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ABSTRACT 
 

A PROPOSED CONTROL SOLUTION FOR THE 

CAL POLY WIND ENERGY CAPTURE SYSTEM 

 

Kent Burnett 

 
 
 The focus of this thesis is to research, analyze, and design a reliable and economical 

control system for the Cal Poly Wind Energy Capture System (WECS).  A dynamic permanent 

magnet generator model is adopted from [1] and [2] and combined with an existing wind 

turbine model to create a non-linear time varying model in MATLAB.  The model is then used to 

analyze potentially harmful electrical disturbances, and to define safe operating limits for the 

WECS.  An optimal operating point controller utilizing a PID speed loop is designed with 

combined optimization criteria and the final controller design is justified by comparing 

performance measures of energy efficiency and mitigation of mechanical loads. The report also 

discusses implications for a WECS when blade characteristics are mismatched with the 

generator.  Finally, possible ways to improve the performance of the Cal Poly WECS are 

addressed. 
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1. INTRODUCTION 
 

1.1 Statement of Problem and Motivation 
 

 Wind energy is becoming a more attractive energy source for the future world.  Growing 

concern with the effects of green house gasses and the uncertain future of nuclear energy makes 

renewable sources such as wind a viable alternative.   Wind energy is one of the leading renewable 

energy sources in the US with over 42GW currently installed, [3] but the average cost of installing Wind 

Energy Capture Systems (WECS) is still much higher than traditional fossil fuel plants of equivalent 

energy output.  Fortunately, larger production quantities and increasing power output are reducing 

generation costs for WECS.  In addition, technological advances in power electronics and innovative new 

controller designs are enhancing the popularity of variable-speed WECS which can maintain electrical 

synchronism with the grid while providing energy at different rotational speeds. These advancements 

are improving the economic vitality of Wind Energy Capture Systems for power generating entities.  

 The motivation of this thesis is to design a reliable and economical control system for the Cal 

Poly WECS.  The control system is a fundamental component of the WECS which makes the wind turbine 

a useful machine to capture energy from the wind.  Modern WECS control systems are primarily 

designed with two broad objectives in mind; reliability and energy efficiency.  The objective of reliability 

is realized by mitigating mechanical loads which incurs minimal maintenance costs and leads to a longer 

service life.  However, the goal of energy efficiency sometimes conflicts with the goal of reliability so a 

balanced compromise between the two objectives must be achieved by a well designed controller.  

 One of the many challenges facing a WECS design is the uncontrollable nature of wind.  

Traditional fossil fuel or steam power plants can easily adjust power output by increasing fuel flow or 

steam pressure, but wind turbines are limited by a highly variable source of energy.  This means the 

control action must adjust according to the current wind resource.  Because the wind resource can 

change quickly, a dynamic WECS model is required to study the transient effects.   

 In addition, the rated current of the Ginlong PMG-3500 imposes a restriction on the operational 

range of the WECS.  In literature, the rated power of a generator is usually the primary restriction for the 

operational range of the WECS, but this is not the case for the WECS in this thesis.  This thesis attempts 

to make the Cal Poly WECS reliable, economical, and as simple as possible. 
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1.2  Thesis Objectives 
 

1. To determine the parameters for a dynamic model of a permanent magnet generator. 

 

2. To simulate a WECS modeled after the Cal Poly wind turbine so that torque variations from the 

bridge rectifier, and voltage transients from step load changes can be analyzed. 

 

3. To determine generator electrical limitations based on simulation. 

 

4. To determine steady state optimal operating points for the Cal Poly WECS. 

 

5. To design an optimal operating point controller utilizing a PID speed loop based on combined 

optimization criteria. 

 

6. To analyze the performance of the controller by measuring energy efficiency and torque 

variations. 

