10 research outputs found

    Development of Bio-inspired Underwater Robot with Adaptive Morphology Capable of Multiple Swimming Modes

    Get PDF
    Bio-inspired underwater robots have several benefits compared to traditional underwater vehicles such as agility, efficiency, and an environmentally friendly body. However, the bio-inspired underwater robots developed so far have a single swimming mode, which may limit their capability to perform different tasks. This paper presents a re-configurable bio-inspired underwater robot that changes morphology to enable multiple swimming modes: octopus-mode and fish-mode. The robot is 60 cm long and 50 cm wide, weighing 2.1 kg, and consists of a re-configurable body and 8 compliant arms that are actuated independently by waterproof servomotors. In the robot, the octopus-mode is expected to perform unique tasks such as object manipulation and ground locomotion as demonstrated in literature, while the fish-mode is promising to swim faster and efficiently to travel long distance. With this platform, we investigate effectiveness of adaptive morphology in bio-inspired underwater robots. For this purpose, we evaluate the robot in terms of the cost of transport and the swimming efficiency of both the morphologies. The fish-mode exhibited a lower cost of transport of 2.2 and higher efficiency of 1.2 % compared to the octopus-mode, illustrating the effect of the multiple swimming modes by adaptive morphology

    Design and implementation of biomimetic robotic fish Hongan Wang.

    Get PDF
    The study of biomimetic robotic fish has received a growing amount of research interest in the past several years. This thesis describes the development and testing of a novel mechanical design of a biomimetic robotic fish. The robotic fish has a structure which uses oscillating caudal fins and a pair of pectoral fins to generate fish-like swimming motion. This unique design enables the robotic fish to swim in two swimming modes, namely Body/Caudal Fin (BCF) and Median/Paired Fin (MPF). In order to combine BCF mode with MPF mode, the robotic fish utilizes a flexible posterior body, an oscillating foil actuated by three servomotors, and one pair of pectoral fins individually driven by four servomotors. Effective servo motions and swimming gaits are then proposed to control its swimming behaviour. Based on these results, fish-like swimming can be achieved including forward, backward, and turning motions. An experimental setup for the robotic fish was implemented using machine vision position and velocity measurement. The experimental results show that the robotic fish performed well in terms of manoeuvrability and cruise speed. Based on the experimental data, a low order dynamic model is proposed and identified. Together, these results provide an experimental framework for development of new modelling and control techniques for biomimetic robotic fish

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Characterization of the Noise Generation from Biological and Bio-Inspired Swimmers with a Novel Fluid-Acoustic Numerical Framework

    Get PDF
    An unsteady potential flow boundary element method (BEM) is coupled to a transient acoustic BEM to gain insight into the hydrodynamic and acoustic characteristics of fish swimming. The transient acoustic BEM formulation features the novel application of

    An analysis of the locomotory behaviour and functional morphology of errant polychaetes

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Experimental visualization of the near-boundary hydrodynamics about fish-like swimming bodies

    Get PDF
    Thesis (Ph. D.)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering and the Woods Hole Oceanographic Institution), 2001.Includes bibliographical references (leaves 149-155).This thesis takes a look at the near boundary flow about fish-like swimming bodies. Experiments were performed up to Reynolds number 106 using laser Doppler velocimetry and particle imaging techniques. The turbulence in the boundary layer of a waving mat and swimming robotic fish were investigated. How the undulating motion of the boundary controls both the turbulence production and the boundary layer development is of great interest. Unsteady motions have been shown effective in controlling flow. Tokumaru and Dimotakis (1991) demonstrated the control of vortex shedding, and thus the drag on a bluff body, through rotary oscillation of the body at certain frequencies. Similar results of flow control have been seen in fish-like swimming motions. Taneda and Tomonari (1974) illustrated that, for phase speeds greater than free stream velocity, traveling wave motion of a boundary tends to retard separation and reduce near-wall turbulence. In order to perform experiments on a two-dimensional waving plate, an apparatus was designed to be used in the MIT Propeller tunnel, a recirculating water tunnel. It is an eight-link piston driven mechanism that is attached to a neoprene mat in order to create a traveling wave motion down the mat. A correlation between this problem and that of a swimming fish is addressed herein, using visualization results obtained from a study of the MIT RoboTuna. The study of the MIT RoboTuna and a two-dimensional representation of the backbone of the robotic swimming fish was performed to further asses the implications of such motion on drag reduction. PIV experiments with the MIT RoboTuna indicate a laminarisation of the near boundary flow for swimming cases compared with non-swimming cases along the robot body. Laser Doppler Velocimetry (LDV) and PIV experiments were performed.(cont.) LDV results show the reduction of turbulence intensity, near the waving boundary, for increasing phase speed up to 1.2 m/s after which the intensities begin to increase again through Cp = 2.0 where numerical simulations by Zhang (2000) showed separation reappearing on the back of the crests. Velocity profiles who an acceleration of the fluid beyond the inflow speed at the crest region increases with increased phase speed and no separation was present in the trough for the moving wall. The experimental techniques used are also discussed as they are applied in these experiments.by Alexandra Hughes Techet.Ph.D

