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Abstract

Underwater gliders are a relatively new type of low-power, long duration underwater

vehicle that use changes in buoyancy to propel themselves forward. They are widely

used today for oceanographic research, and a number of theoretical control schemes

have been derived over the years. However, despite their nonlinear dynamics that

evolve as a function of their environment and operating conditions, most fielded

gliders use linear control methods, such as static-gain proportional-integral (PI) or

proportional-integral-derivative (PID) compensators for motion control, which can

significantly limit vehicle performance.

This thesis develops an alternative approach to underwater glider control that employs

control system gain-scheduling to improve vehicle performance and efficiency over a

wider range of operating conditions as compared to static or fixed-gain approaches. The

primary contribution of this thesis is the development of a practical gain-scheduling

procedure using linearized models of the decoupled pitch and yaw dynamics of the

vehicle. This methodology improves on the current fixed-gain topologies used on

fielded gliders today, while being straightforward and cost-effective to implement.

In this thesis, the development of a nonlinear dynamical model of a Slocum glider using

computer-aided design (CAD) and computational fluid dynamics (CFD) simulations

was also carried out to support the high-fidelity characterization of the controller

topologies. A nonlinear numerical simulation of the Slocum glider was developed
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in Matlab and was used to assess the performance improvements and the increased

robustness of the gain-scheduled PID method to a standard fixed-gain PID approach.

Primary Reader and Advisor: Dr. Neil F. Palumbo

Secondary Reader: Dr. Adam Watkins

Tertiary Reader: Dr. Cleon Davis
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Chapter 1

Introduction

Underwater gliders are a relatively new and innovative class of autonomous underwater

vehicle (AUV) that moves through the water column by controlling its attitude and

buoyancy using internal actuators. Gliders have a number of useful applications, most

notably in oceanographic sensing and data collection, as well as a variety of defense

applications. They are attractive sensing platforms due to their relatively low size,

weight and cost, autonomy, and long-range, long-duration capabilities. For these rea-

sons, the last 20 years have seen a wide adoption of gliders for oceanographic research

purposes, and with that, extensive research into various control strategies for these

systems. However, a gap remains between theoretical and realizable control methods

that are simultaneously easy to implement and provide robust control in the dynamic

ocean environment due to power and processing constraints, as well as sensor size and

weight limitations. This thesis attempts to bridge that gap through development of

a nonlinear dynamical model of an underwater glider and a gain-scheduled control

scheme that is simple to derive and characterize.

There are two key areas of this work:

1. The modeling of the nonlinear dynamics of an underwater glider through first-

principles and CFD methods. As part of this work, a CAD model of a Slocum glider
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was created, and CFD was used to determine the forces and moments acting on the

vehicle at different operating points (e.g. angle-of-attack, angle-of-sideslip). These

nonlinear force and moment coefficients were applied to the six-degree-of-freedom

(6DoF) dynamic equations of vehicle motion in order to more precisely represent the

actual vehicle response characteristics (e.g., roll-pitch-yaw coupling). The development

of a ground truth dynamical model is necessary for systematic model-based control

design for this class of vehicle and allows for the comparison of linear and nonlinear

control methods in a simulated environment. This modeling methodology can also

be tailored to other gliders for the purpose of predicting performance, developing

improved control and navigation algorithms, and design analysis.

2. The development and analysis of a gain-scheduled controller through the use of

decoupled, linearized dynamic equations of motion. By linearizing the dynamics of an

underwater glider at various operating points, it is possible to apply linear control

theory methods to design stable and highly performant controllers that better account

for the nonlinear variations in the vehicle dynamics as the operating point changes.

A straightforward methodology is developed for designing such a system, and the

differences in vehicle performance are discussed.

In this introduction, we describe the attributes of underwater gliders (Section 1.1),

their applications in oceanographic research (Section 1.2), the motivation behind

studying more performant control schemes (Section 1.3), and provide a literature

review of previous work on the use and control of underwater gliders (Section 1.4).
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1.1 Glider Characteristics and Design

Underwater gliders are widely used to gather oceanographic data due to their power

efficiency and long-range capabilities. These gliders are trimmed to be neutrally

buoyant in water so that by ingesting water (decreasing their displacement) they

become heavier than the surrounding fluid and sink, and by expelling water (increasing

their displacement) they become lighter than the surrounding fluid and rise. The

glider’s fixed wings convert the vertical motion of the vehicle to the horizontal plane

by producing a forward force that propels the vehicle without need for a conventional

thruster. This creates a sawtooth flight profile in the vertical plane that is unique to un-

derwater gliders (Figure 1-1). Gliders may also make themselves neutrally buoyant and

drift with the current, rest on the ocean bottom, or float on the surface like a spar buoy.

Figure 1-1. Typical underwater glider flight profile in the vertical plane.

The need for gliders to perform both descending and ascending glides places constraints

on the wing design of the vehicles. The change in glide direction results in the lift

force generated by the wings to change directions from upward on descending glides to

downward on ascending glides. Because it is necessary to change the direction of the lift

force, the glider’s wings must be symmetrically cambered in order to produce relatively

equal amounts of lift in both glide directions. Most gliders use simple flat-plate wings
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that are placed near the center of the body. The changing lift direction also results

in an interesting effect where an ascending glider must bank to port in order to turn

starboard, while a descending glider must bank to starboard in order to turn starboard.

The use of buoyancy propulsion systems and low-power designs make gliders capable

of long ranges and high-endurance deployments. Their high transport efficiency results

from the use of wings rather than a propeller, as well as their low speeds with respect

to the surrounding water, both of which minimize the power needed to overcome

the drag of the vehicle [40]. Most commercial gliders have a max operating depth of

about 1000 m, but there are some experimental models that operate down to 6000 m.

Compared to other AUVs, they are relatively slow, typically travelling horizontally

between 0.5 to 1 knot (0.25 to 0.5 m/s), but gliders have much longer ranges and

mission lifetimes. The typical mission lifetime of a glider is on the order of months,

with ranges in the hundreds to thousands of kilometers.

To navigate, gliders are programmed to follow a desired horizontal path through the

water, usually defined by a set of waypoints. Gliders communicate by satellite while

on the surface through an antenna mounted in either the tail or wings, allowing the

transmission of data to the shore and the reception of commands from the operator(s).

While on the surface, gliders also get a GPS position update that allows them to

correct for any errors in their dead-reckoned position estimates. Without knowledge

of their position underwater, currents can cause large position errors between the true

position of the vehicle and its estimated position. If properly equipped, gliders can use

doppler velocity logs (DVL) to get better estimates of their velocities while underway,

but this technique is limited to areas where the glider is within range of the seafloor.
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1.2 Applications in Oceanography

Underwater gliders are well-suited for a variety of applications in remote sensing for

physical, biological, and chemical oceanography. Commercial applications include use

as air-to-water communication gateways, navigation aids, or infrastructure inspec-

tion. For military applications, gliders can be used for maritime reconnaissance and

tactical oceanography. Gliders can operate individually or in groups and may adjust

their missions according to operator instruction or observed sensor information. A

particularly promising prospect is the deployment of a fleet of gliders in a region of

interest to provide high-resolution, 3-dimensional oceanographic data in near real time.

Gliders have played an important role in collecting data for the development of ocean

models, and their importance in understanding the ocean’s role in our planet’s ecosys-

tem cannot be overstated. The oceans are massive in scale and their dynamics vary

both temporally and spatially. Thus, the collection of data at any one point in space

and time is typically less useful than over large regions and time scales. Compared

to other modern methods for gathering oceanographic data, gliders offer a variety of

advantages. Ships are expensive to operate and are limited in number and availabil-

ity. Fixed moorings gather data at a single point in the ocean, and drifting sensors

cannot choose their path through the ocean. Gliders overcome many of these challenges.

Gliders provide an efficient method for accessing certain temporal and spatial scales.

Due to their compactness and light weight, they can be deployed from small boats

and are especially useful near land where it is more economical to operate. They also

provide data that connects coastal and open oceans given their ability to operate in

and across both regimes. In short, gliders are a crucial tool for studying the ocean

interior that provide complementary information to other available tools.
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1.3 Motivation for Study

Despite their widespread use, the nonlinear dynamics of gliders are poorly understood

and lack a simple, robust and easy-to-implement control scheme that accounts for

modeling uncertainties and environmental disturbances. One barrier is that the analy-

sis of the dynamics of underwater gliders is challenging, because it brings together

areas of aerospace and marine engineering in interesting ways. Additionally, the use of

internal mass actuators is novel for AUVs and introduces nonlinear control dynamics

into the already nonlinear and under-actuated system, making motion control uniquely

challenging.

Underwater gliders are usually controlled in the vertical plane (depth) through a

combination of open-loop control of their buoyancy and proportional-integral (PI)

feedback control of their pitch angle using a moving-mass actuation technique. To

steer in the horizontal plane, PI feedback compensation is employed to control the yaw

of the vehicle using a rudder and/or the roll of the vehicle using a rotating internal

ballast. In typical glider applications, fixed-gain PI compensators are employed; so

the compensation feedback gains do not adapt as a function of operating point (e.g.,

depth, temperature, velocity, angle-of-attack, etc.). It is possible that this fixed-gain

approach does not “optimally” compensate for the nonlinear variations of the hy-

drodynamic forces and moments acting on these vehicles as the operating point evolves.

For general underwater data gathering needs, a fixed-gain control scheme is usually

sufficient since the data of interest is in the water column (vertical plane), and there is

not much need for complex maneuvers or accurate control of the horizontal path of the

vehicle. However, in cases where higher precision control is needed, either to minimize

energy consumption or to navigate through complex terrain, a more performant and
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robust motion control method is required.

1.4 Literature Review

In 1989, Henry Stommel first presented the concept of underwater gliders [51] in a fu-

turistic narrative story that described a network of mobile oceanic sensors that allowed

for unprecedented real-time knowledge about the ocean interior. In pursuit of that

dream, researchers have developed various glider designs over the past 30 years, such as

the Spray [21], Slocum [27], Seaglider [11], Sea-wing [29], and Petrel [24] gliders. Initial

research using gliders involved simple pressure, conductivity, temperature, and density

(CTD) sampling, but more recent studies have used gliders to measure chlorophyll

fluorescence, acoustic backscatter, internal waves, dissolved oxygen, nitrate, optical

backscatter, optical transmission, passive acoustics [15], microstructure temperature

and shear [47], oceanic front and eddy formation [23], ocean biogeochemistry [8], and

even oil spill plumes [25]. In the past few decades, underwater gliders have proven

themselves as useful sensing platforms in oceanographic research.

The operating environment for underwater gliders is time varying and complex. There

are many factors in an ocean environment that can adversely affect a glider’s perfor-

mance; therefore, it is important to validate any vehicle’s motion control capabilities

prior to fielding the system for scientific studies. This control validation is typically

done in simulation due to the exorbitant cost of performing regular sea trials. Other

benefits of simulation are that one can assess performance reliability across many

trials and can change a large number of environmental factors to determine how they

would impact performance. In 2001, Leonard and Graver proposed a now-famous

dynamic model of an underwater glider based on the momentum and kinetic energy

theorems [41]. This model has been widely used in feedback control [34], parameter
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identification [6, 13], stability analysis [2], and controller design [12] for underwater

gliders.

A wide variety of control strategies have been proposed to control the motion of

underwater gliders, such as PID controllers [42, 30], Linear Quadratic Regulators

(LQR) [34, 12, 38, 35, 22, 17, 41], sliding mode controllers [52], model predictive con-

trollers [28, 12], feedforward/feedback controllers [16], passivity-based controllers [53],

H-infinity controllers [45], fuzzy controllers [26, 20], adaptive controllers based on a

backstepping technique [14], neural network based controllers [12, 36], and homeostatic

controllers [37, 39]. Although some of these methods rely on dynamically changing

the gains of PID controllers, they require significant and potentially costly changes to

the overall control structure, rather than using previously derived gain tables which is

commonly done in a wide array of industries [50].

Gain-scheduling refers to techniques in which intuitive linear modeling and control

synthesis techniques are leveraged for nonlinear control design problems [50]. Although

thinly discussed in academic literature prior to 1990, gain scheduling has been used

since at least the 1950s on systems ranging from auto-pilots for planes and missiles [44]

to automotive engines [48]. Gain-scheduling has been used in conventional underwater

vehicle control to account for changes in actuator induced forces and moments with

speed [3], mitigating the effects of parametric uncertainties on under-actuated UUVs

[10], and transitioning between different medium densities for hybrid UUV/UAVs [9].

It is often employed in thruster-based underwater vehicle control to maintain stability,

particularly when considering larger velocity dynamics and disturbances [49]. However,

this is not the case for underwater gliders. This thesis will fill this knowledge gap and

has the potential to improve glider performance in complex terrains, thus laying the

foundation for novel oceanic discoveries.
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Chapter 2

Modeling and Simulation of the
Glider

This chapter details a model of the dynamics of an underwater glider. The glider has

a body with fixed wings, a raised tail with a rudder, a buoyancy engine for ballast

control, and an internal moving mass. The model is developed from first principles

and can be adapted to any glider provided its mass configuration and geometry are

defined. For the purposes of this study, a Slocum glider was used. A CAD model of the

glider was developed and CFD was used to determine the hydrodynamic coefficients

for the vehicle. The 6-DOF dynamical model was coded in Matlab, and a GUI was

created for the easy setup of simulation runs and processing of data. Additionally,

ocean current and density stratification models were developed and incorporated into

the simulation to assess the systems response to environmental disturbances.