 

1.3 Thesis Outline 
 

 Chapter 2 is a brief introduction to fully-rated, variable-speed fixed-pitch wind energy capture 

systems with a literature review covering the current methods used to control WECS.  Three systems are 

defined and explained which make up the WECS model.  The aerodynamic and mechanical systems for 

the Cal Poly WECS were created by [4] as part of a Mechanical Engineering Master’s Thesis and these 

systems are the foundation for the WECS model used in this report.  The electrical system is described in 

detail which includes a dynamic permanent magnet generator model and an ideal load. 

 The second half of chapter 2 describes the control system structure, objectives, and strategies 

used for the design of the Cal Poly WECS.  Objectives are described in the partial and full load region, 

and energy efficiency, reliability performance, and combined optimization criteria are defined.  The 

Optimal Operating Point controller (OOP) is described, as well as the PID controller in both continuous 

and discrete time models.     

 Chapter 3 first explains how the parameters for the dynamic PMG model were chosen and it 

also explains assumptions and limitations of the results.  The model is then used to investigate torque 

oscillations produced from the bridge rectifier, and electrical transients which occur during step load 

changes.  Finally, the dynamic generator model is used to analyze potentially harmful electrical 

disturbances, and to define safe operating limits for the WECS.       
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 Chapter 4 addresses the design and evaluation of an Optimal Operating Point (OOP) PID speed 

controller for the Cal Poly WECS.  First, the safe operating limits for the generator and the aerodynamic 

characteristics of the Cal Poly WECS are used to define the optimal operating points for all wind speeds.  

The dynamic permanent magnet generator model is then combined with the existing state space WECS 

model to create a non-linear time varying system in MatLab Simulink.  Next, an optimal operating point 

controller utilizing a PID speed loop is designed with the combined optimization criteria.  The final 

controller design is justified by comparing performance measures of energy efficiency and mitigation of 

excessive mechanical loads.  Chapter 4 also discusses implications for a WECS when blade characteristics 

are mismatched with the generator.    

 Chapter 5 is a summary and conclusion of the work performed in this thesis.  It includes a list of 

future work possibilities and possible solutions to improve the operational range of the Cal Poly WECS. 
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2.  BACKGROUND AND LITERATURE REVIEW 
 

2.1 Introduction 
 

 This chapter is a brief introduction to fully-rated, variable-speed fixed-pitch wind energy capture 

systems with a literature review covering the current methods used to control WECS.  Three systems are 

defined and explained which make up the WECS model.  The aerodynamic and mechanical MATLAB 

simulation models used by [4] are also used in this report.  The electrical system is described in detail 

which includes a dynamic permanent magnet generator model and an ideal load.  

   The second half of this chapter describes the control system structure, objectives, and strategies 

used for the design of the Cal Poly WECS.  Objectives are described in the partial and full load region, 

and energy efficiency, reliability performance, and combined optimization criteria are defined.  The 

Optimal Operating Point controller (OOP) is described, as well as the PID controller in both continuous 

and discrete time models. 

  The Cal Poly WECS is Cal Poly’s first ever complete wind energy capture system which is being 

supervised by the Mechanical Engineering department.  The Cal Poly WECS is off-grid, with horizontal 

fixed-pitch blades, and a variable-speed 3.5kW permanent magnet generator. The goal of the project is 

to provide research and hands on learning for students interested in utility grade wind energy capture 

systems.  Significant progress has been made towards a successful wind turbine design including the 

work performed by [5], [6].  Additional work is currently underway for the design of a blade pitch 

regulator and a yaw regulator which will be a significant addition to the project. 

 In 2010, a mechanical engineering graduate student presented a Thesis for the Cal Poly WECS 

which is titled “Design, Implementation and Testing of a Control System for a Small, Off-Grid Wind 

Turbine” [4].  Many objectives were achieved in this thesis including calculations for the mechanical, and 

aerodynamic performance of the rotor, as well as the development of a MATLAB simulation model. 

Tests were performed on the generator to develop a steady state look-up table for speed, torque, and 

resistance.  In addition, a control strategy was designed for the partial load region. 