    OBSERVABILITY-BASED SAMPLING AND ESTIMATION OF FLOWFIELDS USING MULTI-SENSOR SYSTEMS

    Get PDF
    The long-term goal of this research is to optimize estimation of an unknown flowfield using an autonomous multi-vehicle or multi-sensor system. The specific research objective is to provide theoretically justified, nonlinear control, estimation, and optimization techniques enabling a group of sensors to coordinate their motion to target measurements that improve observability of the surrounding environment, even when the environment is unknown. Measures of observability provide an optimization metric for multi-agent control algorithms that avoid spatial regions of the domain prone to degraded or ill-conditioned estimation performance, thereby improving closed-loop control performance when estimated quantities are used in feedback control. The control, estimation, and optimization framework is applied to three applications of multi-agent flowfield sensing including (1) environmental sampling of strong flowfields using multiple autonomous unmanned vehicles, (2) wake sensing and observability-based optimal control for two-aircraft formation flight, and (3) bio-inspired flow sensing and control of an autonomous unmanned underwater vehicle. For environmental sampling, this dissertation presents an adaptive sampling algorithm steering a multi-vehicle system to sampling formations that improve flowfield observability while simultaneously estimating the flow for use in feedback control, even in strong flows where vehicle motion is hindered. The resulting closed-loop trajectories provide more informative measurements, improving estimation performance. For formation flight, this dissertation uses lifting-line theory to represent a two-aircraft formation and derives optimal control strategies steering the follower aircraft to a desired position relative to the leader while simultaneously optimizing the observability of the leader's relative position. The control algorithms guide the follower aircraft to a desired final position along trajectories that maintain adequate observability and avoid areas prone to estimator divergence. Toward bio-inspired flow sensing, this dissertation presents an observability-based sensor placement strategy optimizing measures of flowfield observability and derives dynamic output-feedback control algorithms autonomously steering an underwater vehicle to bio-inspired behavior using a multi-modal artificial lateral line. Beyond these applications, the broader impact of this research is a general framework for using observability to assess and optimize experimental design and nonlinear control and estimation performance

    Development of a formation control algorithm to coordinate multiple biomimetic AUVs in the presence of realistic environmental constraints

    Get PDF
    Biomimetic Autonomous Underwater Vehicles (BAUVs) are a class of Uncrewed Underwater Vehicle (UUV) that mimic the propulsive and steering mechanisms of real fish. However, as with all UUVs, the range and endurance of these vehicles remains limited by the finite energy source housed on board the vehicle. Unsurprisingly, a consequence of this finite energy source is that BAUVs/UUVs are incapable of completing the large-scale oceanographic sampling missions required to drastically improve our understanding of the Earth’s oceans and its processes. To overcome this limitation, this thesis aims to investigate the feasibility of deploying a self-coordinating group of BAUVs capable of completing the aforementioned oceanic surveying missions despite the constraints of the local operating environment. To achieve this, the work presented in this thesis can be separated into four distinct parts. The first of which is the development of a suitable mathematical model that accurately models the dynamics of the RoboSalmon BAUV designed and built at the University of Glasgow. As well as ensuring the models validity, its ability to efficiently simulate multiple vehicles simultaneously is also demonstrated. The design and implementation of the formation control algorithm used to coordinate the vehicles is then presented. This process describes the alterations made to a biologically-inspired algorithm to ensure the required parallel line formation required for efficient oceanic sampling can be generated. Thereafter, the implementation of a realistic representation of the underwater communication channel and its debilitating effect on the algorithms ability to coordinate the vehicles as required is presented. The thesis then describes the incorporation of two methodologies designed specifically to overcome the limitations associated with the underwater communication channel. The first of which involves the implementation of tracking/predictive functionality while the second is a consensus based algorithm that aims to reduce the algorithms reliance on the communication channel. The robustness of these two methodologies to overcoming not only the problematic communication channel but also the inclusion of additional external disturbances is then presented. The results demonstrate that while the tracking/predictive functionality can overcome the problems associated with the communication channel, its efficiency significantly reduces when the external disturbances are taken into consideration. The consensus based methodology meanwhile generates the required formation regardless of the constraints imposed by both the communication channel and the additional external disturbances and therefore provides the more robust solution