2.1 Coordinate Frames and Transformations

2.1.1 Reference Frames

World Frame

The world frame is described by a non-rotating, earth-fixed, North-East-Down (NED)

coordinate frame. The origin of the world frame is the initial deployment position of

the vehicle. Let i, j, and k be the unit vectors in the North, East, and Down directions,
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respectively, as shown in Figure 2-1. This choice of world frame is consistent with

underwater vehicle literature, such as in [31] and others.

Figure 2-1. Glider world, body and wind frames.

Body Frame

The glider body frame is fixed to the glider vehicle body with its origin at the glider’s

center-of-buoyancy (CB). The body x axis is positive in the direction of the glider’s

nose, the body y axis is positive in the direction of the glider’s right wing, and the

body z axis is orthogonal to both the x and y axes and is positive out the bottom of

the vehicle, as shown in Figure 2-1. The body velocities are defined along the body x,

y, and z axes, where surge is u, sway is v, and heave is w, respectively.

Wind Frame

The hydrodynamic forces acting on an underwater vehicle depend on the velocity and

orientation of the vehicle relative to the fluid it is moving through. As is standard in

aircraft and underwater vehicle literature, the orientation of the wind frame relative
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to the body frame is described by two aerodynamic angles, the angle-of-attack α, and

the angle-of-sideslip β. The wind frame origin is the glider’s CB, and α and β are

defined such that one axis of the wind frame is aligned with the glider’s velocity vector

V, as shown in Figure 2-1. The aerodynamic angles are defined as α = tan−1
(︂
w
u

)︂
and

β = sin−1
(︂
v
V

)︂
.

2.1.2 Transformations

The transformation between the body and world coordinate frames is parameterized

by the Euler angles, where ϕ is the roll angle, θ is the pitch angle, and ψ is the yaw

angle. Euler angles describe the orientation of the vehicle body frame relative to the

world frame through a series of three rigid body rotations about specified coordinate

axes. The order of axis rotations is fixed by the choice of an Euler angle convention.

The yaw, pitch, roll convention is the standard convention in aircraft and underwater

vehicle dynamics, and is used here.

Rotation matrices are used to map vectors expressed in body frame coordinates into

world frame coordinates. The three Euler angle rotations are represented by rotation

matrices Rψ, Rθ, and Rϕ, where:

Rψ =

⎛⎜⎜⎝
cosψ sinψ 0

−sinψ cosψ 0
0 0 1

⎞⎟⎟⎠ ,Rθ =

⎛⎜⎜⎝
cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

⎞⎟⎟⎠ ,

Rϕ =

⎛⎜⎜⎝
1 0 0
0 cosϕ sinϕ

0 −sinϕ cosϕ

⎞⎟⎟⎠ .
(2.1)

By multiplying the three matrices in the proper order, we obtain the rotation matrix

from the world frame to the body frame REB = RϕRθRψ:
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REB =

⎛⎜⎜⎜⎜⎜⎝
cosψcosθ sinψcosθ −sinθ

−sinψcosθ + cosψsinθsinϕ cosψcosθ + sinϕsinθsinψ cosθsinϕ

sinψsinϕ+ cosψcosϕsinθ −cosψsinϕ+ sinθsinψcosϕ cosθcosψ

⎞⎟⎟⎟⎟⎟⎠
(2.2)

Euler Angle Angular Rates and Gimbal Lock

In order to solve the 6-DOF dynamical equations described in 2.2, we must solve for

the Euler angle angular rates. The glider angular velocity with respect to the body

frame ω̇ may be written in terms of the Euler angle rates as

ω̇ =

⎛⎜⎜⎜⎜⎜⎝
p

q

r

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ϕ̇

0

0

⎞⎟⎟⎟⎟⎟⎠+ Rϕ

⎛⎜⎜⎜⎜⎜⎝
0

θ̇

0

⎞⎟⎟⎟⎟⎟⎠+ RϕRθ

⎛⎜⎜⎜⎜⎜⎝
0

0

ψ̇

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
1 sinϕtanθ cosϕtanθ

0 cosϕ −sinϕ

0 −sinϕ cosθcosϕ

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ϕ̇

θ̇

ψ̇

⎞⎟⎟⎟⎟⎟⎠

(2.3)

Inverting the matrix in Equation 2.3 gives

⎛⎜⎜⎜⎜⎜⎝
ϕ̇

θ̇

ψ̇

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 sinϕtanθ cosϕtanθ

0 cosϕ −sinϕ

0 sinϕ
cosθ

cosϕ
cosθ

⎞⎟⎟⎟⎟⎟⎠ ω̇ (2.4)

Note that this transformation is singular for pitch angles where θ = ±90◦. This

phenomenon is known as gimbal lock, and it arises because Euler angles are non-

unique. A common method for overcoming gimbal lock is to parameterize a vehicle’s

orientation using quaternions.
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2.1.3 Quaternions

Quaternions parameterize orientation using four parameters and one constraint, which

avoids the gimbal lock singularities that can occur with Euler angles. Euler’s theory

of rotation states that any rigid body rotation may be parameterized by specifying

an axis of rotation and a rotation angle about that axis. If we define the unit vector

along the axis of rotation to be c = (c1, c2, c3)T , the rotation angle to be δ, and the

quaternion vector as:

q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0

q1

q2

q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos δ2

c1sin
δ
2

c2sin
δ
2

c3sin
δ
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ cos δ2

csin δ2

⎞⎟⎠ (2.5)

where q is subject to the constraint:

qTq = q2
0 + q2

1 + q2
2 + q2

3 = 1 (2.6)

then the corresponding rotation matrix may be written as:

REB =

⎛⎜⎜⎜⎜⎜⎝
q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 + q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞⎟⎟⎟⎟⎟⎠ (2.7)

The quaternion parameters may be written in terms of the Euler angles ϕ, θ, and ψ

as:
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q0 = cos
ϕ

2 cos
θ

2cos
ψ

2 + sin
ϕ

2 sin
θ

2sin
ψ

2 (2.8)

q1 = sin
ϕ

2 cos
θ

2cos
ψ

2 − cos
ϕ

2 sin
θ

2sin
ψ

2 (2.9)

q2 = cos
ϕ

2 sin
θ

2cos
ψ

2 + sin
ϕ

2 cos
θ

2sin
ψ

2 (2.10)

q3 = cos
ϕ

2 cos
θ

2sin
ψ

2 − sin
ϕ

2 sin
θ

2cos
ψ

2 (2.11)

The Euler angles may be found directly from the quaternion parameters as follows:

tanϕ = 2(q0q1 − q2q3)
q2

0 − q2
1 − q2

2 + q2
3

(2.12)

sinθ = 2(q0q2 − q3q1) (2.13)

tanψ = 2(q1q2 + q0q3)
q2

0 + q2
1 − q2

2 − q2
3

(2.14)

The quaternion rates may be written in terms of the body angular velocity ω̇ and the

quaternion parameters as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0̇

q1̇

q2̇

q3̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0

q1

q2

q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.15)

Finally, the vehicle angular rates may be written in the body frame as a function of

the quaternion rates as:

⎛⎜⎜⎜⎜⎜⎝
p

q

r

⎞⎟⎟⎟⎟⎟⎠ = 2

⎛⎜⎜⎜⎜⎜⎝
−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0̇

q1̇

q2̇

q3̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.16)
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2.2 Dynamics Model Derivation

The dynamic equations of motion for underwater gliders can be developed from

Newton’s second law, which states that the changes of momentum are due to the

accumulated external forces and torques. Defining F as the external forces, T as the

external torques, m and J as the mass and moment of inertia vectors respectively, and

υ and ω as the linear and angular velocity vectors respectively, this can be expressed

generally as:

m · υ̇ =
∑︂

F (2.17)

J · ω̇ =
∑︂

T (2.18)

Recognizing that the time derivative of momentum is the force acting upon it (F = dp
dt

),

Equations 2.17 and 2.18 can be rearranged and combined into Equation 2.19 to fully

describe the vehicle’s dynamics

⎛⎜⎝υ̇
ω̇

⎞⎟⎠ = I−1

⎛⎜⎝Ṗ

L̇

⎞⎟⎠ (2.19)

where P and L represent the linear and angular momentum matrices, respectively,

and I is a 6x6 inertia matrix shown in Equation 2.20

I =

⎛⎜⎝M3x3 C3x3

D3x3 J3x3

⎞⎟⎠ (2.20)

In Equation 2.20, M3x3 represents the mass matrix of the vehicle which includes the

added mass (Madded) of the fluid acting on the body, and J3x3 is the moment of inertia

matrix which includes the added moment of inertia (Jadded). C3x3 and D3x3 are the

cross term matrices that only include the cross term effects of the variable and moving

masses. The glider is assumed to be operating at low angle of attack; therefore, the
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hydrodynamic effects are largely dominated by the lift and drag forces. Due to this,

the added mass and moments of inertia can be assumed diagonal and can be neglected

in the cross term matrices [41].

Based on rigid body dynamics [54], the linear momentum cross term created by the

rotation of the ballast mass can be calculated using Equation 2.21

Pm = m · υ = mω × r = −mr × ω = −mr̂ω (2.21)

where r is the displacement vector of the mass m in the body frame. Similarly, the

angular momentum cross term of the ballast mass can be calculated using Equation

2.22

Lm = r × P = r × (mυ) = mr × υ = mr̂υ (2.22)

Thus, the cross matrices in the inertia matrix I can be calculated as in Equations 2.23

and 2.24.

C3x3 = −
∑︂

mballastr̂ballast −
∑︂

mmovabler̂movable (2.23)

D3x3 =
∑︂

mballastr̂ballast +
∑︂

mmovabler̂movable (2.24)

Furthermore, the ballast and movable masses create additional moments of inertia

in the moment of inertia matrix J3x3. For a single ballast mass (m), the moment of

inertia can be expressed as

Lm = r × P = r ×mυ = mr × υ

= mr × (ω × r)

= −mr × (r × ω) = −m · r̂ · r̂ · ω

(2.25)

which gives the representation for J3x3 shown in Equation 2.26.

J3x3 = Js + Jadded −
∑︂

mballast · r̂ballast · r̂ballast −
∑︂

mmovable · r̂movable · r̂movable (2.26)
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where Js is the moment of inertia of the fixed masses in the vehicle. The mass matrix

for the vehicle is shown in Equation 2.27.

M3x3 = (
∑︂

ms +
∑︂

mballast +
∑︂

mmovable)I3x3 + Madded (2.27)

With the inertia matrices defined, all that is left to complete the model is the

formulation of the linear and angular momentum terms. To start, the transformation

between the body and world frame must be considered to account for the effect of

gravity on the ballast masses in the system. The transformation is shown in Equations

2.28 and 2.29.

p = RBEP (2.28)

l = RBEL + b × p (2.29)

where p and l are the world frame linear and angular momenta, respectively, and b is

the displacement of masses in the world frame. Taking the derivative of Equations

2.28 and 2.29 gives Equations 2.30 and 2.31

ṗ = RBEṖ + RBEω̂P = fext +
∑︂

fgi (2.30)

l̇ = RBEL̇ + RBEυ × P + b × P = text +
n∑︂
i=1

(bi × fgi) (2.31)

where fext and text are the hydrodynamic forces and torques in the world frame, and

fgi is the gravitational force of a mass mi in the world frame. Rearranging the terms

in Equations 2.30 and 2.31, we can obtain expressions for the rate of change of the

linear and angular momenta in the body frame.

Ṗ = P × ω + R)EBṗ = P × ω +m0gREBk + RWBFext (2.32)

L̇ = L × ω − υ̂P + REB(
n∑︂
i=1

(bi − b) × fgi + text) (2.33)

In Equation 2.33, bi is the displacement of mi in the world frame, while b is the

displacement of the origin of the body frame in the world frame. Therefore, bi − b
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represents the displacement of mi in the body frame, and (bi − b) × fgi represents the

torque created by the gravitational forces acting on the various masses in the system.

Consequently, Equation 2.33 can be rewritten as

L̇ = L×ω−υ̂P+(
∑︂

mballastrballast+
∑︂

mmovablermovable)×gREBk+RWBText (2.34)

where Fext and Text are the hydrodynamic forces and torques in the body frame.

Finally, using Equations 2.21 and 2.22, it can be shown that the linear and angular

momenta in the body frame can be represented by Equations 2.35 and 2.36.

P = Madded ·υ+
∑︂

msυ+
∑︂

mballast(υ+ ω̂rballast)+
∑︂

mmovable(υ+ ω̂rmovable) (2.35)

L = Jaddedω +
∑︂

msω +
∑︂

mballastr̂ballast(υ + ω̂rballast)

+
∑︂

mmovabler̂movable(υ + ω̂rmovable)
(2.36)

Thus, Ṗ and L̇ can be solved by substituting Equations 2.35 and 2.36 into Equations

2.32 and 2.33.

The viscous forces and moments are included in Fext and Text,

Fext =

⎛⎜⎜⎜⎜⎜⎝
−D

SF

−L

⎞⎟⎟⎟⎟⎟⎠ and Text =

⎛⎜⎜⎜⎜⎜⎝
MDL1

MDL2

MDL3

⎞⎟⎟⎟⎟⎟⎠ , (2.37)

where D, L, and SF represent the hydrodynamic drag, lift, and side forces, respectively,

and MDLi
are the hydrodynamic moments. This use of a simplified coefficient-based

model helps to include important aspects of the vehicle dynamics, while using a small

set of parameters so that the model is amenable to control theory tools. The values

for these forces and moments will be derived using CFD simulations, which is further

described in Section 2.3.
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2.2.1 Equation Summary

Given the states [u, v, w, p, q, r]T , where υ = [u, v, w]T represents the body-frame axial

velocities, and ω = [p, q, r]T represents the body-frame rotational rates, a dynamic

model for an underwater glider can be expressed as in Equations 2.38 - 2.46.

