206 research outputs found

    Biologically Inspired Robots

    Get PDF

    Development and Control of Articulated Mobile Robot for Climbing Steep Stairs

    Get PDF
    In this paper, we develop an articulated mobile robot that can climb stairs, and also move in narrow spaces and on 3-D terrain. This paper presents two control methods for this robot. The first is a 3-D steering method that is used to adapt the robot to the surrounding terrain. In this method, the robot relaxes its joints, allowing it to adapt to the terrain using its own weight, and then, resumes its motion employing the follow-the-leader method. The second control method is the semi-autonomous stair climbing method. In this method, the robot connects with the treads of the stairs using a body called a connecting part, and then shifts the connecting part from its head to its tail. The robot then uses the sensor information to shift the connecting part with appropriate timing. The robot can climb stairs using this method even if the stairs are steep, and the sizes of the riser and the tread of the stairs are unknown. Experiments are performed to demonstrate the effectiveness of the proposed methods and the developed robot

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy

    The biomechanical structure of the seahorse tail as a source of inspiration for industrial design

    Get PDF

    Simplifying robotic locomotion by escaping traps via an active tail

    Get PDF
    Legged systems offer the ability to negotiate and climb heterogeneous terrains, more so than their wheeled counterparts \cite{freedberg_2012}. However, in certain complex environments, these systems are susceptible to failure conditions. These scenarios are caused by the interplay between the locomotor's kinematic state and the local terrain configuration, thus making them challenging to predict and overcome. These failures can cause catastrophic damage to the system and thus, methods to avoid such scenarios have been developed. These strategies typically take the form of environmental sensing or passive mechanical elements that adapt to the terrain. Such methods come at an increased control and mechanical design complexity for the system, often still being susceptible to imperceptible hazards. In this study, we investigated whether a tail could serve to offload this complexity by acting as a mechanism to generate new terradynamic interactions and mitigate failure via substrate contact. To do so, we developed a quadrupedal C-leg robophysical model (length and width = 27 cm, limb radius = 8 cm) capable of walking over rough terrain with an attachable actuated tail (length = 17 cm). We investigated three distinct tail strategies: static pose, periodic tapping, and load-triggered (power) tapping, while varying the angle of the tail relative to the body. We challenged the system to traverse a terrain (length = 160 cm, width = 80 cm) of randomized blocks (length and width = 10 cm, height = 0 to 12 cm) whose dimensions were scaled to the robot. Over this terrain, the robot exhibited trapping failures independent of gait pattern. Using the tail, the robot could free itself from trapping with a probability of 0 to 0.5, with the load-driven behaviors having comparable performance to low frequency periodic tapping across all tested tail angles. Along with increasing this likelihood of freeing, the robot displayed a longer survival distance over the rough terrain with these tail behaviors. In summary, we present the beginning of a framework that leverages mechanics via tail-ground interactions to offload limb control and design complexity to mitigate failure and improve legged system performance in heterogeneous environments.M.S
    • …
    corecore