 A senior project for the Cal Poly WECS was also completed in June 2010.  The report is titled “Cal 

Poly Wind Turbine Speed Controller”.  The report focuses on the design and implementation of a 

Programmable Logic Controller which controls the speed of the rotor by regulating the electrical load 

with a DC chopper [7].    
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2.2 An Overview of Three Fundamental WECS Systems 
  

 The WECS can be modeled as three fundamental systems which are shown in Figure 2.1.  This is 

a standard practice in WECS control literature and further explanations are given below.    is the power 

of the wind,    is the output power of the generator,    and    are the rotor torque and generator 

torque,    and    are the rotational speed of the rotor and the rotational speed generator.  

 

 

2.2.1 Wind Turbine Aerodynamics 

 The aerodynamic system converts wind energy into useful mechanical energy.   A thorough 

discussion about wind turbine aerodynamics can be found by reading [8] or [4].  Many other helpful 

resources exist, but the most important equations to understand are the torque and power captured by 

the rotor blades.  The torque produced by the rotor of a fixed pitch turbine is described by equation 

(2.1).    is the density of air,    is the radius of the blades,   is the wind velocity, and    is the torque 

coefficient which is a function of the tip speed ratio.   

 
   

 

 
    

    
  (2.1) 

 

 The relation for the power captured by the rotor blades is described by equation (2.2).    is the 

power coefficient which is also a function of the tip speed ratio.  

    
 

 
    

    
  (2.2) 

 

 The tip speed ratio is defined by equation (2.3), where    is the rotational speed of the rotor in 

[rad/s] and   is the tip speed ratio. 

   
     
 

 (2.3) 

 

Pe 
Tg 

Ωg Ωr 

 

Tr 
Pw Aerodynamic Electrical 

 

Mechanical 

 

Figure 2.1 Aerodynamic, Mechanical, and Electrical subsystems of the WECS 
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 The aerodynamic design of the blades is such that a maximum power coefficient occurs at an 

optimal tip speed ratio     .  The power coefficient depends on the tip speed ratio and is usually in the 

range of 0 ≤    ≤ 0.45, but is never greater than the maximum achievable value of    which is known as 

the Betz Limit                      [8].  Figure 2.2 shows the predicted    vs.   curve for the Cal 

Poly WECS which was determined by [4]. 

 

Figure 2.2 Cp-Power Coefficient vs. λ for the Cal Poly WECS [4] 

 As seen in Figure 2.2, the maximum power coefficient occurs at the peak of the graph and 

corresponds to an optimum tip speed ratio of 4.   

                 (2.4) 

 

 According to equation (2.2) the power extracted by the rotor also depends on the wind velocity.  

Power is related to wind velocity by the velocity cubed, so the extracted power changes quickly when 

the wind speed changes.   Figure 2.3 shows a family of curves relating the rotor power to wind speed as 

well as power vs. rotational speed.   
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Figure 2.3 Typical Power vs. Rotational speed (r/s), for given wind speed, with ORC [8] 

 Figure 2.3 also shows the optimal regimes characteristic (ORC) in the partial load region which is 

the line that intersects the power vs. rotational speed curves at the maximum power point for a given 

wind speed.  The turbine operates on the ORC if the tip speed ratio is held to the optimum tip speed. 

           (2.5) 

 

 In conclusion, the aerodynamic system is inherently non-linear, most obviously because the 

power coefficient     is a non-linear function of the tip speed ratio  , and    is highly dependent on the 

constructive characteristics of the turbine [9]. 

 

2.2.1.1 MatLab Aerodynamic Model 

 The aerodynamic model developed by [4] is presented in Figure 2.4.   This model uses input 

wind speed, equation (2.1), and a lookup table for     to calculate the available torque from the wind. 
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Figure 2.4 Aerodynamic MatLab Simulink WECS model [4] 

 The model takes inputs from the rotor speed and the wind velocity to calculate the current tip 

speed ratio.  The torque coefficient is represented by a look-up table (   vs. ).  The parameters in Table 

2.1 are the aerodynamic constants for the Cal Poly WECS used in equation (2.1). 