υ̇ =

⎛⎜⎜⎜⎜⎜⎝
u̇

v̇

ẇ

⎞⎟⎟⎟⎟⎟⎠ (2.38)

ω̇ =

⎛⎜⎜⎜⎜⎜⎝
ṗ

q̇

ṙ

⎞⎟⎟⎟⎟⎟⎠ (2.39)

I =

⎛⎜⎝M3x3 C3x3

D3x3 J3x3

⎞⎟⎠ (2.40)

M3x3 = (
∑︂

ms +
∑︂

mballast +
∑︂

mmovable)I3x3 + Madded (2.41)

C3x3 = −
∑︂

mballastr̂ballast −
∑︂

mmovabler̂movable (2.42)

D3x3 =
∑︂

mballastr̂ballast +
∑︂

mmovabler̂movable (2.43)

J3x3 = Js + Jadded −
∑︂

mballast · r̂ballast · r̂ballast −
∑︂

mmovable · r̂movable · r̂movable (2.44)

Ṗ = [Madded · υ +
∑︂

msυ +
∑︂
mballast(υ + ω̂rballast) +

∑︂
mmovable(υ + ω̂rmovable)] × ω

+m0gREBk + RWBFext

(2.45)
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L̇ = [Jaddedω+
∑︂

msω +
∑︂

mballastr̂ballast(υ + ω̂rballast)] × ω

−υ̂[Madded · υ +
∑︂

msυ
∑︂

mballast(υ + ω̂rballast) +
∑︂

mmovable(υ + ω̂rmovable)]

+(
∑︂

mballastrballast+
∑︂

mmovablermovable) × gREBk + RWBText

(2.46)

These equations will be used to develop the nonlinear simulation of the glider dynamics

as well as to derive the linearized equations of motion used for control system synthesis.

2.3 Deriving Nonlinear Hydrodynamic Coefficients

The forces and moments represented by Equations 2.38 - 2.46 illustrate the coupled,

nonlinear response characteristics of a general underwater glider. In order to represent

a specific vehicle, the mass distribution and geometry of the vehicle must be defined,

as well as the hydrodynamic coefficients described in Equation 2.37. This model can

then be used as a "truth" simulation for analysis purposes, as well as controller design

and synthesis. The geometry of the Slocum glider was estimated from published work

[4] and the Slocum G2 Operators Manual [46]. Detailed measurements of the tail and

rudder were taken in-person by the author.

There are several methods for determining the hydrodynamic coefficients of a vehicle

based on a given geometry. In the case of underwater gliders, analytical [2], exper-

imental [34, 13] and computational [32] approaches have been used. All prior work

has assumed that the coefficients are linear with respect to the angle-of-attack and

angle-of-sideslip, and linear estimation methods were used based on a few data points.

However, the assumption that the hydrodynamic coefficients are linear is only relevant

when the vehicle is in a steady glide. During inflection points, when the vehicle

changes glide direction by ingesting or expelling water from the buoyancy engine,
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the vehicle sees much higher angles-of-attack due to the direction of flow around the

vehicle changing rapidly. Additionally, it is possible that a vehicle may encounter high

angles-of-sideslip as it maneuvers through high-current regions of the ocean. During

these high angle maneuvers, nonlinear relationships develop between the coefficients

and angles of attack and sideslip.

In order to fully capture the nonlinear relationships between the hydrodynamic

coefficients shown in 2.37 and the angles of attack and sideslip, a CAD model of

the Slocum vehicle was developed in Solidworks, and computational flight tests were

performed using Solidworks Flow Simulation to determine the forces and moments

acting on the vehicle. This section describes the CAD model of the Slocum glider

(Section 2.3.1), the methodology used for performing computational flight tests of the

vehicle (Section 2.3.2), and analyzes the resulting nonlinear hydrodynamic coefficients

(Section 2.3.3).

2.3.1 CAD Model of the Slocum Glider

The Slocum glider has a cylindrical hull comprised of multiple sections that lock

together to form a pressure vessel. The nose end cap is free-flooded and has an

ellipsoidal shape to minimize drag and protect the buoyancy engine bladder. The rear

tail cap is also free flooded and has a tapered truncated conical shape to minimize

drag and houses various components outside of the main hull, such as the sacrificial

anode and a jettison weight for emergency recovery. The raised tail fin sits above the

tapered section of the vehicle and contains three antennas for communications and

tracking. The tail fin has a hydrofoiled profile to minimize drag, with fixed horizontal

stabilizers and a rudder for steering control. The wings of the glider are attached near

the center of the vehicle with a slotted quick-release system that clicks into place.
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The Slocum G2 glider is shown in Figure 2-2a with an optional propeller that was not

considered in the dynamical or CAD model for this study. An exploded view of the

glider internals is shown in Figure 2-2b.

(a) Slocum G2 Glider Exterior

(b) Slocum G2 Internals [46]

Figure 2-2. Slocum G2 Glider

Some dimensions of the CAD model are shown in Figure 2-3. Additional dimensional

drawings can be found in Appendix A. The cylindrical portion of the hull is 47.61

in. in length with an external diameter of 8.37 in. The nose section is 8.27 in. long,

and the tail section is 14.24 in., giving the vehicle a total length of 70.14 in. The tail
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section tapers from the external diameter of the hull to 1.73 in. at the rear of the

vehicle. The raised fin section is 10.21 in. long and 6.83 in. tall. The wings are swept

back at a 45◦ angle and protrude from the hull by 14.69 in. on both sides, giving the

vehicle a total width of 37.75 in.

(a) Slocum Hull Dimensions [in.]

(b) Slocum Wing Dimensions [in.]

Figure 2-3. Slocum CAD Model Dimensions

The CAD model contains some simplifications from the real vehicle, namely in the

quick-release wing attachment point on the side of the hull, and in the tail section. On

the real system, the quick-release mechanism is slotted and can house small weights

for ballasting the glider. As shown in Figure 2-4, the wing attaches directly to the side

of the glider through a raised attachment point. The dimensions of the attachment

point are similar to that of the quick-release mechanism, but the slot in which the

wing is typically fitted into was filled in. In Figure 2-5, the modeled fin section can be
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seen to attach directly to the tail cover. In reality, there is a small tube that attaches

the fin to the main hull and houses the antenna feed cables. There are also small slots

that run alongside the fin that allow water to free-flood the rear section of the vehicle.

These details were removed from the model to simplify the CFD mesh and speed up

the solve time.

Figure 2-4. Slocum CAD Wing Detail Figure 2-5. Slocum CAD Tail Detail

It’s expected that these minor differences between the model and the real glider would

have a minimal effect on the calculated drag coefficient, but would not cause major

differences in the other coefficients. As the main purpose of the computational flight

tests was the determination of the nonlinear relationships between hydrodynamic

coefficients and the vehicle’s operating point over a wide range of angles of attack and

sideslip, these small differences were deemed to be acceptable due to the large number

of runs needed to characterize the hydrodynamics of the vehicle and the increase in

time needed to resolve the effects of these small details in the CFD software. One

additional note about the CAD model are the small protrusions off the back of the tail

section. These were added to visually show the jettison weight and a tail connector,

but were explicitly excluded from the CFD mesh for the same reason as discussed

above.
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2.3.2 Computational Flight Tests

In order to identify the nonlinear hydrodynamic coefficients of the vehicle, Solidworks

Flow Simulation was used to perform computational flight tests on the CAD model

described above. A local mesh was applied to all surfaces of the model (excluding the

minor elements on the rear face of the tail), and a 3-dimensional computation domain

was defined about the vehicle, as shown in Figure 2-6. A laminar flow of water was

defined at atmospheric pressure and average sea surface temperature of 20◦C and set

to flow in the negative Z direction at 0.5 m/s at varying angles of attack and sideslip.

The outputs of the simulations were the forces and torques acting on and about the

X, Y, and Z axes with respect to the CB of the vehicle. A full listing of the Flow

Simulation settings can be found in Appendix B.

Figure 2-6. CFD Computation Domain
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Solidworks Flow Simulation can automatically refine the global and local meshes on

selected surfaces. After some trial and error, it was found that minimal differences in

the force and moment values occurred after two refinements had occurred, giving an

approximate cell count of 2,000,000. Additionally, it was found that the values reached

a steady-state around 500 iterations. Due to the large number of runs needed to fully

characterize the hydrodynamic coefficients, the simulations were set up to stop after

500 iterations in order to save time. The average run time for a single run was 1.5 hours.

Figure 2-7. Computational Flight Test Example [Side View]

An example of the flow about the vehicle with 0◦ angle-of-attack is shown in Figure

2-7. Low pressure regions can be seen at the nose and trailing the vehicle as it

moves through the fluid. Runs were repeated with the rudder set to 20◦ in order to

characterize the changes in the hydrodynamic coefficients due to rudder actuation.

An example of the effect of the rudder on the flow can be seen in Figure 2-8. This

example is a top-down view of a 2-dimensional cut that passes through the raised tail

fin and had 0◦ angle-of-attack and 30◦ angle-of-sideslip. A strong low pressure region

can be seen on the starboard side of the fin with trailing vortices shedding behind the

vehicle. The effects of the glider body and wings on the flow can also be seen in the

red colored section on the left of the image.
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Figure 2-8. Rudder Flow Example [Top-Down View]

2.3.3 Hydrodynamic Coefficients

In order to determine the nonlinear relationships between the hydrodynamic coeffi-

cients and the vehicle’s angles of attack and sideslip, a number of simulations were

run with varying combinations of values for the aerodynamic angles ranging from

-30◦ to +30◦. An example table of aerodynamic angles is shown in Table 2-I, and the

complete tables for all hydrodynamic coefficients can be found in Appendix C. These

runs were repeated with the rudder rotated to 20◦ to asses how the rudder would

effect the forces and moments acting on the vehicle.

Table 2-I. Aerodynamic Angle Permutations
Angle of Attack (deg)

-30 -25 -20 -15 -10 -7.5 -5 -4 -3 -2 -1 0 1 2 3 4 5 7.5 10 15 20 25 30
-30
-25
-20
-15
-10
-7.5
-5
-4
-3
-2
-1
0
1
2
3
4
5

7.5
10
15
20
25

Angle
of

Sideslip
(deg)

30

The forces and moments output from Solidworks Flow Simulation were in Newtons
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and Newton-seconds, respectively, and were in the simulation coordinate system seen

in Figure 2-6. The output values were exported to Excel and rotated to the body

frame coordinate system described in Section 2.1.1. The values were then normalized

with respect to the fluid velocity and angles of attack and sideslip. The rotated and

normalized values are what is shown in Appendix C. The values contained in these

tables were then interpolated using the Akima method [1] to 0.1◦ precision and a

lookup table was generated for use in the 6-DOF simulation. Surface plots showing

the interpolated coefficients can be found in Appendix C.

Figure 2-9. Lift Coefficient wrt AoA and AoS

Viewing the coefficients graphically can give a more intuitive understanding of the

usefulness of this technique. Figure 2-9 shows a surface plot of the interpolated lift

coefficient with respect to the aerodynamic angles. It can be seen that in small regions

the lift coefficient is mostly linear, but over the entire space it is highly nonlinear. The

most lift is generated between ±10◦ AoA and AoS, with modest lift generated outside

of that operating region. The lift also appears to be asymmetric, with more lift being

generated with negative AoAs than positive. This is likely due to the raised tail fin
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effecting the lift generation when the fluid is impacting the top of the vehicle versus

the bottom of the vehicle.

Figure 2-10. Roll Moment Coefficient wrt AoA and AoS

As expected, the addition of a rudder results in significant changes to the side force

and yaw moment coefficients (found in Appendix C); however, there are additional

effects on the roll and pitch moment coefficients that demonstrate the yaw-roll-pitch

coupling present in the vehicle. Figures 2-10 and 2-11 show the roll moment coefficient

without and with the rudder, respectively. It can be seen that the rudder imparts

small, but not insignificant, roll torques on the vehicle when it is actuated. This is not

surprising given the high tail fin design that is above the axial center of the vehicle.

This effect has also been described by others in [34] and [54].

The effects of the rudder on the vehicle are also nonlinear, adding another layer

of complexity to the model that linearized hydrodynamic coefficients overlook. In

order to characterize this effect, simulations were run with straight flow (i.e. no

angle-of-attack or angle-of-sideslip) and the rudder angle was increased to 30◦ in
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Figure 2-11. Roll Moment Coefficient With Rudder wrt AoA and AoS

5◦ increments. The resulting yaw moment coefficient was then used to estimate a

representative polynomial function that was used to scale the rudder effects in the

6-DOF simulation. This process is described in more detail in Section 2.4.1. The

results from the rudder characterization simulations are shown in Figure 2-12. The

black line shows the raw data, the dotted blue line shows the polynomial fit calculated

by Excel, and the dashed red line shows the relationship used in the 6-DOF simulation,

which is the same polynomial fit equation, but shifted downward to cross through 0

at the y-axis.

