. Our heuristic
tries to find such a partition For this, we compute a Gomory-Hu tree in G′ with
the weights (1 − y′(e), e ∈ E ′) associated with its edges. Then from each proper
cut δ(W ) with V ′ \ W = {v′

1, ..., v
′

p}, p ≥ 2, obtained from the Gomory-Hu tree, we
consider the partition π = (V ′

0 , V
′

1 , ..., V
′

p) such that V ′

i = {v′

i}, for i = 1, ..., p, and
V ′

0 = W . The edge set F is chosen in a similar way as in the previous heuristics.
Since the computation of the Gomory-Hu tree can be done in O(m′n′2 log n′2

m′
) time,

the heuristic runs in O(m′n′2 log n′2

m′
).

These three heuristics are applied in the Branch-and-Cut algorithm in that order.

Now we turn our attention to the separation of the SP -partition inequalities (24).
These inequalities can be separated in polynomial time using the algorithm of Baiou
et al. [2] when G′ is series-parallel. This algorithm is based on submodular functions.
Recently, Didi Biha et al. [16] devised a pure combinatorial algorithm for the sepa-
ration of SP -partition inequalities when the graph is series-parallel. For our purpose
we devised a heuristic to separate inequalities (24) in the general case. This heuristic
is based on Theorems 2.6 and 2.7. The main idea of the heuristic is to determine a
partition π = (V ′

1 , ..., V
′

p), p ≥ 3, of V ′ which induces an outerplanar graph such that

|[V ′

i , V
′

i+1]| ≥
⌈

k
2

⌉

, for i = 1, ..., p (the indices are modulo p) (see Figure 4), and for
every consecutive sets V ′

i and V ′

j , the edge set [V ′

i , V
′

j ] contains at least one edge with
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fractional value. To this end, we look in G′ for a path Γ = {v′

1v
′

2, v
′

2v
′

3, ..., v
′

p−2v
′

p−1},

p ≥ 3 such that |[v′

i, v
′

i+1]| ≥
⌈

k
2

⌉

and [v′

i, v
′

i+1] contains one or more edges with
fractional value, for i = 1, ..., p − 2. We then let V ′

i = {v′

i}, i = 1, ..., p − 1, and
V ′

p = V ′ \ {v′

1, ..., v
′

p−1}. Afterwards, we check by a simple heuristic if the graph G′

π

is outerplanar. Finally, we check if the SP -partition inequality induced by π is vio-
lated by y′ or not. If the graph G′

π is not outerplanar or the SP -partition inequality
induced by π is not violated by y′, we apply again this procedure by looking for an
other path. In order to avoid the detection of the same path, we label the nodes
we met during the search of the previous paths, so that they won’t be considered
in the search of a new path. This process continue until either we find a violated
SP -partition inequality or all the nodes of V ′ are labeled. The heuristic can be im-
plemented to run in O(m′n′) time.

Now we discuss the separation of the partition inequalities (26). First observe that
if π = (V ′

1 , ..., V
′

p) is a partition of V ′, with p ≥ 3 and odd, such that y′(δ(V ′

i )) = k,
for i = 1, ..., p, then the partition inequality induced by π is violated by y′. Thus,
one can devise a heuristic to separate inequalities (26) which consists in finding
a partition π = (V ′

1 , ..., V
′

p), with p ≥ 3 and odd, such that y′(δ(V ′

i )) is as small
as possible, for i = 1, ..., p. To do this, we compute a Gomory-Hu tree, say T,
in G′ with the weights (y′(e), e ∈ E ′) associated with its edges. After that, we
contract disjoint node subsets that induce proper tight cuts in T. Let V ′

1 , ..., V
′

t

be these sets and {vt+1, ..., vp} = V ′ \ (
t

⋃

i=1

V ′

i ). We then consider the partition

(V ′

1 , ..., V
′

t , {vt+1}, ..., {vp}) and check whether or not the corresponding partition

inequality is violated by y′. This algorithm leads to an O(m′n′2 log n′2

m′
) time com-

plexity.

To store the generated inequalities, we create a pool whose size increases dy-
namically. All the generated inequalities are put in the pool and are dynamic, i.e.
they are removed from the current LP when they are not active. We first separate
inequalities from the pool. If all the inequalities in the pool are satisfied by the cur-
rent LP-solution, we separate the classes of inequalities in the order given above.