Table 2.1 Aerodynamic system constants for Cal Poly WECS [4] 

Description Symbol Value Units 

Air density   1.22 kg/m3 

Radius of blades    1.875 m 

 

2.2.1.2  Wind Speed Input 

 Two basic wind speed inputs were used for this thesis.  Both input groups use simple step and 

ramp functions to represent the wind speed input as shown in Figure 2.5.  The full load wind speed input 

is shown in Figure 2.6.  

 

Figure 2.5 MATLAB wind speed input 

 More complicated models exist, such as the Von Karman wind turbulence model, but they are 

not considered in this thesis.   
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Figure 2.6 Full load wind speed input 3.5m/s to 13m/s  

 

2.2.2 Mechanical System 

 The mechanical system considered in this thesis primarily consists of the rotor which transfers 

energy from the aerodynamic system to the electrical system.  It does not include structural 

considerations such as tower and blade bending although these structural characteristics can play a 

significant role in WECS dynamics. 

  The mechanical system of the Cal Poly wind turbine was extensively analyzed by [4] as part of a 

master’s thesis. The inertia constant     was determined by [4], and     comes from [11].  The values are 

listed in Table 2.2 below.       

Table 2.2 Mechanical System Constants [4], [11] 

  6.906 (kgm2) 

   6.84 (kgm2) [4] 

   0.066 (kgm2) [11] 

 

 After modeling the system, [4] concluded that the shaft could be modeled as a rigid shaft.  In 

addition, [4] found it acceptable to model the system with a damping coefficient = 0.  The simplified rigid 

shaft MATLAB model for the mechanical drive train is seen in Figure 2.7 below. 
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Figure 2.7 Rigid shaft MatLab Simulink WECS model with constant inputs [4] 

 The equation relating the rotor torque to the input generator torque is represented by equation 

(2.6).  This equation also includes the term   which is the combined viscous friction. 

 
 
     

  
                   (2.6) 

 

 The model from [4] neglects viscous friction which yields the following equation. 

 
 
     

  
             (2.7) 

 

 
      

 

 
              (2.8) 

 

 Equation (2.8) represents the accelerating torque which is commonly used to relate the speed 

acceleration between rigidly coupled torque sources [12].  During steady state operation at a given wind 

speed, the mechanical torque will be equal to the electrical torque and the turbine will rotate with 

constant speed.   If there is a difference of torques then the system will accelerate based on the inertia 

and the amount of torque difference.  Systems with large measures of inertia will experience smaller 

speed accelerations for a given accelerating torque. 
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2.2.3 Electrical System 

 

2.2.3.1  Generator - Introduction 

 The operation of a WECS is highly dependent on the type of generator used.  For example, older 

style fixed speed WECS typically employed the use of Squirrel Cage Induction Generators (SCIG) which 

were directly connected to the utility grid.  These fixed speed SCIG required a soft starter to operate the 

generator as a motor during startup.  Eventually when the rotational speed of the generator exceeded 

the synchronous speed of the grid, the generator would begin to produce power.  Some SCIG also 

contain two winding sets (8 poles and 4-6 poles) which allow the generator to operate in synchronism 

with the grid at two different rotational speeds [1].   

 Synchronous generator are also employed by many variable speed WECS.  Both wound rotor 

and Permanent Magnet Generator (PMG) type are used, but the PMG is the most common synchronous 

generator for wind turbines [1].  The PMG owes its popularity to the use of the permanent magnets 

which allow the generator to be self excited.  The mechanical gearbox can also be eliminated when 

using the PMG because a high number of magnetic poles can be used to produce the desired electrical 

frequency at a slower rotor speed.   

 Anyone who studies power systems and electric machinery knows there are many different valid 

models for the synchronous generator.  The permanent magnet generator (PMG) is a major component 

of the WECS and it is important to use the proper simulation model to give the desired simulation 

results.  This thesis briefly discusses 3 models of the PMG; steady state lookup table, equivalent circuit 

model, and dynamic-state space model. 

