693 research outputs found

    A PROPOSED CONTROL SOLUTION FOR THE CAL POLY WIND ENERGY CAPTURE SYSTEM

    Get PDF
    The focus of this thesis is to research, analyze, and design a reliable and economical control system for the Cal Poly Wind Energy Capture System (WECS). A dynamic permanent magnet generator model is adopted from [1] and [2] and combined with an existing wind turbine model to create a non-linear time varying model in MATLAB. The model is then used to analyze potentially harmful electrical disturbances, and to define safe operating limits for the WECS. An optimal operating point controller utilizing a PID speed loop is designed with combined optimization criteria and the final controller design is justified by comparing performance measures of energy efficiency and mitigation of mechanical loads. The report also discusses implications for a WECS when blade characteristics are mismatched with the generator. Finally, possible ways to improve the performance of the Cal Poly WECS are addressed

    Electromechanics of an Ocean Current Turbine

    Get PDF
    The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system

    Electromechanics of an Ocean Current Turbine

    Get PDF
    The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system

    Electrical Signature Analysis of Synchronous Motors Under Some Mechanical Anomalies

    Get PDF
    Electrical Signature Analysis (ESA) has been introduced for some time to investigate the electrical anomalies of electric machines, especially for induction motors. More recently hints of using such an approach to analyze mechanical anomalies have appeared in the literature. Among them, some articles cover synchronous motors usually being employed to improve the power factor, drive green vehicles and reciprocating compressors or pumps with higher efficiency. Similarly with induction motors, the common mechanical anomalies of synchronous motor being analyzed using the ESA are air-gap eccentricity and single point bearing defects. However torsional effects, which are usually induced by torsional vibration of rotors and by generalized roughness bearing defects, have seldom been investigated using the ESA. This work presents an analytical method for ESA of rotor torsional vibration and an experimentally demonstrated approach for ESA of generalized roughness bearing defects. The torsional vibration of a shaft assembly usually induces rotor speed fluctuations resulting from the excitations in the electromagnetic (EM) or load torque. Actually, there is strong coupling within the system which is dynamically dependent on the interactions between the electromagnetic air-gap torque of the synchronous machine and the rotordynamics of the rotor shaft assembly. Typically this problem is solved as a one-way coupling by the unidirectional load transfer method, which is based on predetermined or assumed EM or load profile. It ignores the two-way interactions, especially during a start-up transient. In this work, a coupled equivalent circuit method is applied to reflect this coupling, and the simulation results show the significance of the proposed method by the practical case study of Electric Submersible Pump (ESP) system. The generalized roughness bearing anomaly is linked to load torque ripples which can cause speed oscillations, while being related to current signature by phase modulation. Considering that the induced characteristic signature is usually subtle broadband changes in the current spectrum, this signature is easily affected by input power quality variations, machine manufacturing imperfections and the interaction of both. A signal segmentation technique is introduced to isolate the influence of these disturbances and improve the effectiveness of applying the ESA for this kind of bearing defects. Furthermore, an improved experimental procedure is employed to closely resemble naturally occurring degradation of bearing, while isolating the influence of shaft currents on the signature of bearing defects during the experiments. The results show that the proposed method is effective in analyzing the generalized roughness bearing anomaly in synchronous motors