2.4 Matlab Simulation

The glider was simulated in Matlab to due to its diverse array of ordinary differential

equation (ODE) solvers, wide variety of tools for data analysis and visualization, and

to allow for quick and easy development of different control topologies. A high-level

block diagram of the simulation architecture is shown in Figure 2-13. A graphical

user interface (GUI) was developed to allow for easy setup and management of the
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Figure 2-12. Yaw Moment Coefficient wrt Rudder Angle

simulations. Using the GUI, simulations could be set up by the user and queued to

allow for multiple simulations to run and be compared after completion. Each simula-

tion could be configured with different dynamics, control topologies, environmental

disturbances, and other relevant control logic. The simulated glider was controlled by a

guidance, navigation and control (GNC) object that handled transitioning through the

glider’s state machine, estimating the glider’s position and velocities, and managing

the simulated actuators.

Each simulation is setup to run for some pre-allotted amount of time or until a

waypoint goal is reached. A flow chart of the simulation process is shown in Figure

2-14. The actuators and state of the vehicle are initialized, then the equations of

motion shown in Section 2.2.1 are solved using the ode45 function in Matlab. The

ODE solver automatically determines how many time steps are needed to meet a user

defined tolerance, but on average the equations are solved at approximately 30Hz.
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Figure 2-13. Simulation Architecture Block Diagram

The final state values the solver outputs are clocked to 1Hz, and those values are used

to simulate the sensors on the vehicle. From there, the GNC is updated, data is logged

for plotting, and the AoA and AoS are used to select the hydrodynamic coefficients

for the next iteration. The process repeats until the end condition is met.

The GNC update is shown on the right in Figure 2-14. Each iteration, the GNC

object ingests the simulated glider state and uses those values to update the simulated

sensors. The velocity and position of the vehicle are estimated based on the sensor

values. This architecture allows for the development and testing of multiple navigation

filters; however, for the purposes of this study straightforward estimates for velocity

and position are used based on basic trigonometry. This is described in more detail

in Section 2.4.2. Based on the estimated state of the vehicle, the simulated glider

transitions through a sequence of modes: Glide Up, Inflect Down, Glide Down,

Inflect Up. These modes instruct the Control object to move the actuators in an

open or closed loop fashion to the correct locations. Finally, the range and bearing to

the waypoint, and the simulated actuator positions are calculated and output to the

simulation object to pass into the ODE solver.
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Figure 2-14. Simulation Update Flow Chart

The glider state machine is shown in Figure 2-15. The glider initially starts in Glide

Down, which sets the buoyancy engine (BE) to the negative most position. Slocum

gliders have a 0.5 liter BE, giving them ±250 mL of throw. For the purposes of this

study, the BE was always set to -250 mL during Glide Down and +250 mL for

Glide Up. Once a user-defined maximum depth is reached, the glider enters Inflect

Up and the BE is moved to the Glide Up position. Upon reaching the user-defined

minimum depth, the glider enters Inflect Down, and the BE is moved to the Glide

Down position. This repeats until the glider reaches the waypoint or the simulation

times out. Modes for GPS and communication updates are not included in the state

machine as they are not relevant to the study.
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Figure 2-15. Glider State Machine

2.4.1 Coefficient Selection

The hydrodynamic coefficients are selected each iteration based on the AoA and

AoS that is calculated from the current glider state. Both angles are rounded to

0.1◦ precision and a lookup table is used to select the coefficient that corresponds to

those angles. The effect of the rudder on the vehicle was added to the simulation by

calculating the difference between the coefficient surfaces shown in Appendix C. As

the hydrodynamic coefficients were calculated with the rudder set to 20◦, the delta

between the coefficients was divided by 20 and used along with the simulated rudder

angle, AoA, and AoS to derive an additive value for each coefficient. This process is

shown graphically in Figures 2-16 and 2-17. The scaling equation shown in Figure

2-17 is based on the rudder characterization curve shown in Figure 2-12 and is:

Coefficient Scaling V alue = 0.0221 × δ2
R − 0.7456 × δR (2.47)

where δR is the rudder angle in degrees.

2.4.2 Navigation Filter

Buoyancy gliders can be outfitted with a variety of sensors in order to estimate their

position underwater. At a minimum, gliders use a pressure sensor to derive their

depth and depth rate, a tilt sensor to derive their pitch angle, and a magnetometer to

derive their heading. Some gliders also use an altimeter for measuring their distance
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Figure 2-16. Hydrodynamic Coefficient Delta Calculation

Figure 2-17. Hydrodynamic Coefficient Selection Example

above the sea floor, but this is typically only possible within a few dozen meters of

the bottom; however, it can allow the vehicle to better estimate its depth rate and

speed over ground. Gliders can also use full 6-DOF inertial measurement units (IMUs)

that use an accelerometer, gyroscope and magnetometer in order to estimate the

Euler angles and rotational rates of the vehicle. Finally, some recent experiments

have outfitted gliders with doppler velocity logs (DVLs) and imaging sonars to aid in

velocity estimation [5]. For the purposes of this study, the simulated glider is assumed

to have only a depth sensor and IMU.

In order to emulate the dead-reckoning process that real gliders use to estimate their

position underwater between GPS updates, the simulated glider uses its simulated

sensors to derive its horizontal velocities. Those velocities are then integrated over

time to estimate the glider’s position. In a real-world system, this can lead to position

error growing over time due to the accumulation of small errors in velocity. This
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is known as integration drift. As the goal of this study was the development of an

improved control system rather than an improved position estimation algorithm, the

simulated glider is fed it’s "true" position to mitigate any effects on control that the

dead-reckoning integration drift may lead to. However, all other estimated states are

calculated from the simulated sensors as they would be on a real glider.

The dead-reckoning algorithm starts with the simulated glider’s depth rate, which is

simply the time derivative of the glider’s sensed depth:

VDepth[n] = Depth[n] −Depth[n− 1]
dT

(2.48)

where dT is the control update time step. Real-world systems would likely employ

a velocity observer or low-pass filter to mitigate the amplification of sensor noise,

but for the purposes of this study the simple calculation shown above allows for

characterization of the system response without the need for more advanced methods.

The depth rate can be used to estimate the magnitude of the total velocity of the

glider, V , shown in Figure 2-1:

V =
⃓⃓⃓⃓
⃓VDepthsin(ξ)

⃓⃓⃓⃓
⃓ (2.49)

where ξ is the glide path angle defined by:

ξ = θ − α (2.50)

and θ is the sensed pitch of the glider, and α is the AoA of the glider. The AoA is

calculated using a lookup table which is derived from the linearized glider dynamics
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shown in Section 3.2.1. With the total velocity V of the glider calculated, it is a

simple matter to calculate the horizontal velocity of the glider in the world frame:

VH =
√︂
V 2 − V 2

Depth (2.51)

The horizontal velocity can then be separated into its North and East components in

order to estimate the glider’s position in the world frame:

VN = VHcos(ψ)

VE = VHsin(ψ)
(2.52)

where ψ is the measured heading of the vehicle. The glider’s position can then be

estimated by integrating the velocities with respect to time, like so:

N [n] = N [n− 1] + VNdT

E[n] = E[n− 1] + VEdT
(2.53)

2.4.3 Simulation Examples

An example simulation using the glider dynamic model is shown in Figure 2-18. The

simulation was ran for 2500 seconds and all 12 states are plotted. This particular

example uses static hydrodynamic coefficients that are set using the lookup tables

described in Section 2.4.1 with an AoA and AoS of 0◦. The only exception is the yaw

moment coefficient which is set based on the rudder angle, as shown in Figure 2-16.

The simulation shows three steady glides segments and three stable inflections. The

waypoint goal was 1km North by 1km East, hence the yaw angle of approximately

45◦.

Figure 2-19 shows the simulated actuator positions. At each inflection, the buoyancy
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Figure 2-18. Glider Simulation Example

engine is expelled or ingested to inflect up or down, respectively. The internal moving

battery mass (referred to as a "pitch vernier" in Slocum documentation) is also shifted

to an initial position before the control system takes over during the steady glide

phases. The pitch and heading control systems in this example are static gain PI

compensators used for demonstrative purposes only. The battery and rudder positions

have simulated deadbands of 0.2mm and 1◦, respectively. The deadbands are applied

to emulate control precision limitations in the real system.

2.5 Environmental Simulation

Simplified ocean current and density models were added to the simulation in order to

characterize how the simulated vehicle would respond to environmental disturbances.

Currents and density stratification in the ocean can vary widely depending on location

and time of year, and the accurate modeling of these phenomena is widely studied in

oceanography. For the purposes of this study, representative models were developed
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Figure 2-19. Glider Simulation Actuators Example

to stress the control system. Due to the low speed and buoyancy driven nature of the

vehicle, it is sensitive to currents and changes in density, and those effects can’t be

ignored when designing a vehicle controller.

Current Model

Ocean currents are very complex to model. They change in magnitude and direction

with depth and vary both temporally and spatially. Upper ocean currents are largely

wind driven, while deeper currents are effected more by salinity and temperature

differences in the surrounding water [19]. In general though, current magnitudes tend

to be strongest at the surface and decrease in intensity as the depth increases.

Cmag(z) = Cmax × z−0.1 + Cline(z)
2 (2.54)

Equation 2.54 was used to simulate the notional current magnitude curve shown in
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Figure 2-20, where z is the depth of the vehicle, and Cline(z) is a linearly decreasing

value from Cmax to 0 over the first 200m of depth. Cmax is taken to be the surface

current magnitude. This creates a relatively quick decrease in magnitude in the first

20m of water depth, followed by a linear decrease down to 200m. The direction of the

current can also be changed, but for the purposes of this study, only the magnitude

was varied with depth.

Figure 2-20. Current Magnitude Scaling

Density Model

Much like ocean currents, the density of the ocean is variable both temporally and

spatially. Ocean water varies in density due to salinity, temperature and pressure,

typically within the range of 1020-1050 kg/m3, with most of this range being due
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to pressure at very deep depths. The density of seawater at the surface is typically

within the range of 1020-1029 kg/m3. The largest vertical density variations happen

within the pynocline due to decreasing water temperature and salinity variations in

the upper ocean layer [33]. A number of density models exist for different parts of

the world’s oceans, but most consider much deeper depths than the Slocum glider is

capable of reaching.

ρ(z) = ∆ρ
1 + e0.03819(z−100) (2.55)

Equation 2.55 describes a sigmoid function that was used to simulate the change

in water density in the first 300m of water depth. ∆ρ is the difference between the

surface density at the surface and the maximum density chosen by the user. The

so-called "crossover depth" occurs at 100m. This density curve causes the density to

increase with depth, which effects the pitch angle and depth rate of the vehicle as it

glides downward in the water column.
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Figure 2-21. Water Density With Depth
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Chapter 3

Controller Synthesis

To take advantage of the full capabilities of underwater gliders in ocean sampling

and other applications, an accurate and reliable control system is required. Accurate

navigation is needed to travel to areas of interest and to correlate sampled data

to spatial locations. Robust control is needed for efficient gliding so that gliders

can maximize their range or speed. As described in Section 1.3, gliders are usually

controlled using fixed-gain PI or PID compensators due to their robustness and ease

of implementation. However, due to the nonlinear dynamics of underwater gliders,

for higher precision use cases these methods are likely non-optimal, particularly as

the glider’s performance changes over time. This work aims to develop a systematic

design methodology for model-based gain-scheduled feedback control of underwater

gliders.

This chapter describes the development of a gain-scheduled PID controller for the

simulated underwater glider detailed in Chapter 2. The underlying control architecture

that is commonly used in practice for underwater gliders is described first (Section 3.1).

One goal of this work is to leverage this "standard" architecture due to its simplicity

and utility in real-world applications. To apply linear control methods to the nonlinear

dynamics of the system, the glider model was linearized at a wide variety of operating

points (Section 3.2), then decoupled transfer functions were derived to describe the
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pitch and yaw dynamics of the vehicle (Section 3.3). The transfer functions were

then used to determine gain selection equations that could be applied at the linear

operating points in order to choose gains that would give the desired response (Section

3.4). The gains were then calculated at a variety of operating points and tabulated for

use with the control architecture (Section 3.5). This method allows for gain-scheduled,

nonlinear control of underwater gliders, with minimal code changes to fielded systems,

while providing significant improvements in control responsiveness.

3.1 Control Architecture

Although a number of control methodologies have been theoretically described for

underwater gliders, most are either too computationally expensive (e.g. neural net-

works, model predictive controllers, adaptive backstepping techniques) or difficult to

implement in practice due to limited vehicle state feedback (e.g. LQR, H-infinity)

and/or controller specific phenomena such as chattering (e.g. sliding mode control).

For these reasons, underwater gliders commonly use PI or PID feedback control to

adjust the attitude of the vehicle during the glide phases. During the inflections,

open-loop control is often used to adjust the buoyancy of the vehicle, and to move

the pitch actuator to an initial position prior to activating feedback control. It is also

common to center the rudder during inflections to minimize any undesired yawing

that may occur during the transition between glide phases.

There are two main attitude control goals for underwater gliders: the pitch and

heading angles. For the shallow water version of the Slocum gliders modeled here,

the roll angle is passively stabilized by ballasting the vehicle such that the CG is 4

to 6 cm below the CB [46]. There are other underwater gliders that use a rolling

ballast mechanism to control the roll of the vehicle for steering control, but that is not

considered in this study. The pitch of the glider is controlled using a moving battery
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that translates longitudinally inside the vehicle to shift the CG. The heading of the

glider is controlled using the rudder. The pitch and heading control loops are shown

in Figures 3-1 and 3-2, respectively.

Figure 3-1. Pitch Feedback Control Loop

Figure 3-2. Heading Feedback Control Loop

The control loops are nearly identical, with the only differences being the use of a

PD controller for the heading control loop, as well as the control signal and actuators

being used. As described in Section 2.4.2, the feedback sensor is a 6-DOF IMU that

measures the pitch and heading angles of the vehicle using an accelerometer, gyroscope

and magnetometer. For the purposes of the simulation, the vehicle state is fed directly

into the GNC, and white noise can be added to the state variables to emulate raw

sensor measurements. The general PID block is shown in more detail in Figure 3-3.