Another important issue in the effectiveness of the Branch-and-Cut algorithm is
the computation of a good upper bound at each node of the Branch-and-Cut tree.
To do this, if the separation procedures do not generate any violated inequality and
the current solution y is still fractional, then we transform y into a feasible solution
of the kECSP, say ŷ, by rounding up to 1 all the fractional components of y. We
then try to reduce the weight of the solution thus obtained by removing from the
subgraph H = (V, Ê) induced by ŷ some unecessary edges that is, edges which do
not affect the k-edge connectedness of H. To this end, we remove from Ê each edge
e = uv such that |δ(u) ∩ Ê| ≥ k + 1 and |δ(v) ∩ Ê| ≥ k + 1. We then check if the
resulting edge set, say Ê ′, induces a k-edge connected subgraph of G by computing
a Gomory-Hu tree. If there exists in Ê ′ a cut δ(W ), W ⊆ V , containing less than
k edges, then we add in Ê ′ edges of [W, V \ W ] \ δ(W ) that have been previously
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removed from Ê as many as necessary in order to satisfy the cut δ(W ). We do this
until the graph (V, Ê ′) induces a k-edge connected subgraph of G. Note that we add
to each violated cut the edges having the smallest weights.

5 Computational results

The Branch-and-Cut algorithm described in the previous section has been im-
plemented in C++, using ABACUS 2.4 alpha [1, 35] to manage the Branch-and-Cut
tree, and CPLEX 9.0 [11] as LP-solver. It was tested on a Pentium IV 3.4 Ghz with
1 Gb of RAM, running under Linux. We fixed the maximum CPU time to 5 hours.
The test problems were obtained by taking TSP test problems from the TSPLIB
library [36]. The test set consists in complete graphs whose edge weights are the
rounded euclidian distance between the edge’s vertices. The tests were performed
for k = 3, 4, 5. In all our experiments, we have used the reduction operations des-
cribed in the previous sections, unless otherwise specified. Each instance is given by
its name followed by an extension representing the number of nodes of the graph.
The other entries of the various tables are :

NCut : number of generated cut inequalities ;
NSP : number of generated SP -partition inequalities ;
NOP : number of generated odd path inequalities ;
NFP : number of generated F -partition inequalities ;
NP : number of generated partition inequalities ;
COpt : weight of the optimal solution obtained ;
Gap : the relative error between the best upper bound

(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the
root node of the Branch-and-Cut tree ;

NSub : number of subproblems in the Branch-and-Cut tree ;
TT : total CPU time in hours :min :sec.

The instances indicated with ”*” are those whose CPU time exceeded 5 hours.
For these instances, the gap is indicated in italic.

Our first series of experiments concerns the kECSP for k = 3. The instances
we have considered have graphs with 14 to 318 nodes. The results are summarized
in Table 1. It appears from Table 1 that all the instances have been solved to the
optimality within the time limit except the last five instances. We have that four ins-
tances (burma14, gr21, fri26, brazil58) have been solved in the cutting plane phase
(i.e. no branching is needed). For most of the other instances, the gap is less than
1%. We also observe that our separation procedures detect a large enough number
of SP -partition and F -partition inequalities and seem to be quite efficient.

