37 research outputs found

    Watermarking FPGA Bitfile for Intellectual Property Protection

    Get PDF
    Intellectual property protection (IPP) of hardware designs is the most important requirement for many Field Programmable Gate Array (FPGA) intellectual property (IP) vendors. Digital watermarking has become an innovative technology for IPP in recent years. Existing watermarking techniques have successfully embedded watermark into IP cores. However, many of these techniques share two specific weaknesses: 1) They have extra overhead, and are likely to degrade performance of design; 2) vulnerability to removing attacks. We propose a novel watermarking technique to watermark FPGA bitfile for addressing these weaknesses. Experimental results and analysis show that the proposed technique incurs zero overhead and it is robust against removing attacks

    Rethinking Watermark: Providing Proof of IP Ownership in Modern SoCs

    Get PDF
    Intellectual property (IP) cores are essential to creating modern system-on-chips (SoCs). Protecting the IPs deployed in modern SoCs has become more difficult as the IP houses have been established across the globe over the past three decades. The threat posed by IP piracy and overuse has been a topic of research for the past decade or so and has led to creation of a field called watermarking. IP watermarking aims of detecting unauthorized IP usage by embedding excess, nonfunctional circuitry into the SoC. Unfortunately, prior work has been built upon assumptions that cannot be met within the modern SoC design and verification processes. In this paper, we first provide an extensive overview of the current state-of-the-art IP watermarking. Then, we challenge these dated assumptions and propose a new path for future effective IP watermarking approaches suitable for today\u27s complex SoCs in which IPs are deeply embedded

    FSM BASED DIGITAL WATERMARKING IN IP SECURITY

    Get PDF
    IP providers are in pressing need of a convenient means to track the illegal redistribution of the sold IPs. An active approach to protect a VLSI design against IP infringement is by embedding a signature that can only be uniquely generated by the IP author into the design during the process of its creation. a VLSI IP is developed in several levels of design abstraction with the help of many sophisticated electronic design automation tools. Each level of design abstraction involves solving some NP-complete optimization problems to satisfy a set of design constraints. In this paper, a new dynamic watermarking scheme is proposed. The watermark is embedded in the state transitions of FSM at the behavioral level

    A Sequential Circuit-Based IP Watermarking Algorithm for Multiple Scan Chains in Design-for-Test

    Get PDF
    In Very Large Scale Integrated Circuits (VLSI) design, the existing Design-for-Test(DFT) based watermarking techniques usually insert watermark through reordering scan cells, which causes large resource overhead, low security and coverage rate of watermark detection. A novel scheme was proposed to watermark multiple scan chains in DFT for solving the problems. The proposed scheme adopts DFT scan test model of VLSI design, and uses a Linear Feedback Shift Register (LFSR) for pseudo random test vector generation. All of the test vectors are shifted in scan input for the construction of multiple scan chains with minimum correlation. Specific registers in multiple scan chains will be changed by the watermark circuit for watermarking the design. The watermark can be effectively detected without interference with normal function of the circuit, even after the chip is packaged. The experimental results on several ISCAS benchmarks show that the proposed scheme has lower resource overhead, probability of coincidence and higher coverage rate of watermark detection by comparing with the existing methods

    Publicly Detectable Watermarking for Intellectual Property Authentication in VLSI Design