    Design of Powder Core Motors

    Get PDF
    The goal of the study presented in this thesis is to evaluate the advantages and drawbacks of using powder technology in the design of the iron core of small claw-pole electric motors. The use of soft magnetic composites (SMC) and compaction technology allows the creation of complex 3D iron cores. The additional dimension opens for new solutions of the electromechanical energy conversion. A claw-pole motor among the transversal flux machines that has particularly high specific torque is in the focus of research interest. Generally, as the iron core can be more complicated, the winding is chosen to be simpler in the powder core motors. The thesis focuses on the machine design of a single-phase and a two-phase low-power claw-pole motor. The predicted results compare well with measurements of the prototype motors. The motor design process in this thesis uses a magnetic equivalent circuit (MEC) model of the outer-rotor claw-pole motors that is accurate enough to describe the physics of the electromagnetic conversion. Additional equivalent circuits are made to evaluate the mechanic and thermal loading of the machines. The outcome of the equivalent circuit models is enough to estimate roughly the optimal size of the motor and the motor output according to the materials selected. After the rough design process, which is based on equivalent circuits, is finished, a series of FE magnetostatic analyses are made in order to evaluate the static characteristics of the motors, to specify the magnetization losses and to carry out a sensitivity study for the proposed size of the motors. Finally, the magnetic, mechanic and thermal design is analyzed dynamically and statically by the use of coupled multiphysics. The task of the coupled multiphysics is to find out the cooling capability and the thermal limit of the motor as well as the mechanic stress in the motor parts due to magneto-mechanic loading. It is discussed how the discrepancy between the calculated and measured cogging torque depends on the fineness of the 3D FE air gap mesh. Iron loss estimation based on the results of the FE-analysis is made taking the local rotation, and not only pulsation, of the magnetic flux into consideration. It is shown that the loss coefficients in the material model must be adapted to account for flux rotation. A part from the output of the machine as an electromechanical energy converter is their controllability in the electric drive system. Based on the static characteristics, which are calculated in the FE-analysis and verified in prototype measurements, a tailor made control method is developed for the machines designed. Results are presented of extensive simulations and experimental verifications of the proposed control strategy and power electronic circuitry. The high-speed four-pole single-phase motor shows satisfactory results. The other motor, which has 20 poles and two phases, has a main weakness in its complex assembling and a large cogging torque

    Traction system with on-board inductive power transfer

    Get PDF
    In traction applications based on long primary and short secondary type, contactless electrical energy transmission can offer distinct advantages over the conventional energy transmission based on catenary system to provide the required on-board power. In this paper, a linear brushless doubly fed machine with dual-primary windings and a reluctance secondary mover is proposed as a means of providing decoupled traction and on-board power. The machine primary contains two three-phase windings with different number of poles while an additional third winding is added around rotor saliencies forming a third output electric port to provide the required on-board power. A prototype machine is designed and simulated using 2D finite element analysis to verify the proposed concept.Qatar National Research FundScopu

    High Speed flywheel and test rig design for rural energy storage

    Get PDF
    There is considerable growth in the renewable energy sector to contribute to sustainable development, environmental conservation and most importantly to provide affordable energy to isolated rural communities of sub-Saharan Africa. Renewable energy sources such as solar and wind require energy storage since the source of energy is intermittent. Electrochemical batteries especially from lead acid are commonly used to store energy in Solar Home Systems (SHS) for rural electrification in sub-Saharan Africa. Disadvantages such as low efficiencies, low life cycle costs, high maintenance, comparatively short life and serious environmental and human toxicity effects exist. Since recycling is not widespread, replacement costs are high, as are the resultant environmental damage and health hazards from lead and sulphuric acid. In this thesis, an electromechanical flywheel energy storage device is proposed as an alternative to a lead acid battery in order to increase efficiency, life expectancy, increased high depth of discharge, low life cycle cost and elimination of adverse environmental effects. Due to income and service skill constraints in rural areas, the proposed, high speed flywheel systems (for long time energy storage) will require the use of low cost configurations and topologies, special considerations on the flywheel rotor profile design, robust electrical machines, simple power electronics and a low cost bearing set. Low loss magnetic bearings are also possible but were limited by time while also making their maintenance complex especially in rural areas. Conventional high strength composite materials used in flywheel rotor manufacture for high speed operation are expensive. Therefore there is a need to develop techniques to profile the rotor shape so as to improve on material usage and exhibit lower mechanical stresses. A robust electrical machine topology for high speed operation and a simple drive system are investigated to ensure simple assembly, low cost and low maintenance. vii The various flywheel components were designed using analytical and numerical methods. Two techniques were used to develop two optimal profiles for the flywheel rotor structure. Partial differential equations and analytical solutions were employed to develop the profiles. Analytical equations were used to design the electrical machine, drive, bearing system and other accessories. The final electromechanical battery prototype consisted of a composite flywheel rotor made from E-glass fibre materials, double rotor Axial Flux Permanent Magnet (AFPM) machine and a drive system using Brushless DC (BLDC) mode of operation. The system was designed for 300Wh of energy storage for the delivery of 100W and 500W of power and an operating speed range of 8,000 rpm-25,000 rpm. The design and development of the flywheel energy storage system and test rig using locally available materials was investigated. Experiments were conducted for speeds up to 6,000 rpm. The electromechanical battery was able to store a maximum of 77Wh of energy. The shortfall of the system to meet its design specifications was investigated and found to have been caused by vibrations resulting from prototyping issues. A thermal model was developed to predict the temperature rise in the system which showed a good correlation with the experimental results