Our next series of experiments concerns the kECSP with k = 4, 5. The results
are given in Table 2 for k = 4 and Table 3 for k = 5. The instances considered have
graphs with 52 to 561 nodes. Note that for k = 4, the SP -partition and partition
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Instance NCut NSP NOP NFP NP COpt Gap NSub TT
burma14 4 3 0 0 4 5530 0.00 1 0 :00 :01
ulysses16 5 7 1 15 7 11412 0.39 3 0 :00 :11
gr21 5 6 1 0 2 4740 0.00 1 0 :00 :01
fri26 9 5 0 0 0 1543 0.00 1 0 :00 :01
bayg29 14 16 2 33 2 2639 0.19 7 0 :00 :01
dantzig42 41 31 6 90 18 1210 0.68 71 0 :00 :07
att48 34 34 5 60 9 17499 0.56 61 0 :00 :06
berlin52 36 31 12 97 6 12601 0.45 33 0 :00 :03
brazil58 46 42 2 36 29 42527 0.00 1 0 :00 :05
eil76 9 12 3 298 2 876 0.06 7 0 :00 :03
pr76 130 207 72 2231 54 187283 1.50 6767 0 :35 :32
rat99 41 26 13 341 23 2029 0.38 41 0 :00 :47
kroA100 170 197 31 1207 57 36337 0.97 4201 0 :54 :06
kroB100 130 114 37 830 47 37179 0.73 723 0 :08 :00
rd100 101 74 11 418 18 13284 0.43 171 0 :03 :37
eil101 86 72 21 3604 15 1016 0.55 1109 0 :17 :41
lin105 179 198 47 829 68 25530 0.69 1031 0 :22 :39
pr107 201 190 34 674 114 70852 0.84 2071 1 :26 :49
gr120 50 45 6 588 17 11442 0.19 99 0 :11 :15
bier127 46 59 4 276 13 198184 0.15 11 0 :01 :55
ch130 121 132 30 1355 40 10400 0.55 1693 1 :05 :05
ch150 92 93 19 588 22 11027 0.41 193 0 :20 :31
kroA150 155 143 41 845 47 44718 0.53 1205 1 :16 :35
kroB150 130 110 16 952 48 43980 0.31 437 0 :38 :43
rat195 24 19 3 514 1 3934 0.06 7 0 :08 :21
d198 171 105 23 617 59 25624 0.21 159 1 :04 :19
gr202 77 69 14 558 22 65729 0.11 69 0 :13 :16
*pr226 364 248 35 162 41 - 9.02 261 5 :00 :00
*gr229 179 245 23 1568 94 - 1.00 1219 5 :00 :00
*pr264 275 181 145 668 62 - 12.29 69 5 :00 :00
*a280 142 84 56 2539 59 - 2.69 459 5 :00 :00
*lin318 189 147 15 610 58 - 4.94 25 5 :00 :00

Tab. 1 – Results for k = 3 with reduction operations.
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Instance NCut NOP NFP COpt Gap NSub TT
berlin52 5 0 2 18295 0.00 1 0 :00 :01
pr76 3 0 4 266395 0.00 1 0 :00 :01
kroA100 10 0 11 51221 0.00 1 0 :00 :47
kroB100 9 5 123 53597 0.08 21 0 :00 :09
rd100 10 1 91 19130 0.00 1 0 :00 :05
eil101 0 0 60 1453 0.00 1 0 :00 :02
lin105 20 1 5 36353 0.00 1 0 :00 :01
pr107 29 0 0 98381 0.00 1 0 :00 :01
gr120 6 0 36 16400 0.00 1 0 :00 :02
bier127 16 0 0 282207 0.00 1 0 :00 :01
ch130 12 0 132 14854 0.00 1 0 :00 :05
ch150 12 2 70 15854 0.00 1 0 :00 :02
kroA150 13 0 27 64249 0.00 1 0 :00 :02
kroB150 20 0 4 62710 0.00 1 0 :00 :01
rat195 0 0 37 5750 0.00 1 0 :00 :13
d198 43 0 71 35404 0.01 3 0 :00 :16
gr202 13 3 220 94841 0.02 3 0 :01 :28
pr226 91 0 6 183537 0.00 1 0 :00 :04
gr229 24 2 15 318565 0.00 1 0 :00 :03
pr264 59 1 7 122941 0.00 1 0 :00 :06
a280 3 0 180 6317 0.00 1 0 :01 :00
pr299 30 0 427 117559 0.00 1 0 :00 :20
lin318 28 0 2 105000 0.00 1 0 :00 :06
rd400 21 2 232 36676 0.00 1 0 :07 :39
pr439 78 3 61 264975 0.02 19 0 :02 :52
si535 0 0 4 53604 0.00 1 0 :00 :39
pa561 10 1 306 6724 0.00 1 0 :08 :37

Tab. 2 – Results for k = 4.

inequalities are redundant with respect to the cut inequalities (3). Thus, they are
not included in the resolution process for k = 4 and therefore do not appear in Table
2.