    Reproductive adaptations to reduce locomotor costs in viviparous fish (Poeciliidae)

    Get PDF
    Viviparity, a live-bearing mode of reproduction, has evolved over 100 times independently in vertebrate animals. Despite its frequent evolution, viviparity has a number of hypothesised disadvantages compared to the ancestral mode of reproduction, oviparity (egg-laying). One of these disadvantages is a reduction in locomotor performance during pregnancy, the period of internal development of the embryos. Adaptations to a live-bearing reproductive mode could have evolved to reduce these locomotor costs. In this thesis, I aim to find whether matrotrophy, post-fertilization nutrient provisioning (e.g. through a placental structure), and superfetation, the presence of multiple broods of different developmental stages, reduce the locomotor performance decline during pregnancy in the Poeciliidae, live-bearing fishes. In Chapter 2, we review the literature on the effects of pregnancy on morphology, performance and fitness. The biomechanics of each mode of locomotion (walking, swimming or flying) are distinct, and are affected differently by the added mass and volume of pregnancy. Furthermore, we list the possible adaptations that have evolved to reduce the locomotor costs of pregnancy, and divide them into three different categories: adaptations that reduce the locomotor costs of live-bearing, adaptations with which the locomotor costs of live-bearing are avoided, and adaptations to the life history of the animal. Lastly, we discuss hiatuses in the literature and experimental procedures to quantify the hypothesised benefit of adaptations. In Chapter 3, we compare the morphological changes during pregnancy in two closely-related species of live-bearing fish: Poeciliopsis turneri and Poeciliopsis gracilis. These species mainly differ in their mode of nutrient provisioning: P. gracilis is lecithotrophic and P. turneri is an extensive matrotroph. We tracked the morphological changes in 3D using a non-invasive method that creates three-dimensional body models. We find that P. turneri is more slender during the early stages of pregnancy, but increase in size more rapidly. This is in line with the locomotor costs hypothesis, which predicts that matrotrophic fish are more slender during the early stages of pregnancy, but that the difference between the body shapes of lecithotrophic and matrotrophic fish diminishes as pregnancy progresses. Our results indicate that matrotrophy could indeed provide a morphological advantage during pregnancy. Fast-start performance, a manoeuvre fish deploy to escape predatory strikes, is important for individual survival. In Chapter 4, we use state-of-the-art biomechanical methods to, for the first time, quantify this manoeuvre in three-dimensional space in adult fish (Heterandria formosa). We show that fish can orient their escapes in up- and downwards direction, and that this is correlated with a change in pitch angle of the body. Changes in roll angle of the body were not correlated with orientation of the fish. We furthermore demonstrate that stage 1 of the fast start, often described as a preparatory stage, can already contribute to propulsion. The results from Chapter 4 indicate that three-dimensional measurements of fast-start manoeuvres provide novel insights that were often overlooked. Measuring fast starts in three-dimensional space is relevant in determining the adverse effects of pregnancy on locomotor performance. We did this by comparing three species of live-bearing fish: P. turneri, H. formosa and Phalloptychus januarius. In Chapter 5, we show that pregnancy-induced changes in abdominal width are correlated with a reduction in performance in the horizontal plane (maximal horizontal speed, change in yaw angle), but less so in the vertical plane (maximal vertical speed, change in pitch angle). Furthermore, we demonstrate that an increase in abdominal width is correlated with a decrease in abdominal curvature and, for some species, in a decrease in maximal curvature rate in the abdomen. Lastly, we show that the pregnancy-induced morphological changes depend on the level of superfetation: species with a high level of superfetation experience higher frequency, but smaller amplitude changes in the shape of the abdomen. Whether superfetation actually results in a more slender body shape, as predicted by the locomotor costs hypothesis, depends on the level of reproductive investment. In this thesis, I show that pregnancy induces changes in morphology which comes with a cost in fast-start performance. Both matrotrophy and superfetation affect how body shape changes due to pregnancy, but whether the latter provides beneficial changes depends on the level of reproductive investment. Furthermore, I reveal that fast starts can have a substantial three-dimensional component which is relevant both to biomechanicists that aim to understand the physical and physiological mechanisms underlying this manoeuvre and to evolutionary biologists that strive to answer performance-related questions.</p
    corecore