Anti-windup is used in the pitch controller to limit the saturation of the integral term
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in the PID [18], but is ignored for controller gain tuning.

Figure 3-3. PID with Anti-Windup Block Diagram

3.2 Dynamics Model Linearization

In order to apply linear control theory and compensation methods to the nonlinear dy-

namics of the underwater glider, the nonlinear equations of motion must be linearized

about some operating point. For the pitching dynamics, longitudinal models of the

glider’s dynamics in the vertical plane are provided by [13] and [26]. These models

and the glide equilibria calculations described in [34] were used to derive a linearized

representation of the longitudinal dynamics of the underwater glider. The turning

dynamics of the glider are significantly more challenging. Because the glider must

dive and/or rise to propel itself forward, it is impossible to completely decouple the

longitudinal and lateral dynamics as is commonly done in aircraft control problems.

Due to this inherent complexity, the Nomoto approximation [43] was used along with

a simulation approach to build out 2nd order representations of the turning dynamics

of the vehicle.
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3.2.1 Linearized Pitching Dynamics

As described in [26], the equations of motion in the longitudinal plane for an underwater

glider can be summarized as:

ẋ = u cos θ + w sin θ (3.1)

ż = w cos θ − u sin θ (3.2)

θ̇ = q (3.3)

q̇ = 1
J2

[(m3 −m1 +KM)uw −mbrb1g cos θ − m̄g cos θrp1 − m̄grp3 sin θ

+KM0u
2 +KMw

2q]
(3.4)

u̇ = 1
m1

[−KD0u
2 +KL0uw −mbg sin θ] (3.5)

ẇ = 1
m3

[−KL0u
2 − (KL +KD0)uw +mbg cos θ] (3.6)

where x and z are the body-frame positions; θ and q are the pitch angle and pitch

rate, respectively; u and w are the body-frame velocities; J2 is the moment of inertia

in the pitch axis; m1 and m3 are the added mass parameters in the x and z axes; KM

and KM0 are the pitching coefficients; KD and KD0 are the drag coefficients; KL and

KL0 are the lift coefficients; mb is the magnitude of the ballast mass; rb1 is the axial

position of the ballast mass in the x axis; m̄ is the magnitude of the moving mass;

and rp1 and rp3 are the positions of the moving mass in the x and z axes, respectively.

In steady state glides, when the forces acting on the glider are at an equilibrium,

many of the variables in the above equations become constant, and it is possible to

determine a linear representation for the pitching dynamics of the vehicle. Equation

3.4 is shown below with the linearized parameters denoted with a subscript d:
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q̇ = 1
J2

[(m3 −m1 +KM)udwd −mbd
rb1g cos θd − m̄g cos θdrp1 − m̄grp3 sin θd

+KM0u
2
d +KMw

2
dq].

(3.7)

In order to determine the linearized parameters shown in Equation 3.7, we use the

glide equilibria calculations described in [34]. We start by prescribing a desired straight

line glide path that is specified by a desired glide path angle ξd and a desired vehicle

speed Vd. Given ξd, it is possible to solve for αd using:

αd = KL

2KD

tan ξd
(︄

−1 +
√︄

1 − 4KD

K2
L

cot ξd(KD0 cot ξd +KL0)
)︄
. (3.8)

Subsequently, θd can be solved for using:

θd = ξd + αd (3.9)

and the body velocities along the desired glide path can be solved for using:

ud = Vd cosαd (3.10)

wd = Vd sinαd (3.11)

Finally, the ballast mass can be solved for using:

mbd
= (m−mh − m̄) + V 2

d

g

[︂
− sin ξd(KD0 +KDα

2
d) + cos ξd(KL0 +KLαd)

]︂
. (3.12)

The remaining terms in Equation 3.7 are either hydrodynamic coefficient constants

(KM and KM0), mass and moment of inertia constants (m3, m1, and J2), or mass

position constants (rb1 and rp3). rp1 is a free variable that is used for controlling the

pitch rate.

3.2.2 Linearized Turning Dynamics

As described in [31], the heading control problem for UUVs is usually solved using a

Nomoto approximation. Although it was originally derived for the heading control
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of ships, it is commonly applied to UUV control due to its simplicity, accuracy, and

invariance to vehicle dimensions. Nomoto showed that the steering motions of ships

are largely first-order phenomena and can be described using a first-order equation of

motion:

T
dψ̇

dt
+ ψ̇ = Kδr (3.13)

where δr is the rudder deflection angle, and T and K are known as the Nomoto time

constant and gain constant, respectively.

3.3 Transfer Function Derivation

With linearized dynamics in the longitudinal and lateral planes, it is possible to derive

transfer functions for the systems that can be used with traditional linear control

methods.

3.3.1 Pitch Transfer Function

In order to derive a transfer function for the pitching dynamics of the vehicle, Equations

3.3 and 3.7 are used. We first rearrange and combine terms:

q̇ = 1
J2

[(m3 −m1 +KM)udwd⏞ ⏟⏟ ⏞
a1

−mbd
rb1g cos θd⏞ ⏟⏟ ⏞

a2

− m̄g cos θd⏞ ⏟⏟ ⏞
b1

rp1 − m̄grp3 sin θd⏞ ⏟⏟ ⏞
a3

+KM0u
2
d⏞ ⏟⏟ ⏞

a4

+KMw
2
d⏞ ⏟⏟ ⏞

a5

q]
(3.14)

q̇ = a1 − a2 − a3 + a4 + a5q − b1rp1 (3.15)

We then take the Laplace transform:

s2θ(s) = a1 − a2 − a3 + a4 + a5sθ(s) − b1rp1(s) (3.16)

If we assume that the effects of a1 through a4 are small compared to the effects of a5
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and b1, then we can consider these terms to be a disturbance on the system:

s2θ(s) = a1 − a2 − a3 + a4⏞ ⏟⏟ ⏞
dθ(s)

+a5sθ(s) − b1rp1(s) (3.17)

s2θ(s) = dθ(s) + a5sθ(s) − b1rp1(s) (3.18)

Rearranging, we get:

θ(s) = −b1

s(s− a5)

(︃
rp1(s) + 1

b1
dθ(s)

)︃
(3.19)

What arises is a second-order transfer function that relates the axial moving mass

position to the pitch angle of the vehicle at the linearized operating point. The

disturbance term is entirely comprised of constants and therefore presents a constant

offset in the step response that can be compensated for with the integrator term

in a PID compensator. This transfer function drastically simplifies the gain tuning

procedure for pitch control of an underwater glider.

3.3.2 Pitch Step Response Comparison

To check the validity of the transfer function shown in Equation 3.19, the open-loop

step response of the pitching motion of the nonlinear simulation was compared to that

of the transfer function. To generate the open-loop step response of the simulated

glider, it was controlled to a steady glide and all oscillations were given time to settle

out. The moving mass was then shifted forward by 1 mm and the pitch response of

the simulated vehicle was logged. The coefficients in the transfer function, b1 and

a5, were then calculated at a linearized operating point that was similar to that of

the simulated glider, and the open-loop step response of the transfer function was

calculated in Matlab. The parameters used for the calculations are shown in Table

3-I, and the response comparison is shown in Figure 3-4.

The two responses are similar in nature with a percent difference of 10.5% in the

steady-state value that can be explained by the neglected disturbance terms in the
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Figure 3-4. Open-Loop Pitch Response Comparison

transfer function. Although this is a fairly substantial deviation, the addition of the

integrator term in the controller accounts for it with little trouble. The parameters

shown in Table 3-I are the same as those in the numerical simulation; however, the

hydrodynamic coefficients are the average of those shown in the tables in Appendix C

and have been converted to the appropriate units for the transfer function calculations.

One final point to note is the non-zero value for KL0. As Graver describes in [34], "For a

vehicle which is symmetric about the body [x-y] plane, KL0 = 0." As the Slocum glider

that is being modeled here is not symmetric about the x-y plane, a notional lift coeffi-

cient was chosen to indicate the lift differential across the body with no angle-of-attack.

Despite the deviation in the steady-state value, the nonlinear numerical simulation

and linear transfer function show good fidelity in their time response characteristics,
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Table 3-I. Simulation Parameters

Parameter Value
Vd (m/s) 0.3
ξd (deg) 30
m̄ (kg) 9.1
J2 (kg ·m2) 130
KM (N ·m( s

m
)2) -428.21

KD0 (N( s
m

)2) 0
KD (N( s

m
)2) 37.47

KL0 (N( s
m

)2) 10
KL (N( s

m
)2) 55.09

indicating that the transfer function can be used to tune gains for the pitch control of

the simulated glider.

3.3.3 Heading Transfer Function

The heading transfer function can be derived directly from Equation 3.13 by taking

the Laplace transform and rearranging:

Ts2ψ(s) + sψ(s) = Kδr(s) (3.20)

ψ(s) = K

s(Ts+ 1)δr(s) (3.21)

What arises is a second-order transfer function that relates the rudder deflection angle

to the heading angle of the vehicle.

3.4 Gain Selection Methodology

With transfer functions that describe the pitching and steering dynamics of the vehicle,

it is possible to derive gain selection equations that allow us to calculate gains that

give a desired response. This section outlines the derivation of the gain selection

equations for the pitch and heading controllers, as well as the methodology used to
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generate the gain tables used for the gain-scheduled controller.

3.4.1 Pitch Gain Selection Equations

Using Equation 3.19 and the control architecture shown in Figure 3-1, a closed-loop

transfer function can be calculated. For the purposes of deriving gain selection

equations, the disturbance term in Equation 3.19 is neglected. The actuator and

sensor dynamics in Figure 3-1 are neglected as well, as are the nonlinear control

elements such as rate and position limits. Additionally, a PD compensator is used

rather than a PID compensator. The integral term is added later to account for the

disturbances. Figure 3-5 shows the simplified pitch control topology used for gain

selection calculations.

Figure 3-5. Pitch Control Block Diagram

The closed-loop transfer function is then:

θR(s)
θC(s) = −b1Kds− b1Kp

s2 − (a5 + b1Kd)s− b1Kp

(3.22)

We see that the closed-loop transfer function takes the form of a second-order system

with a zero, which has the canonical form:

H(s) =
ω2

n

z1
(s+ z1)

s2 + 2ζωns+ ω2
n

(3.23)

where ζ is the damping coefficient, ωn is the natural frequency of the system, and z1

is the location of the zero. Setting Equations 3.22 and 3.23 equal to each other gives
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relationships between the gains Kp and Kd and the design parameters ζ and ωn:

ω2
n = −b1Kp (3.24)

ωn =
√︂

−b1Kp (3.25)

ζ = −a5 + b1Kd

2
√︂

−b1Kp

(3.26)

By selecting values for ζ and ωn, it becomes possible to solve for the values of Kp and

Kd that give the desired response.

3.4.2 Heading Gain Selection Equations

Following a similar process as the one described in Section 3.4.1, we use Equation

3.21 and the control architecture shown in Figure 3-2 to derive a closed-loop transfer

function. In a similar manner, the actuator and sensor dynamics are neglected, as are

the nonlinear control elements. A PD compensator is used; however, there is no need

for an integral term to be added in this case. Figure 3-6 shows the simplified heading

control topology used for gain selection calculations.

Figure 3-6. Heading Control Block Diagram

The closed-loop transfer function is then:

ψR(s)
ψC(s) =

KKd

(︂
s+ Kp

Kd

)︂
s2 +

(︂
KKd+1

T

)︂
s+ KKp

T

(3.27)

We again see that the closed-loop transfer function takes the form of a second-order
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system with a zero. Setting Equations 3.27 and 3.23 equal to each other gives:

ω2
n = KKp

T
(3.28)

ωn =
√︄
KKp

T
(3.29)

ζ = KKd + 1
2T
√︂

KKp

T

(3.30)

3.5 Deriving the Gain Tables

With transfer functions and gain selection equations in hand, all that is left is the

determination of the transfer function coefficients at the desired operating points, and

the calculation of the gains at those operating points.

3.5.1 Pitch Gains

To generate gains for the pitch controller, a variety of steady state glides were defined

by specifying the desired glide path angle ξd and the desired vehicle speed Vd, as

described in Section 3.2.1. The chosen parameters were:

• Glide Speed (m/s): 0.1, 0.2, 0.3, 0.4, 0.5

• Glide Path Angle (deg): -45,-40,-35,-30,-25,-20,-15,-10,10,15,20,25,30,35,40,45

A Matlab script was developed that steps through each permutation of the chosen

glide speed and glide path angles and calculates the b1 and a5 coefficients in Equations

3.25 and 3.26. Values for ζ and ωn were selected, and Kp and Kd were solved for using

Matlab’s system of equations solver. A sensitivity study was performed to assess which

values of ζ, ωn and Ki would provide the best results. The results of the sensitivity

study are shown in Section 4.1.1. The final values used were: ζ = 1.5 and ωn = 0.75.

Ki was chosen to be Kp/20 at each operating point.
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To generate gain lookup tables, the calculated gains were interpolated using the Akima

method in a process similar to the one used for the hydrodynamic coefficients. The

glide speed and glide angle axes were interpolated to 0.01 m/s and 0.1◦, respectively.

The gain curves are shown in Appendix D.