    Get PDF
    Highlighted with the newly released intellectual property (IP) protection white paper by VSI Alliance, the protection of virtual components or IPs in very large scale integration (VLSI) design has received a great deal of attention recently. Digital signature/watermark is one of the most promising solutions among the known protection mechanisms. It provides desirable proof of authorship without rendering the IP useless. However, it makes the watermark detection, which is as important as watermarking, an NP-hard problem. In fact, the tradeoff between hard-to-attack and easy-to-detect and the lack of efficient detection schemes are the major obstacles for digital signatures to thrive. In this paper, the authors propose a new watermarking method which allows the watermark to be publicly detected without losing its strength and security. The basic idea is to create a cryptographically strong pseudo-random watermark, embed it into the original problem as a special (which the authors call mutual exclusive) constraint, and make it public. The authors combine data integrity technique and the unique characteristics in the design of VLSI IPs such that adversaries will not gain any advantage from the public watermarking for forgery. This new technique is compatible with the existing constraint-based watermarking/fingerprinting techniques. The resulting public–private watermark maintains the strength of a watermark and provides easy detectability with little design overhead. The authors build the mathematical framework for this approach based on the concept of mutual exclusive constraints. They use popular VLSI CAD problems, namely technology mapping, partitioning, graph coloring, FPGA design, and Boolean satisfiability, to demonstrate the public watermark’s easy detectability, high credibility, low design overhead, and robustness

    Performance Evaluation for IP Protection Watermarking Techniques

    Get PDF

    IP Watermarking Using Incremental Technology Mapping at Logic Synthesis Level

    Get PDF
    This paper proposes an adaptive watermarking technique by modulating some closed cones in an originally optimized logic network (master design) for technology mapping. The headroom of each disjoint closed cone is evaluated based on its slack and slack sustainability. The notion of slack sustainability in conjunction with an embedding threshold enables closed cones in the critical path to be qualified as watermark hosts if their slacks can be better preserved upon remapping. The watermark is embedded by remapping only qualified disjoint closed cones randomly selected and templates constrained by the signature. This parametric formulation provides a means to capitalize on the headroom of a design to increase the signature length or strengthen the watermark resilience. With the master design, the watermarked design can be authenticated as in nonoblivious media watermarking. Experimental results show that the design can be efficiently marked by our method with low overhead

    Smart techniques and tools to detect Steganography - a viable practice to Security Office Department

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementInternet is today a commodity and a way for being connect to the world. It is through Internet is where most of the information is shared and where people run their businesses. However, there are some people that make a malicious use of it. Cyberattacks have been increasing all over the recent years, targeting people and organizations, looking to perform illegal actions. Cyber criminals are always looking for new ways to deliver malware to victims to launch an attack. Millions of users share images and photos on their social networks and generally users find them safe to use. Contrary to what most people think, images can contain a malicious payload and perform harmful actions. Steganography is the technique of hiding data, which, combined with media files, can be used to place malicious code. This problem, leveraged by the continuous media file sharing through massive use of digital platforms, may become a worldwide threat in malicious content sharing. Like phishing, people and organizations must be trained to suspect about inappropriate content and implement the proper set of actions to reduce probability of infections when accessing files supposed to be inoffensive. The aim of this study will try to help people and organizations by trying to set a toolbox where it can be possible to get some tools and techniques to assist in dealing with this kind of situations. A theoretical overview will be performed over other concepts such as Steganalysis, touching also Deep Learning and in Machine Learning to assess which is the range of its applicability in find solutions in detection and facing these situations. In addition, understanding the current main technologies, architectures and users’ hurdles will play an important role in designing and developing the proposed toolbox artifact

    A survey on security analysis of machine learning-oriented hardware and software intellectual property

    Get PDF
    Intellectual Property (IP) includes ideas, innovations, methodologies, works of authorship (viz., literary and artistic works), emblems, brands, images, etc. This property is intangible since it is pertinent to the human intellect. Therefore, IP entities are indisputably vulnerable to infringements and modifications without the owner’s consent. IP protection regulations have been deployed and are still in practice, including patents, copyrights, contracts, trademarks, trade secrets, etc., to address these challenges. Unfortunately, these protections are insufficient to keep IP entities from being changed or stolen without permission. As for this, some IPs require hardware IP protection mechanisms, and others require software IP protection techniques. To secure these IPs, researchers have explored the domain of Intellectual Property Protection (IPP) using different approaches. In this paper, we discuss the existing IP rights and concurrent breakthroughs in the field of IPP research; provide discussions on hardware IP and software IP attacks and defense techniques; summarize different applications of IP protection; and lastly, identify the challenges and future research prospects in hardware and software IP security

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    corecore