    High performance position control for permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, development time and associated costs are reduced. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This document presents the design and implementation of a position control system for permanent magnet synchronous drives, including a review and comparison of various related works about non-linear control systems applied to this type of machine. The overall electric drive control system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on a microcontroller and analogue circuits connected to it. The dsPIC33FJ32MC204 is used as the target processor to implement the control algorithms. The electric drive model is developed using elements existing in the Proteus VSM library. As in any high performance electric drive system, field oriented control is applied to achieve accurate torque control. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux are also simulated. Comparisons between the two control schemes are carried out for speed and position using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the hybrid fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present. Finally, the speed controllers are implemented and evaluated physically in a testbed based on a brushless DC motor, with the control algorithms implemented on a dsPIC30F2010. The comparisons carried out for the speed controllers are consistent for both simulation and physical implementation

    SIRM 2017

    Get PDF
    This volume contains selected papers presented at the 12th International Conference on vibrations in rotating machines, SIRM, which took place February 15-17, 2017 at the campus of the Graz University of Technology. By all meaningful measures, SIRM was a great success, attracting about 120 participants (ranging from senior colleagues to graduate students) from 14 countries. Latest trends in theoretical research, development, design and machine maintenance have been discussed between machine manufacturers, machine operators and scientific representatives in the field of rotor dynamics. SIRM 2017 included thematic sessions on the following topics: Rotordynamics, Stability, Friction, Monitoring, Electrical Machines, Torsional Vibrations, Blade Vibrations, Balancing, Parametric Excitation, and Bearings. The papers struck an admirable balance between theory, analysis, computation and experiment, thus contributing a richly diverse set of perspectives and methods to the audience of the conference

    Modelling the unbalanced magnetic pull in eccentric-rotor electrical machines with parallel windings

    Get PDF
    This research work is focused on developing simple parametric models of the unbalanced magnetic pull produced in eccentric-rotor electrical machines. The influence of currents circulating in the parallel paths of the stator winding on the unbalanced magnetic pull is given the main attention. The interaction between these currents and those circulating in the rotor cage/damper winding is also considered. First, a parametric force model for an eccentric-rotor salient-pole synchronous machine is developed. The effects of the parallel stator windings are not considered in this model. Next, a low-order parametric force model is built for electrical machines equipped with parallel stator windings but operating without the rotor cage/damper winding. This force model is applicable to salient-pole synchronous machines as well as to induction motors. And finally, a special force model is developed for electrical machines furnished with parallel paths both in the rotor and stator windings. This model accounts for the equalising currents circulating in the rotor and stator windings and also for the interaction between these currents. This third force model can be applied to a salient-pole synchronous machine and to an induction machine. The parameters of the force models are estimated from the results of numerical simulations applying a soft-computing-based estimation program. All the developed force models with the estimated parameters demonstrate a very good performance in a wide whirling frequency range. The effects of parallel paths in the rotor and stator windings on the unbalanced magnetic pull are investigated numerically. The acquired results reveal that the total unbalanced magnetic pull and its constituents related to the fundamental magnetic field and slotting are strongly affected by the presence of parallel paths in the stator winding. However, unlike the rotor cage, parallel stator windings may instigate anisotropy in the unbalanced magnetic pull. In such cases, the results of the numerical impulse response test may differ significantly from the conventional calculation results. It is also shown that, despite the fact that the number of parallel paths in the stator is often substantially lower than the number of parallel paths in the rotor, parallel stator windings may still provide a more efficient UMP mitigation than the rotor cage/damper winding.reviewe
    • …
    corecore