3.5.2 Heading Gains

In order to determine the Nomoto time and gain constants described in Equation

3.13, the "truth" simulation of the glider was used. The time constant was found by

commanding the simulated glider to a steady dive (defined by a depth rate and pitch

angle) then deflecting the rudder to some angle and measuring the response time of

the vehicle’s yaw rate. This was done at several combinations of depth rates, pitch

angles and rudder deflection angles, and the value was found to be very similar in

all cases. The time constant of a first order system is where the magnitude of the

response is at 63% of the steady state value. For the simulated glider, this value came

out to be approximately 58 seconds.

All that was left was to determine the Nomoto gain constants for a variety of steady

state glides. To do this, the simulated glider was controlled to a set of commanded

depth rates and pitch angles using static gain controllers. The glider was given time

to stabilize in the glide and reach a true steady state, then the rudder was deflected

to some angle. The simulated glider would start to spiral and the yaw rate of the

vehicle would reach a steady state value. This yaw rate value was averaged over a 500

second period and tabulated with respect to the depth rate, pitch angle, and rudder

deflection that caused it. The chosen values were:

• Depth Rate (m/s): -0.35, -0.25, -0.15, 0.15, 0.25, 0.35

• Pitch Angle (deg): -35,-30,-25,-20,-15,-10,10,15,20,25,30,35

• Rudder Deflection (deg): -45,-30,-15,-10,-5,5,10,15,30,45
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Observing the form of Equation 3.21, we note that the Nomoto gain constant is

multiplied by the rudder deflection angle. So, to find the Nomoto gain constant from

the averaged yaw rates, the yaw rates were divided by the rudder deflection angles

that caused them. They were then averaged across all rudder angles to create a table

of Nomoto gain constants defined only by the depth rate and pitch angle. This process

is shown graphically in Figure 3-7 below. Note that during downward glides, the depth

rate is positive and the pitch angles are negative; and inversely, during upward glides,

the depth rate is negative and the pitch angles are positive. Pitch angle and depth

rate combinations that would have caused unstable glide conditions were neglected.

Figure 3-7. Nomoto Gain Tabulation Process

With the Nomoto time and gain constants defined at the operating points, a similar

process as the one described in Section 3.4.1 was followed to determine the heading

controller gains. A Matlab script was developed that stepped through the tabulated

Nomoto gain constants and, using selected ζ and ωn values, Kp and Kd were solved
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for using Equations 3.29 - 3.30 and Matlab’s system of equations solver. Another

sensitivity study was performed to assess which values of ζ and ωn should be used.

The results of the sensitivity study are shown in Section 4.1.2. The final values used

were: ζ = 0.5 and ωn = 0.015. No Ki gain was needed for the heading controller as

the transfer function fully described the turning dynamics of the vehicle.

Finally, the gain lookup tables were generated using the Akima method. The depth

rate and pitch angle axes were interpolated to 0.01 m/s and 0.1◦, respectively. The

gain curves are shown in Appendix D. Note that the gains change sign depending

on whether the vehicle is gliding up or down. This is due to the negative roll-yaw

coupling acting on the glider during upward glides, which requires the rudder to rotate

in the opposite direction between downward and upward glides in order to turn in the

same direction.
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Chapter 4

Results and Analysis

This chapter contains simulation results and comparative analysis between a static

gain controller and the gain-scheduled controller described in the previous sections.

We start by performing a sensitivity study to determine ζ and ωn values for the gain

selection equations described in Section 3.4, as well as the integrator gain values

needed for the pitch controller (Section 4.1). We then compare various metrics that

speak to the performance improvements that the gain-scheduling controller gives

over a static gain controller (Section 4.2). We also assess the robustness of the gain-

scheduled controller to various plant and environmental disturbances (Section 4.3).

And finally, we characterize the power efficiency improvements gained through the use

of gain-scheduling (Section 4.4).

4.1 Sensitivity Study

To determine the ζ and ωn values for tuning the pitch and heading controller gains,

Matlab scripts were developed that would sweep through a variety of combinations of

ζ and ωn values, solve for the Kp and Kd gains, and then plot the step responses of

the closed loop systems.
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4.1.1 Pitch Controller

A selection of closed loop pitch step responses are shown in Figure 4-1. All of the

step responses shown have a Ki value that is equal to Kp/20. This is described in

more detail in the following section. Due to the zero in the closed loop transfer

function (Equation 3.22), the system responds differently than a canonical 2nd order

system. Traditionally, a 2nd order system with a ζ of 1 should give a critically damped

response, but for the 2nd order system with a zero, it gives roughly 15% of overshoot.

Increasing ζ lessens the overshoot, but causes the settling time to increase. Increasing

ωn causes the rise time to decrease without increasing the overshoot.

Figure 4-1. Pitch Controller Sensitivity Study

A number of considerations were made before selecting the final ζ and ωn values.
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Beyond simply improving the responsiveness of the pitch controller, one of the primary

concerns was power efficiency. Through simulated trials, it was found that a ζ of 1.5,

and an ωn of 0.75, gave improved pitch control while minimizing actuator motion, and

therefore power expenditure. This is discussed in more detail in Section 4.4. Another

concern was sensitivity to sensor noise. Although higher ζ values led to higher Kd

values, thereby increasing the controller’s noise sensitivity, the increase was minimal

and was shown to be mitigable through the addition of a low-pass filter. This is

discussed in more detail in Section 4.3.2.

Selecting Ki

Figure 4-2. Pitch Controller Ki Value Selection

Another consideration for the pitch controller was the selection of the integrator

gains. As described in Section 3.3.2, when comparing the derived transfer function
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and nonlinear simulation (Figure 3-4), there is a difference in the steady-state value

that is a result of the neglected disturbance terms. If a PD compensator is used for

pitch control, rather than a PID compensator, the pitch controller does not achieve a

steady-state error of 0. This is shown in Figure 4-3, where the solid orange line is the

response given a PD compensator. To assess what values of Ki should be used, both

the closed loop transfer function and nonlinear simulation were used.

Figure 4-3. Pitch Controller Ki Sim Response Comparison

The step responses of the closed loop pitch transfer function are shown in Figure 4-2

with varying Ki values. The Ki values were defined as the calculated Kp gains divided

by some scalar value (shown in the legend). As the Ki values decreased, the ringing

in the response and the settling time both decreased as well, with minimal changes in

the response beyond a scalar value of 20. Applying this to the nonlinear simulation,

we get the responses shown in Figure 4-3. This simulation shows the vehicle being

commanded to glide downward at a pitch angle of -24◦. Due to the starting condition

of the glider, all of the simulated responses initially overshoot the set point; however,

62



there is significant ringing for the scalar values 2 and 5. For Ki = Kp/10, there is

reduced ringing, but significant overshoot of about 4◦ (or 16% of the set point). For

Ki = Kp/20, there is reduced overshoot and a smooth transition into a steady glide.

For this reason, Ki was chosen to be Kp/20.

4.1.2 Heading Controller

A selection of closed loop heading step responses are shown in Figure 4-4. Similar to

the pitch transfer function, the zero in Equation 3.27 results in the system responding

differently than a canonical 2nd order system. An increasing ζ causes more damping,

but even with a ζ of 1, the system is not critically damped. Increasing ωn decreases

the rise time and slightly increases the overshoot.

Figure 4-4. Heading Controller Sensitivity Study
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Again, a number of considerations were made before selecting the final ζ and ωn values.

Similar to the pitch controller, minimizing actuator motion and reducing sensitivity

to sensor noise were the main factors beyond improving responsiveness. Through

simulated trials it was found that a ζ of 0.5 and an ωn of 0.015 gave improved heading

control without drastically increasing rudder motion and noise sensitivity. These

considerations are discussed further in Sections 4.4 and 4.3.2.

4.2 Controller Performance Comparison

There are a number of metrics that can be used to compare the performance of a

traditional static-gain controller versus the gain-scheduled controller. From a perfor-

mance perspective, the main concerns are the time response characteristics of the

controllers, as well as any control improvements that can be realized. This section

compares two sets of gains used with the static-gain pitch and heading controllers to

the gain-scheduled control scheme described in the previous sections. The first set of

gains was hand-tuned by the author to give a robust response within reasonable time

margins. The second set of gains was calculated using the Ziegler-Nichols method

[7]. The static gain values are shown in Tables 4-I and 4-II. The scheduled gains were

calculated using the ζ and ωn values discussed in Section 4.1.

Table 4-I. Static Gain Values for the Pitch Controller

Gain Hand-Tuned Ziegler-Nichols
Kp -1 -0.033
Ki -0.01 -0.0027
Kd -0.5 -0.2658

64



Table 4-II. Static Gain Values for the Heading Controller

Gain Hand-Tuned Ziegler-Nichols
Kp 1 1.2454
Ki 0.001 0.0095
Kd 3 110.7546

4.2.1 General Comparisons

Figure 4-5 shows the pitch response of the vehicle as it transitioned through multiple

inflections, while Figure 4-6 shows the heading response. The solid orange lines are

the results using the hand-tuned gains. The dashed black lines are the results using

the Ziegler-Nichols (Z-N) gains. And the dash-dot red lines are the results using the

scheduled gains. The pitch set points were set to ±26◦ and are shown as different

color "◦", "*", and "⋄" markers. Multiple sets of pitch set points are plotted because

the simulated glider transitioned between glide directions at different times due to the

differing pitch angles, and the set point lines show when those transitions took place.

Figure 4-5. Pitch Controller Comparison - Multiple Inflections

For these simulations, the moving battery mass was moved to +10mm and -10mm for
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the downward and upward inflections, respectively. This battery motion takes place

while the buoyancy engine is ingesting or expelling, which can cause some interesting

behavior. Note how the pitch angle initially goes negative when using the Z-N gains.

This is due to the initial battery position (-10mm) being too far forward when entering

the upward glide. The Z-N gains are less aggressive than the hand-tuned gains and

cannot compensate fast enough, which causes the vehicle’s nose to dip before the

battery shifts back. By comparison, the hand-tuned and gain-scheduled gains handle

the transition more gracefully.

Figure 4-6. Heading Controller Comparison - Multiple Inflections

The response of the heading controller is very similar for these three sets of gains.

Although the static gain examples exhibit some ringing about the set point, the

overshoot and response times for the three controllers are very similar.

We can further improve the control of the vehicle by selecting different ζ and ωn

values when deriving the scheduled gain tables. Figures 4-7 and 4-8 compare the pitch
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and heading responses of the hand-tuned static gains in Tables 4-I and 4-II to the

gain-scheduled controller when using the ζ and ωn values shown in Table 4-III. Note

the reduction in overshoot and response time when using these values. The drawback

of this improved control is a significant increase in actuator usage, which implies a

higher power draw for control of the vehicle.

Table 4-III. ζ and ωn Values for Improved Control

Parameter Pitch Controller Heading Controller
ζ 2 0.4
ωn 1.25 0.015

Figure 4-7. Pitch Controller Comparison - Improved

4.2.2 Speed Over Ground

Another important metric to consider is the vehicle’s speed over ground. Underwater

glider’s move at a relatively low speed and are therefore more susceptible to ocean

currents than typical UUVs. Figure 4-9 shows the horizontal and vertical velocities
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Figure 4-8. Heading Controller Comparison - Improved

of the simulated vehicle for the runs shown in Figures 4-5 and 4-6. Because of

the increased responsiveness of the vehicle when using the gain-scheduled controller,

the horizontal velocity is more stable during the glide phases. The increased pitch

over/under shoot caused by the static gain controller sometimes causes the vehicle to

move through the water at a higher velocity, but this can have adverse effects on the

power consumption of the vehicle due to the increased pumping that would be needed

as the glider reaches its maximum depth more quickly.

4.2.3 Control Through Inflections

Generally, the pitch and heading angles of gliders are only actively controlled during

glide phases. This is due to the sensitivity of the glider to variations in buoyancy and

CG location during inflections. Without careful consideration for the rate of buoyancy

change and ballast weight movement, static gain controllers can struggle to control

the vehicle through inflections. Improvements to the pitch control through inflections

was investigated in simulation using the gains shown in Tables 4-I and 4-II and the

gain-scheduled controller derived from the ζ and ωn values described in Section 4.1.
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Figure 4-9. Vehicle Velocity Comparison

The results are shown in Figure 4-10.

For these runs, rather than pre-positioning the ballast mass at ±10mm during the

inflections, the pitch set point was linearly changed between the positive and negative

set points. Note that with the same Z-N gains, the response is significantly worse

through the inflections than when manually inflected (as seen in Figure 4-5). This

implies a sensitivity to gain choice and actuator rates that is usually handled by

manually inflecting between the glide phases. The hand-tuned gains respond well

in this simulated scenario, but may not perform as well in real scenarios where the

pumping rate of the buoyancy engine varies with depth. This is investigated in more

detail in Section 4.3.1. Finally, the gain-scheduled controller performs very well when

actively controlling through the inflections.
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Figure 4-10. Pitch Control Through Inflections

4.3 Controller Robustness

There are a number of factors that can effect the performance of the glider controllers,

including: varying actuator rates, sensor noise, and environmental disturbances. This

section investigates the effects these plant and environmental disturbances might

have on the static and gain-scheduled controllers. The gains used for the static gain

controller are the same as the hand-tuned gains shown in Tables 4-I and 4-II, and the

gain-scheduled controller is derived from the ζ and ωn values described in Section 4.1.

4.3.1 Actuator Rates

With increasing depth there is increased pressure exerted on the buoyancy engine

as it expels sea water from the vehicle and increases its buoyancy. This causes the

buoyancy engine to pump out more slowly at deeper depths, which can have adverse

effects on the control of the vehicle. Additionally, the ballast mass throw rate can

degrade with time as motors and/or gearing wear down over long duration missions.