 

2.2.3.2 Generator - Synchronous Machine Theory 

 In order to better understand the origins of different synchronous generator models it is 

important to understand the general operation of a synchronous generator.  When the rotor is turned, 

the rotating flux density induces a voltage on the armature windings. The flux linkages of the armature 

winding change with time and create a time varying electrical voltage [12]. The electrical frequency of 

the voltage induced in the armature is directly proportional to the frequency of the rotor and is 

synchronized with the mechanical rotor speed.  The electrical frequency of the synchronous machine 

also depends on the number of poles as seen by the following equation (2.9). 

 
    

    
 
 
 

  
 (2.9) 

 

 Where    is the electrical frequency in hertz,      is the total number of poles, and   is the rotor 

speed in revolutions per minute. 
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2.2.3.3 Generator - Steady State Lookup Table 

 The steady state look-up table can also be used to show the relationship between rotor speed, 

load resistance and output torque, and is typically obtained by experimental measurement.  The look-up 

table is like the steady equivalent circuit model because it represents the generator during normal 

operating conditions only.   This type of model is sufficient for steady state modeling only. 

 

2.2.3.4 Generator – Steady State Equivalent Circuit Model 

 The equivalent per phase circuit model for a synchronous generator is a useful tool to shed light 

on the steady state operation of a generator at rated conditions.  The circuit describing the per-phase 

model for the synchronous generator is described below.     

aRsjX

aE 






V

aI

 
Figure 2.8 Equivalent per phase model for synchronous generator 

 

 Where       is the phasor quantity of induced RMS voltage per phase,    is the equivalent per 

phase reactance,     is the phasor quantity of RMS current per phase,    is the equivalent per phase 

resistance, and        is the phasor quantity of RMS terminal voltage per phase.    Following KVL, the circuit 

of Figure 2.8  is described by the following equation.  

                             (2.10) 

 

 The voltage induced in the armature winding depends on the frequency of rotation, the 

effective series turns per phase, and the flux per pole as seen in equation (2.11). 

 
   

  

  
         (2.11) 

 

 Where     is the number of series turns per phase,    is the winding factor, and    is the flux 

per pole.   The general point to take away from this simplified equivalent circuit model is that the 

induced voltage is approximately proportional to the rotational speed and highly dependent on the 

number of series turns per phase.  This equivalent circuit model can effectively model the steady state 
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operation of the motor, but it ignores the dynamic characteristics of the motor which are described 

more thoroughly by the dynamic state space model.  

 

2.2.3.5 Generator - Dynamic State Space Model 

 A dynamic generator model is a powerful tool to closely represent the actual characteristics of a 

generator by responding predictably to both steady state conditions and dynamic conditions.  In most 

WECS control designs [1], [14], [2], a dynamic-state space model using differential equations is used.  

The dynamic state space model is a powerful tool in control theory because it is readily implemented in 

computer simulation and because it responds accurately to abrupt system changes.   The most common 

model is derived from the (a,b,c) coordinates by means of the Park Transform.  The transformation to 

the direct – and quadrature axis (d-q) equations allows for a simpler means to analyze AC machines. 

Details and explanations of the Parks Transformation can be found from many sources including [12].  In 

addition, it is commonly assumed that the system will operate in balanced 3-phase conditions with no 

zero sequence components.   Equation (2.12) is used to model the dynamic (d-q) current characteristics 

of the PMG with a parallel R-L load.   The model assumes sinusoidal distribution of stator windings, 

electric and magnetic symmetry, negligible iron losses, and unsaturated magnetic circuit.  It must be 

noted that that equation (2.12) is not valid for short circuit analysis. 

 

 
       

       
  

 
 
 
 
 

 

     
                           

 

     
                                    

 
 
 
 
 

 

 
 
 
 
 
  

     
 

 
  

      
 
 
 
 

  
     

     
        

(2.12) 

 

 Equation (2.12) is adopted from [1], [2] which is the same model presented by [4].  The variables 

are defined in Table 3.4.  In addition, generator torque is described by equation (2.13). 