First observe that for k = 4, the CPU time for all the instances is relatively
small and most of the instances have been solved in less than 1 minute. We can also
observe that 23 instances over 27 are solved in the cutting plane phase. Moreover, a
few number of odd path inequalities are generated. However a large enough number
of F -partition inequalities is detected. Thus, these later inequalities seem to be very
effective for solving the kECSP when k is even. This also shows that the kECSP is
easier to solve when k is even, what is also confirmed by the results of Table 3 for
k = 5. In fact, the instance pr264 has been solved for k = 4 in 1 second, whereas
it could not be solved to optimality for k = 5 after 5 hours. The same observation
can be done for pr439. Also, we can remark that the CPU time for all the instances
when k = 5 is higher than that when k = 4. For instance, the test problem d198 has
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Instance NCut NSP NOP NFP NP COpt Gap NSub TT
berlin52 5 2 2 26 2 24845 0.00 1 0 :00 :01
pr76 2 0 0 52 1 372392 0.00 1 0 :00 :01
kroA100 5 1 5 76 6 71422 0.04 11 0 :00 :06
kroB100 6 1 2 83 5 74241 0.01 3 0 :00 :06
rd100 6 2 6 193 5 26168 0.01 5 0 :00 :24
eil101 1 0 0 309 0 1938 0.00 1 0 :01 :10
lin105 9 1 3 119 3 50711 0.00 1 0 :00 :26
pr107 92 40 57 680 33 132870 0.41 381 0 :14 :45
gr120 2 0 3 93 3 22024 0.11 27 0 :00 :17
bier127 22 2 12 450 8 383165 0.09 25 0 :04 :25
ch130 1 0 0 45 0 20508 0.01 3 0 :00 :05
ch150 5 0 7 58 1 21791 0.01 37 0 :00 :50
kroA150 9 0 5 141 3 87950 0.07 11 0 :00 :19
kroB150 14 1 7 462 6 85583 0.02 11 0 :15 :39
rat195 1 0 0 508 0 7773 0.00 1 0 :20 :54
d198 56 9 6 1093 32 47614 0.15 337 1 :50 :40
gr202 0 0 0 64 0 128990 0.00 1 0 :00 :31
pr226 142 34 20 661 50 260878 0.58 103 2 :38 :50
gr229 18 1 11 679 9 434422 0.06 43 0 :31 :58
*pr264 105 12 38 1327 28 - 1.78 43 5 :00 :00
a280 2 0 2 302 0 8643 0.02 7 0 :05 :05
pr299 11 3 2 637 1 161576 0.00 1 0 :05 :12
lin318 24 3 11 1548 11 144341 0.02 7 4 :34 :39
rd400 11 1 15 691 6 49893 0.01 17 1 :29 :09
*pr439 46 2 8 746 0 - 3.46 1 5 :00 :00
si535 0 0 0 0 0 79115 0.00 1 0 :00 :19
pa561 1 0 2 286 1 9161 0.00 1 3 :26 :58

Tab. 3 – Results for k = 5.

been solved in 1h 50mn when k = 5, whereas only 16 seconds were needed to solve
it when k = 4.

Compared to Table 1, Tables 2 and 3 also show that, for the same parity of k,
the kECSP becomes easier to solve when k increases. In fact, with k = 3, we could
not solve to optimality instances with more than 202 nodes, whereas for k = 5, we
could solve larger instances.

The results for k = 3, 4, 5 can also be compared to those obtained by Kerivin et
al. [29] for the 2ECSP. It turns out that for the same instances, the problem has been
easier to solve for k = 2 than for k = 3. However, for k = 4 the problem appeared
to be easier to solve than for k = 2. This shows again that the case when k is odd is
harder to solve than that when k is even and that the problem becomes easier when
k increases with the same parity.
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In order to evaluate the impact of the reduction operations θ1, θ2, θ3, θ4 on the
separation procedures, we tried to solve the kECSP, for k = 3, without using them.
The results are given in Table 4.

Instance NCut NSP NOP NFP NP COpt Gap NSub TT
berlin52 31 28 19 44 4 12601 0.44 15 0 :00 :04
brazil58 50 27 1 28 31 42527 0.22 3 0 :00 :07
eil76 9 6 3 102 2 876 0.00 1 0 :00 :01
pr76 103 168 65 1378 37 187283 1.60 3483 0 :38 :46
rat99 41 19 10 223 17 2029 0.32 61 0 :01 :29
kroA100 193 234 47 1765 70 36337 1.42 7575 4 :13 :38
kroB100 141 142 36 899 38 37179 0.98 1337 0 :45 :34
rd100 103 84 15 445 21 13284 0.40 233 0 :11 :40
eil101 77 58 26 2527 12 1016 0.38 801 0 :18 :50
lin105 161 158 50 569 53 25530 0.61 547 0 :34 :25
*pr107 218 221 136 1101 104 - 0.81 4447 5 :00 :00
gr120 42 38 6 252 15 11442 0.18 93 0 :05 :38
bier127 58 56 9 240 12 198184 0.16 17 0 :04 :43
ch130 141 147 38 1590 45 10400 0.52 2459 4 :10 :31
ch150 90 76 15 391 23 11027 0.39 107 0 :21 :07
kroA150 155 135 23 705 56 44718 0.55 1107 3 :08 :37
kroB150 150 141 22 1006 43 43980 0.31 535 1 :55 :20
rat195 23 18 7 898 1 3934 0.01 19 0 :19 :23
d198 192 118 25 720 50 25624 0.27 585 5 :03 :16
gr202 73 62 13 278 23 65729 0.05 37 0 :37 :31

Tab. 4 – Results for k = 3 without reduction operations.