To assess the impact of these effects on the pitch control of the vehicle, the static
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and scheduled gain controllers were simulated with the original BE and battery throw

rates, then again with the throw rates halved to emulate the effects described above.

These values are shown in Table 4-IV and the simulation results can be seen in Figure

4-11. Heading control was not considered as the rudder deflection rate would not

change dramatically enough to cause degradation in the steering control of the vehicle.

Table 4-IV. BE and Battery Throw Rates

Actuator Original Slow
BE (mL/s) 10 5

Battery (mm/s) 2.5 1.25

Figure 4-11. Effect of Actuator Degradation on Pitch Control

The effect of the slower actuators on the pitch angle of the vehicle can be seen when

using both the static gain and gain-scheduled controller. In general, regardless of the

controller that is used, the system is less responsive and takes longer to reach the

desired set point. However, due to the increased responsiveness of the gain-scheduled

controller, the increased lag caused by the slower actuators still results in improved

control over the static gain controller. This implies that the gain-scheduled controller
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has an increased robustness to actuator changes and modeling inaccuracies over the

traditional static gain controller.

4.3.2 Sensor Noise

To assess and compare the effect of sensor noise on the static gain and gain-scheduled

controllers, Gaussian noise was added to signals that are used by the simulated GNC

to derive the glider state and update the control systems. To counteract the added

noise, simple low-pass filters were added to the control loop to smooth the sensor

noise on the feedback signal before calculating the error. Additionally, deadbands

were introduced on the actuators to minimize spurious responses to the added noise.

The standard deviations of the Gaussian noise are shown in Table 4-V. The filter

coefficients for the pitch and heading signal were 0.5 and 0.1, respectively; and the

deadbands for the moving battery mass and rudder were 0.2 mm and 1◦, respectively.

Simulated results are shown in Figures 4-12 and 4-13.

Table 4-V. Gaussian Noise Standard Deviations

Signal St. Dev.
Depth (m) 0.005

Euler Angles (◦) 0.5
Euler Rates (◦/s) 0.1

The added noise was made more aggressive than would be expected from modern

sensor equipment to illustrate the robustness of both static gain and gain-scheduled

controllers to sensor noise. The main effect of the noise on both controllers was an

increase in actuator motion due to sensed perturbations on the pitch and heading

angles. In both the pitch and heading cases, the static gain controllers took slightly

longer to reach the set points than without noise, which is to be expected. By compar-

ison, the gain-scheduled controller reached the set points in roughly the same amount
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Figure 4-12. Effect of Sensor Noise on Pitch Control

of time as without noise, but fluctuated about the set point once there. This is also

to be expected given the noisy sensor measurements.

Figure 4-14 shows the pitch gains that were calculated during the simulated runs.

The static gains are the solid orange line, while the scheduled-gains are the dash-dot

red line. Note the increased magnitude of the scheduled Kd gain, which implies

increased sensitivity to noise. Additionally, the gain-scheduling relies on estimates of

the glider’s speed through the water, which is derived from both the depth and pitch

measurements. All of this makes the gain-scheduled controller more sensitive to noise

than the static gain controller. Despite this sensitivity, the gain-scheduled controller

still outperforms the static-gain controller as far as time response characteristics are

concerned.

73



Figure 4-13. Effect of Sensor Noise on Heading Control

Figure 4-14. Pitch Controller Gains with Added Noise
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4.3.3 Environmental Disturbances

To assess and compare the impact of environmental disturbances on the static gain

and gain-scheduled controllers, density changes and water currents were added to the

simulation. The density and current models are described in more detail in Section 2.5.

Figure 4-15. Effect of Density Changes on Pitch Controller

Figure 4-15 shows the effect of density changes on the pitch control of the vehicle. For

this simulation the density delta was set to 2 kg/m3, which caused roughly 1 kg/m3

of density change in the first 100 m of water depth. This can be seen in Figure 4-16

where the solid orange line is the density seen by the glider with static gains, and the

dash-dot red line is the density seen by the glider with scheduled gains.

With density changes added to the simulation as the glider dives through the water

column, the density of the water around it increases slightly, effectively causing the

vehicle to become lighter in the water as its buoyancy increases. This causes the
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Figure 4-16. Density Change with Depth

weight distribution of the vehicle to change slightly, which effects the pitching moment

on the vehicle. In past simulations when the density of the water was uniform, the

static gain controller was able to reach the pitch set points during both upward

and downward glides. With the changing water density, the static gain controller

struggles to reach either set point, and never quite reaches the downward set point

before the inflection. In the case of the gain-scheduled controller, there is mini-

mal effect on the pitch performance of the vehicle despite the density stratification.

For both controllers, there was minimal effect on the steering performance of the glider.

Figure 4-17 shows the effect of currents on the heading control of the vehicle. For this

simulation the maximum current magnitude was set to 0.15 m/s (∼0.3 knots) and

the direction was set to be North-to-South, such that the vehicle was gliding into and

across the current. The current magnitude with depth is shown in Figure 4-18 where

76



the solid orange line is the current magnitude seen by the glider with static gains, and

the dash-dot red line is the current magnitude seen by the glider with scheduled gains.

Figure 4-17. Effect of Currents on Heading Controller

With currents added to the simulation, both simulated gliders are pushed off course

during the glides and inflections. The static gain controller struggles to compensate for

these additional forces and moments, causing the vehicle to oscillate widely about the

heading set point. The gain-scheduled controller does a better job at handling these

disturbances and keeps it’s heading fairly straight throughout the simulation. Both

simulated gliders appear to be especially susceptible to mis-steer during inflections,

which is likely due to additional roll and yaw moments caused by the currents

amplifying the rudder-roll coupling inherent in the vehicle, which in turn induces

adverse yaw moments on the vehicle.

4.4 Controller Efficiency

Power efficiency is one of the main benefits of an underwater glider compared to

traditional UUVs; therefore, the efficiency of the controller is of utmost importance.
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Figure 4-18. Current Magnitude with Depth

Beyond simply choosing more power efficient actuators, there are a number of pa-

rameters that can be adjusted to effect the efficiency of a glider’s motion controller,

such as the controller update rate, actuator deadbands, as well as the pitch angle,

depth rate, and max depth the glider is commanded to fly to. For the purposes of

this analysis, a one-to-one comparison was done between the static gain controller and

the gain-scheduled controller, and the total actuator travel was used as a substitute

measure for power efficiency.

Figure 4-19 shows the accumulated actuator travel for the three actuators of the

simulated glider. The solid orange lines are the results with the static gain controller,
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Figure 4-19. Actuator Travel Comparison

while the dash-dot red lines are the results with the gain-scheduled controller. Similar

to the previous simulation runs, the glider was commanded to dive to a max depth

of 150 m, and the battery and rudder actuators had deadbands of 0.2 mm and 1◦,

respectively. The ζ and ωn values used to select the gains for the gain-scheduled

controller are those described in Section 4.1; therefore, the pitch and heading responses

are effectively the same as those in Figures 4-5 and 4-6. These results show that,

given the exact same vehicle, with the exact same parameters, the gain-scheduled

controller provides better pitch control performance, and comparable heading control

performance, while using less power to drive the actuators and being more robust to

changes in the plant dynamics and environment.
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Chapter 5

Conclusions and Future Work

The principle goal of this thesis was the development and application of a straightfor-

ward methodology for the design of a gain-scheduled control scheme for an underwater

glider. Underwater gliders have demonstrated their utility in oceanographic research

as data collection platforms, and their potential can be enhanced by the application of

the methods presented here. The methodology developed in this work provides insight

into the nonlinear physical processes governing the dynamics of gliders and presents

a realizable control scheme that increases the performance and robustness of glider

motion control. Motivated by a desire to increase the performance of underwater

gliders, this work attempted to answer the question of how best to improve the motion

control of this novel vehicle, while minimizing the changes needed on the platform itself.

In Chapter 2, a simplified and generalizable dynamical model of an underwater glider

was derived based on first principles. The presented model is not vehicle specific

and therefore has applications in glider design and optimization, control algorithm

development, and state estimation. Using this model, a nonlinear simulation specific

to a Slocum glider was developed through the use of CAD and CFD software packages.

This simulation was developed using the Matlab environment. The CFD-derived

nonlinear hydrodynamic coefficients were used in the numerical simulation to create a

"truth" simulation of the vehicle that could be used for characterization of the motion
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control system. Additionally, environmental models were included in the simulation

to assess the controller’s robustness to environmental disturbances.

Chapter 3 describes the development of a gain-scheduled controller for an underwater

glider using the dynamical model derived in Chapter 2. The general control architec-

ture of underwater gliders is outlined, then the longitudinal dynamics of the system

are linearized and used to derive a transfer function for the pitching dynamics of the

vehicle. The Nomoto approximation is used to approximate the steering dynamics of

the glider, and the numerical simulation is used to acquire the steady-state gains and

time constants for the turning dynamics of the system at various operating points. The

transfer functions are used to derive gain selection equations for the pitch and steering

controllers, and these equations are used to generate gain lookup tables that can be

incorporated into the simulation with minimal changes to the standard controller

topology.

A comparative analysis between the traditional static gain controller and the gain-

scheduled controller is performed in Chapter 4. A sensitivity study was performed

to determine the tuning parameters for the scheduled gains and then the pitch and

heading controllers were compared using static gains and gains that were derived using

the methods outlined in Chapter 3. Performance improvements were realized in the

pitch and heading responses of the vehicle, its speed over ground, and its stability when

controlling through inflections. Improvements in the robustness of the gain-scheduled

controller to changes in actuator rates, sensor noise, and environmental disturbances

were also investigated. And finally, the power efficiency of the gain-scheduled con-

troller was shown to be comparable, if not better than, that of the static gain controller.

The gain-scheduled controller demonstrated here showed marked improvements in
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a number of metrics, but required a significant amount of simulation to derive. In

particular, the CFD runs used to derive the nonlinear hydrodynamic coefficients num-

bered in the hundreds. Additionally, the Nomoto approximation used to derive the

steering transfer function required dozens of simulations runs in order to characterize

the steady-state gain values at each combination of pitch angle and depth rate. A

purely analytical approach would require less simulation time, but would likely only

be an approximation to the true turning dynamics of the vehicle.

Another difficulty with the methodology described here is the selection of the proper

tuning parameters for the gain selection equations. It was shown that improved

performance could be achieved by using more aggressive gains, but power efficiency

would suffer due to increased actuator usage. Increased derivative gains also have the

drawback of increasing the systems sensitivity to sensor noise. All of this requires

consideration when choosing the proper ζ and ωn values for gain tuning. That said, a

sophisticated simulation of an underwater glider has been developed here and can be

leveraged for gain tuning and controller validation.

Future Work

Recommendations for future work in this area include validation of the nonlinear

hydrodynamic coefficients and the gain-scheduled control scheme through at-sea ex-

periments of a Slocum glider, as well as further application of the dynamical model to

analysis of glider dynamics, control and design. Due to the use of the underlying PID

controllers, implementation of the gain-scheduled controller on a Slocum vehicle is

not expected to be difficult; however, true comparisons between the static gain and

gain-scheduled controllers would require testing in a "clean" environment that does

not vary much with time, which may be challenging to find. Another option might be

the implementation of this control scheme on a laboratory scale glider that can be
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tested in a tank or pool to allow for controlled testing and analysis.

The analysis presented here suggests that a gain-scheduled controller may lead to

significant performance gains and an increase in robustness over traditional static gain

controllers. Additional performance gains may be realized through adjustments in the

total glider volume, resizing of the internal ballast systems, and/or the reshaping of

external geometries, such as the wings, nose and tail. The design of any vehicle is

subject to a number of tradeoffs, and this work is a step toward the goal of developing

an optimal approach for the design of glider control systems that are realizable with

modern sensors and hardware.
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Appendix A

Slocum CAD Dimensional Drawings

All dimensions are in inches.

