61 research outputs found

    Security during Transmission of Data Using Web Steganography

    Get PDF
    The project entitled Steganography is to give security to a content record. Since the security of the data over the internet has raised a concern to the people. There are many methods to protect the data from going into the access of unauthorized people. Steganography can be used along with the encryption technique to secure the data. Steganography is used to hide the data or a secret message whereas cryptography is used to encrypt the message and make it difficult the people to read. So, the proposed system is to combine both steganography and cryptography for the secret data transmission. The transmission can be done by using an image as a carrier of data. This paper uses high-performance BMP steganography along with a substitution encryption methodology. The approach that is used here is IDEA (International Data Encryption Algorithm) algorithm which is used for encryption. The IDEA algorithm works as follows, it will take the TEXT document and mystery key as the input and gives the encrypted and BMP picture as the output for the sender side. There can additionally be “Voice Recognition System” framework so that it can use voice to decrypt the message. This is the future expansion or scope of this paper

    Non Oblivious Watermarking Technique for JPEG2000 Compressed Images Using Arnold Scrambling of Unequal Size Watermark Blocks

    Full text link
    In this paper, a watermarking technique for JPEG2000 compressed image is proposed. Scrambling of secret message is performed block-wise using Arnold Transform. Secret message is divided into non-overlapping blocks of unequal size and then Arnold transform is applied on each block and secret key is generated based on the periodicity of each block. Scrambled secret message is embedded into qualified significant wavelet coefficients of a cover image. After embedding the secret message into wavelet coefficients, the remaining processes of JPEG2000 standard are executed to compress the watermarked image at different compression rates. Scaling Factor (SF) is used to embed watermark into wavelet coefficients and the value of SF is stored into COM box of the code stream of JPEG2000 compressed image and this SF value and secret key are used to extract the embedded watermark on the receiver side. The performance of the proposed technique is robust to a variety of attacks like image cropping, salt and pepper noise, and rotation. Proposed technique is compared with the existing watermarking techniques for JPEG2000 compressed images to show its effectiveness

    Improved content based watermarking for images

    Get PDF
    Due to improvements in imaging technologies and the ease with which digital content can be created and manipulated, there is need for the copyright protection of digital content. It is also essential to have techniques for authentication of the content as well as the owner. To this end, this thesis proposes a robust and transparent scheme of watermarking that exploits the human visual systems’ sensitivity to frequency, along with local image characteristics obtained from the spatial domain, improving upon the content based image watermarking scheme of Kay and Izquierdo. We implement changes in this algorithm without much distortion to the image, while making it possible to extract the watermark by use of correlation. The underlying idea is generating a visual mask based on the human visual systems’ perception of image content. This mask is used to embed a decimal sequence, while keeping its amplitude below the distortion sensitivity of the image pixel. We consider texture, luminance, corner and the edge information in the image to generate a mask that makes the addition of the watermark less perceptible to the human eye. The operation of embedding and extraction of the watermark is done in the frequency domain thereby providing robustness against common frequency-based attacks including image compression and filtering. We use decimal sequences for watermarking instead of pseudo random sequences, providing us with a greater flexibility in the choice of sequence. Weighted Peak Signal to Noise Ratio is used to evaluate the perceptual change between the original and the watermarked image

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    Improvements in Geometry-Based Secret Image Sharing Approach with Steganography

    Get PDF
    Protection of the sensitive data is an important issue because of the fast development of applications that need exchange of the secret information over the Internet. Secret sharing is an idea proposed by Shamir and Blakley separately with different implementations in 1979. Lin and Tsai proposed a method that uses Steganography to create meaningful shares by using Shamir's secret sharing scheme in 2004. In recent years, researchers work to remove some of the weaknesses of this method. However, all of these methods need cover images four times bigger than the secret image. This arises two problems: increased storage and bandwidth need for shares. We used cover images with the same size as the secret image by using both Blakley's secret sharing approach and Steganography. Therefore, we achieved reduced storage and transmission bandwidth for shares. Besides, the proposed method creates meaningful shares by using Steganography instead of noise-like shares, different from other studies that use Blakley's approach

    Scaling Factor Threshold Estimator in Different Color Models Using a Discrete Wavelet Transform for Steganographic Algorithm

    Get PDF
    Two of the main problems with steganographic algorithms are insertion capability and minimization of distortion in the digital files where the hidden information is the information is inserted to hiding Digital filters are generally used as noise detectors, and they also suppress information outside the original information contained in the file. There are different types of filtering, one in the spatial domain and the other in the frequency domain or sometimes a combination of both domains to propose adaptive filters. One of the filters with greater application is the discrete wavelet transform (DWT) because it is easy to implement and has low computational complexity. The DWT computationally implemented in an image can be represented as a quadrature mirror filter, separating the frequency components: so high-high, high-low, low-high and low-low levels obtain different resolutions

    Embedding Error Based Data Hiding in Color Images for Distortion Tolerance

    Get PDF
    In this paper, a data hiding scheme with distortion tolerance for color image is proposed. Data hiding is used to embed secret information into the cover image for secure transmission and protecting copyright. The secret information feasibly a text or an image. To protect the copyright of a true color image, a signature (a watermark), which is represented by a sequence of binary data, is embedded in the color image. In this proposed scheme, we first calculate the embedding error between the cover image and the secret information. Based on this embedding error, the stego image is computed then the embedded data are extracted by the extraction procedure. This scheme can tolerate some distortion such us salt and pepper noise, Gaussian noise, uniform noise, and JPEG lossy compression when transmitting a stego image through any network. Experimental results and discussions reveal that the proposed scheme tolerates those distortions with acceptable image quality

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general
    corecore