As it appears from Tables 1 and 4, the CPU time increased for the majority of
the instances when the reduction operations are not used. In particular, for the ins-
tance pr107 we did not reach the optimal solution after 5 hours, whereas it has been
solved to optimality after 1h 26mn. Almost, the CPU time for the instances ch130
and d198, for example, increased from 1 hour to more than 4 hours. Moreover, we
remark that when using the reduction operations, we generate more SP -partition,
F -partition and partition inequalities and fewer nodes in the Branch-and-Cut tree.
This implies that our separation heuristics are less efficient without the reduction
operations. Thus, it seems that the reduction operations play an important role in
the resolution of the problem. They permit to strengthen much more the linear re-
laxation of the problem and accelerate its resolution.

We also tried to mesure the effect of the different non-basic classes of inequali-
ties (i.e. inequalities other than cut and trivial inequalities). For this, we have first
considered a Branch-and-Cut algorithm for the kECSP with k = 3 using only the
cut constraints. In this case, we could not solve any of the instances having more
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than 52 nodes. Even more, after less than 10 minutes of CPU time, the Branch-and-
Cut tree gets a very big size and the resolution process stops. To illustrate this, we
take for example the instance brazil58. For this instance, the Branch-and-Cut tree
contained 11769 nodes after 10 minutes when the Branch-and-Cut algorithm used
only the cut inequalities, whereas it has been solved without branching when using
the other classes of inequalities.

Finally, we tried to evaluate separately the efficiency of each class of the non-basic
inequalities. For this, we also considered the case when k = 3. We have seen that
all the classes of inequalities have a big effect on the resolution of the problem. In
particular, the SP -partition inequalities seem to play a central role. This can be seen
by considering the instance d198. This instance has been solved in 1h 04mn using all
the constraints. However, without the SP -partition inequalities, we could not reach
the optimal solution after 5 hours. We also remarked that the gap increased when
one of these classes of inequalities is not used in the Branch-and-Cut algorithm.

6 Concluding remarks

In this paper, we have studied the k-edge connected subgraph problem with high
connectivity requirement that is when k ≥ 3. We have presented some classes of
valid inequalities and have described some conditions for these inequalities to be fa-
cet defining for the associated polytope. We also discussed separation heuristics for
these inequalities. Using these results, we have devised a Branch-and-Cut algorithm
for the problem. This algorithm uses some reduction operations.

Our computational results have shown that the odd path, the F -partition, the
SP -partition and the partition inequalities are very effective for the problem when
k is odd. They have also shown the importance of the F -partition inequalities for
the even case. We could also mesure the importance of our separation heuristics. In
particular, our heuristics to separate the SP -partition and F -partition inequalities
have appeared to be very efficient. In addition, the reduction operations have been
essential for having a good performance of the Branch-and-Cut algorithm. In fact,
they permitted to considerably reduce the size of the graph supporting a fractional
solution and to accelerate the separation process.

These experiments also showed that the kECSP is easier to solve when k is even
and that, for the same parity of k, the problem becomes easier to solve when k
increases.

One of the separation heuristic devised for the F -partition inequalities is based
on a partial characterization of the critical extreme points of the linear relaxation
of the k-edge connected subgraph polytope. It would be very interesting to have a
complete characterization of these points. This may yield the identification of new
facet defining inequalities for the problem. It may also permit to devise more appro-
priate separation heuristics for the inequalities given in this paper.
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In many real instances, we may consider node-connectivity instead of edge-
connectivity. The study presented in this paper may be very usefull for the k-node
connected subgraph problem for which we require k node-disjoint paths between
every pair of nodes.

In addition to the survivability aspect, one can consider the capacity dimen-
sioning of the network. These issues have been mostly treated separately in the
literature. It would be interesting to extend the study developed in this paper to the
more general capacitated survivable network design model.
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