Figure A-1. Slocum Dimensions - Front View
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Figure A-2. Slocum Dimensions - Top View Tail

Figure A-3. Slocum Dimensions - Side View Tail
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Figure A-4. Slocum Dimensions - Side View Rudder
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Appendix B

Solidworks Flow Simulation
Parameters

Typical run time: 1-3 hours per permutation

Local Mesh Settings

• Level of Refining Fluid Cells: 3 out of 9

• Level of Refining Cells at Fluid/Solid Boundary: 3 out of 9

• Characteristic Number of Cells Across Channel: 14

• Maximum Channel Refinement Level: 1 out of 9

• Small Solid Feature Refinement: 1 out of 9

• Maximum Height of Slots to Close: 3.9 cm

Global Mesh Settings

• Type: Automatic

• Level of Initial Mesh: 6 out of 7

• Ratio Factor: 1

Fluid and Thermal Characteristics

• Fluid Type: Water
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• Flow Type: Laminar Only

• Cavitation: None

• Wall Thermal Condition: Adiabatic

• Roughness: 50 micrometers

• Pressure: 14.7 lbf/in2

• Temperature: 20.05 ◦C

Velocity Parameters

• Defined by: Aerodynamic Angles

• Velocity: -0.5 m/s (0.97 knots)

• Longitudinal Plane: YZ

• Longitudinal Axis: Z

Computation Domain

• Type: 3D Simulation

• X Distance: ±2.13 m

• Y Distance: +2.02/-1.75 m

• Z Distance: +1.85/-4.35 m

Calculation Control Options

• Stop Criteria: 500 Iterations and Refinement Finished

• Global/Local Refinement Levels: 7 out of 7

• Approximate Maximum Cells: 2,000,000

• Refinement Strategy: At iterations 80 and 160

• Relaxation Interval: 100
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PC Specifications

• Processor: Water Cooled Intel i7-10700 (2.9GHz)

• GPU: NVIDIA GeForce GTX 1650

• RAM: 32GB DDR4 3600MHz

• Hard Drive: 1TB SSD NVMe m.2
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Appendix C

Hydrodynamic Coefficient Data
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Table C-VII. Drag Coefficient Values With Rudder

With Rudder at 20 degrees
Angle of Attack (deg)

-30 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 30
-30 0.064 3.568 2.367 1.247 2.016 2.759 -3.871
-10 1.424 3.457 3.151 3.237 2.964 2.746 0.229
-5 1.045 3.071 3.280 3.423 3.208 3.438 3.345 3.334 3.422 3.311 2.912 3.139 3.246 2.779 0.316
-4 3.167 3.550 3.397 3.335 3.358 3.242 3.493 3.310 2.992 3.183 3.152
-3 3.090 3.357 3.285 3.365 3.362 3.300 3.522 3.394 3.022 3.191 3.082
-2 3.041 3.344 3.240 3.397 3.462 3.293 3.532 3.467 2.967 3.167 3.090
-1 3.022 3.333 3.208 3.405 3.523 3.323 3.547 3.445 2.990 3.148 3.052
0 1.097 3.169 3.035 3.342 3.252 3.385 3.466 3.337 3.590 3.489 3.012 3.273 3.069 3.010 0.134
1 3.193 3.788 3.303 3.393 3.581 3.416 3.591 3.384 3.049 3.400 3.134
2 3.090 3.452 3.369 3.420 3.538 3.425 3.650 3.476 3.098 3.218 3.151
3 3.132 3.422 3.373 3.455 3.468 3.364 3.522 3.402 3.090 3.223 3.180
4 3.388 3.576 3.541 3.526 3.385 3.288 3.604 3.297 3.063 3.189 3.259
5 1.138 3.031 3.379 3.449 3.131 3.383 3.180 3.391 3.412 3.297 2.975 3.199 3.248 2.643 0.609

10 0.891 3.398 3.251 3.522 3.201 2.648 -0.265

Angle
of

Sideslip
(deg)

30 0.958 3.493 2.489 1.850 2.470 2.864 -3.143

Table C-VIII. Lift Coefficient Values With Rudder

With Rudder at 20 degrees
Angle of Attack (deg)

-30 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 30
-30 170.4 75.4 192.4 146.0 180.6 85.7 171.8
-10 181.5 221.0 238.9 204.8 244.0 169.9 173.2
-5 192.9 202.8 236.9 262.4 257.1 295.6 300.6 269.9 292.2 285.7 256.0 278.9 234.2 170.8 183.9
-4 242.3 260.3 250.4 310.1 303.8 270.8 288.7 277.4 257.6 278.3 239.2
-3 241.1 266.1 264.7 318.4 300.1 272.2 288.7 270.5 252.2 279.9 240.3
-2 247.2 265.5 270.3 306.9 305.6 271.1 268.0 265.7 256.8 284.9 240.3
-1 248.8 268.7 269.4 321.9 311.1 274.4 257.3 276.9 263.6 287.1 239.5
0 196.9 200.4 250.3 273.6 273.8 337.3 327.4 282.6 289.5 279.0 264.4 288.8 241.5 168.9 190.0
1 245.2 264.8 272.2 319.4 298.6 275.5 264.4 294.1 261.4 289.6 245.0
2 249.5 265.3 256.9 316.2 297.0 274.9 281.5 282.4 260.7 288.7 250.4
3 239.7 258.0 261.1 304.6 281.2 274.1 302.2 291.6 263.0 289.3 250.7
4 233.6 256.6 243.3 285.7 260.6 268.2 309.1 296.4 264.5 287.7 244.4
5 192.9 197.3 231.1 256.6 247.2 275.4 262.8 265.5 305.5 292.6 260.2 281.8 241.9 178.6 183.7

10 194.9 216.1 233.9 208.8 252.0 174.7 181.5

Angle
of

Sideslip
(deg)

30 163.2 74.3 183.3 141.7 173.5 82.0 173.7
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Table C-IX. Side Force Coefficient Values With Rudder

With Rudder at 20 degrees
Angle of Attack (deg)

-30 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 30
-30 -95.50 -117.81 -112.35 -127.16 -115.57 -112.76 -89.26
-10 -164.05 -55.47 -69.36 -63.42 -63.58 -56.86 -138.61
-5 -89.56 -32.78 -35.06 -75.57 -74.19 -79.71 -40.36 -62.31 -59.67 -61.87 -55.39 -64.08 -17.07 -37.30 -107.86
-4 -67.92 -43.45 -85.21 -61.68 -29.54 -29.82 -48.83 -51.11 -45.91 -51.17 -57.00
-3 -60.28 -57.26 -48.83 -46.47 -18.33 -2.79 -37.48 -31.40 -23.85 -55.71 -44.57
-2 -53.07 3.09 -22.57 -49.59 5.36 16.43 -13.23 5.20 -14.28 -37.35 -34.75
-1 -14.57 65.09 8.93 0.34 71.49 86.58 49.17 49.62 34.28 -3.85 -20.75
0 -119.63 -93.12 -110.59 -83.45 -95.04 -93.60 -72.62 -60.90 -74.89 -72.67 -69.90 -112.39 -87.39 -89.64 -102.20
1 -286.55 -225.40 -176.81 -152.64 -209.05 -148.16 -205.36 -170.86 -178.49 -385.22 -184.15
2 -136.72 -81.41 -173.09 -141.43 -164.18 -124.90 -103.21 -111.84 -120.80 -147.49 -127.94
3 -139.26 -149.04 -125.16 -134.53 -105.39 -110.97 -121.72 -121.25 -101.96 -128.98 -115.45
4 -168.08 -150.87 -140.88 -139.19 -133.24 -114.10 -103.67 -116.18 -99.38 -138.90 -144.32
5 -159.27 -123.22 -144.36 -119.68 -112.54 -131.10 -102.97 -118.90 -104.90 -116.98 -93.22 -111.11 -127.88 -112.88 -113.13

10 -96.89 -94.45 -89.30 -94.13 -87.20 -92.98 -64.77

Angle
of

Sideslip
(deg)

30 -112.53 -135.00 -125.55 -143.58 -125.54 -125.05 -99.60

Table C-X. Roll Moment Coefficient Values With Rudder

With Rudder at 20 degrees
Angle of Attack (deg)

-30 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 30
-30 -0.249 -0.026 -1.564 -1.764 -2.150 -1.722 -2.759
-10 -0.169 0.077 -0.129 -0.556 -1.061 -0.760 0.161
-5 -0.071 0.347 0.421 -0.253 -0.305 -0.376 -0.169 -0.295 -0.425 -0.507 -0.553 -0.257 -0.012 -0.401 0.668
-4 0.000 0.183 -0.256 -0.167 -0.040 -0.022 -0.258 -0.309 -0.351 -0.086 -0.360
-3 0.039 -0.032 0.015 -0.016 0.065 0.117 -0.116 -0.098 -0.128 0.022 -0.230
-2 0.123 0.189 0.123 -0.048 0.183 0.206 0.046 0.069 0.055 0.132 -0.061
-1 0.212 0.265 0.210 0.124 0.299 0.329 0.209 0.183 0.207 0.226 0.087
0 0.408 0.708 0.272 0.359 0.340 0.316 0.384 0.427 0.373 0.339 0.314 0.340 0.278 0.777 0.311
1 0.487 0.867 0.425 0.381 0.553 0.483 0.582 0.463 0.466 1.006 0.528
2 0.502 0.488 0.640 0.632 0.724 0.673 0.618 0.598 0.619 0.579 0.639
3 0.641 0.815 0.712 0.784 0.734 0.814 0.860 0.885 0.846 0.698 0.847
4 1.174 1.100 0.897 0.977 1.021 0.928 1.000 1.047 1.001 1.029 1.434
5 0.893 1.032 1.147 1.056 0.887 1.135 0.960 1.060 1.084 1.275 1.104 0.891 1.543 1.648 0.372

10 1.139 1.079 0.734 1.350 1.684 1.920 0.646

Angle
of

Sideslip
(deg)

30 1.229 1.081 2.798 3.183 2.994 2.713 3.613

Table C-XI. Pitch Moment Coefficient Values With Rudder

With Rudder at 20 degrees
Angle of Attack (deg)

-30 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 30
-30 8.895 44.392 33.562 33.049 39.996 58.720 12.730
-10 15.062 8.488 10.607 14.135 11.144 18.979 20.529
-5 12.996 13.852 13.378 10.565 8.656 3.981 2.371 10.597 10.275 8.227 16.732 12.093 19.692 22.652 19.582
-4 12.163 9.153 12.321 -3.721 -1.418 11.129 17.762 15.012 16.892 14.392 18.733
-3 13.298 7.308 4.990 -6.864 -0.374 12.096 21.261 22.294 23.798 16.381 18.869
-2 9.771 7.257 4.603 0.105 -4.759 13.080 31.476 23.504 23.200 15.781 19.860
-1 9.506 6.069 4.916 -8.472 -9.393 10.725 31.706 16.801 19.547 15.952 20.615
0 11.354 14.608 8.758 3.734 2.696 -15.065 -20.085 7.428 22.634 17.315 19.601 15.867 18.825 22.414 18.455
1 11.865 8.287 2.081 -8.927 -1.493 10.102 24.108 13.042 19.994 14.651 17.416
2 9.347 7.944 11.148 -4.104 0.811 11.475 27.983 13.358 19.311 12.763 16.194
3 14.412 12.381 7.622 -0.974 13.413 11.412 14.125 9.787 16.631 11.654 15.069
4 17.430 12.025 16.719 9.892 23.518 12.166 0.617 3.566 12.172 10.800 14.924
5 13.093 16.945 18.287 13.014 16.608 17.104 24.545 12.709 -2.329 1.741 13.926 9.886 14.313 17.633 19.340

10 12.509 12.812 15.743 13.121 5.979 14.926 16.758

Angle
of

Sideslip
(deg)

30 11.622 45.889 40.278 34.316 37.520 58.589 11.997
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Table C-XII. Yaw Moment Coefficient Values With Rudder
With Rudder at 20 degrees

Angle of Attack (deg)
-30 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 30

-30 16.024 -3.001 -0.628 -0.699 -0.656 5.104 14.160
-10 11.124 21.066 3.612 9.838 5.852 20.723 26.831
-5 27.006 28.497 29.007 -3.264 -2.927 -6.743 21.567 6.024 7.481 5.589 9.921 5.497 40.267 24.165 45.107
-4 3.731 22.323 -10.225 6.390 29.686 28.643 15.624 13.978 17.874 15.134 11.070
-3 9.348 10.231 16.306 17.906 37.954 48.740 23.946 29.029 33.428 13.263 18.432
-2 15.673 55.271 36.089 16.830 56.558 64.283 42.104 55.585 42.141 28.450 27.915
-1 49.428 101.839 62.916 56.914 109.073 118.472 91.568 91.687 80.655 56.925 43.321
0 7.215 -3.611 -28.770 -12.366 -19.252 -18.039 -3.869 3.899 -5.737 -3.512 -1.443 -31.602 -13.690 0.069 23.497
1 -159.551 -134.785 -85.010 -64.567 -111.368 -69.348 -107.812 -79.737 -85.334 -246.215 -90.309
2 -51.830 -13.480 -79.194 -56.262 -74.882 -47.424 -31.121 -35.060 -41.382 -59.415 -47.294
3 -52.464 -60.426 -44.265 -50.694 -30.455 -35.875 -42.156 -41.590 -28.220 -45.457 -37.400
4 -74.638 -62.435 -53.341 -53.131 -50.104 -36.423 -29.090 -36.947 -24.235 -53.223 -57.837
5 -26.268 -43.059 -56.405 -38.935 -32.867 -47.037 -26.717 -38.104 -27.911 -37.653 -19.277 -30.982 -45.065 -36.793 14.425

10 10.823 -9.469 -12.592 -13.726 -12.620 -8.411 34.494

Angle
of

Sideslip
(deg)

30 4.579 -15.700 -10.723 -14.794 -8.665 -4.374 5.967

Figure C-1. Drag Coefficient Without Rudder
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Figure C-2. Drag Coefficient With Rudder At 20◦

Figure C-3. Lift Coefficient Without Rudder
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Figure C-4. Lift Coefficient With Rudder At 20◦

Figure C-5. Side Force Coefficient Without Rudder

101



Figure C-6. Side Force Coefficient With Rudder At 20◦

Figure C-7. Roll Moment Coefficient Without Rudder
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Figure C-8. Roll Moment Coefficient With Rudder At 20◦

Figure C-9. Pitch Moment Coefficient Without Rudder

103



Figure C-10. Pitch Moment Coefficient With Rudder At 20◦

Figure C-11. Yaw Moment Coefficient Without Rudder
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Figure C-12. Yaw Moment Coefficient With Rudder At 20◦
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Appendix D

Controller Gain Curves

Figure D-1. Kp Gain Curve for Pitch Controller
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Figure D-2. Ki Gain Curve for Pitch Controller
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Figure D-3. Kd Gain Curve for Pitch Controller
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Figure D-4. Kp Gain Curve for Heading Controller During Glide Up
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Figure D-5. Kd Gain Curve for Heading Controller During Glide Up
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Figure D-6. Kp Gain Curve for Heading Controller During Glide Down
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Figure D-7. Kd Gain Curve for Heading Controller During Glide Down
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