3 research outputs found

    Variable Gain Super Twisting Sliding Mode Control (VGSTW) application in longitudinal plane of Autonomous Underwater Glider (AUG)

    Get PDF
    This paper presents a robust control design using variable gain super twisting sliding mode control application in Autonomous Underwater Glider (AUG). AUGs are known as underactuated systems and very nonlinear in nature make difficult to control. The controller is designed for longitudinal plane of an AUG that tracks the pitching angle and net buoyancy of a ballast pump for nominal system, system in existence of external disturbance and parameter variations in hydrodynamic coefficients. The Lyapunov stability theorem has proved that the proposed control law is satisfied the stability sufficient condition. The simulation results have shown that the proposed controller has improved the transient response, reduced steady error and chattering effects in control input and sliding surface in all cases

    Variable Gain Super Twisting Sliding Mode Control (VGSTW) application in longitudinal plane of Autonomous Underwater Glider (AUG)

    Get PDF
    904-913This paper presents a robust control design using variable gain super twisting sliding mode control application in Autonomous Underwater Glider (AUG). AUGs are known as underactuated systems and very nonlinear in nature make difficult to control. The controller is designed for longitudinal plane of an AUG that tracks the pitching angle and net buoyancy of a ballast pump for nominal system, system in existence of external disturbance and parameter variations in hydrodynamic coefficients. The Lyapunov stability theorem has proved that the proposed control law is satisfied the stability sufficient condition. The simulation results have shown that the proposed controller has improved the transient response, reduced steady error and chattering effects in control input and sliding surface in all cases

    A GAIN-SCHEDULED CONTROL SCHEME FOR IMPROVED MANEUVERABILITY AND POWER EFFICIENCY OF UNDERWATER GLIDERS

    Get PDF
    Underwater gliders are a relatively new type of low-power, long duration underwater vehicle that use changes in buoyancy to propel themselves forward. They are widely used today for oceanographic research, and a number of theoretical control schemes have been derived over the years. However, despite their nonlinear dynamics that evolve as a function of their environment and operating conditions, most fielded gliders use linear control methods, such as static-gain proportional-integral (PI) or proportional-integral-derivative (PID) compensators for motion control, which can significantly limit vehicle performance. This thesis develops an alternative approach to underwater glider control that employs control system gain-scheduling to improve vehicle performance and efficiency over a wider range of operating conditions as compared to static or fixed-gain approaches. The primary contribution of this thesis is the development of a practical gain-scheduling procedure using linearized models of the decoupled pitch and yaw dynamics of the vehicle. This methodology improves on the current fixed-gain topologies used on fielded gliders today, while being straightforward and cost-effective to implement. In this thesis, the development of a nonlinear dynamical model of a Slocum glider using computer-aided design (CAD) and computational fluid dynamics (CFD) simulations was also carried out to support the high-fidelity characterization of the controller topologies. A nonlinear numerical simulation of the Slocum glider was developed in Matlab and was used to assess the performance improvements and the increased robustness of the gain-scheduled PID method to a standard fixed-gain PID approach
    corecore