                                    (2.13) 

 

 When the permanent magnets are mounted on the surface of the rotor we assume       [2].  

This simplifies the equation for generator torque. 

                 (2.14) 
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 From equation (2.14) the generator torque obviously depends on the pole pairs   which can be 

found by the following equation relating the rotational speed of the generator to the electrical 

frequency.   

 
    

 

  
 (2.15) 

 

 There are 10 poles pairs in the Ginlong PMG-3500 generator. This result is consistent with [6] 

and [4] as well as email correspondence with the manufacturer and experimental tests performed by 

the ME department. One complete turn of the rotor results in 10 electrical cycles.  In addition, for a 

speed of           , and          the pole pairs can be calculated.   

 
    

  

 
 
     

   
    (2.16) 

  

 The load of the PMG model is represented by a variable resistance in equation (2.12) with a 

fixed inductive load, because it easily approximates a typical power electronics device which could be 

attached to the generator output.  The dynamics of the power electronics are neglected because the 

switching frequency of most modern devices is significantly faster compared to the dynamics of the 

WECS and can therefore be neglected when modeling a control system [8], [1], [10], [2].  When the load 

of the generator is assumed to be a symmetric isolated three phase resistive load, equation (2.12) 

changes to become the equation shown below, which is the same equation used by the MATLAB model. 

 

 
       

       
  

 
 
 
 
 

 

  
                      

 

  
                               

 
 
 
 
 

 

 
 
 
 
 
  

  
      

 
  

  
     

 
 
 
 
 

       

(2.17) 

 

2.2.3.6  Power Electronics – WECS Configuration 

 The fully-rated variable-speed system is becoming a popular WECS configuration.  The power 

electronics for this type of configuration are rated to the full capability of the generator which is fully 

decoupled from the grid.  All power flows through the power electronics.  This configuration allows for 

the most flexible range of operation. 
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2.2.3.7 Power Electronics - Full Bridge Rectifier 

 The purpose of the full bridge rectifier is to transform 3-phase AC voltage and current to DC 

voltage and current.  The rectifier connected to the Ginlong PMG is uncontrolled and consists of 6 power 

diodes.   Appendix H lists the data for the MDS60-16B full bridge rectifier which is connected to the 

Ginlong PMG-3500. The configuration of the full bridge allows current to pass through in only one 

direction.  The diode with the most positive anode and or the most negative cathode conducts.   

 

Figure 2.10 Full Bridge 3-Phase Rectifier 

 The voltage relation for the 3 phase full bridge rectifier is as follows [15] 

             (2.18) 
 

DC 

AC DC PMG 

AC 

Figure 2.9 Fully-Rated, Variable-speed WECS with PMG 
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 Where     is the DC output voltage and    is the peak phase voltage (line to neutral) from the 

AC source.  For a sinusoidal signal we know that the rms phase voltage         is related to the peak 

voltage by 

         
  

  
 (2.19) 

 

So equation (2.18) becomes 

                     (2.20) 

 

 For a purely resistive load the RMS output current of the rectifier        is related to the peak AC 

input current    by equation (2.21) [15].  

                  (2.21) 

 

 It is also interesting to note that the output current ripple for a 3-phase full bridge rectifier is 

6(n) times the fundamental input frequency where n is an integer from 1 to infinity.  The most apparent 

output ripple occurs when n=1. 

                             (2.22) 
 

 The input current ripple frequency occurs at         times the fundamental frequency. 

                                             (2.23) 
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2.3  The Control System – Structure, Objectives, and 

Strategies 
 

 This section introduces the structure, objectives and strategies pertaining to fully-rated, 

variable-speed, fixed-pitch WECS which are most similar to the Cal Poly WECS.  

 

2.3.1 Structure  

 Wind turbine control systems are broad and diverse.  The structure of the overall control system 

is a network of subsystems that perform separate and sometimes parallel tasks. Figure 2.11 summarizes 

the structure of WECS control systems and lists possible control strategies.  

 

Microprocessor or computer-based controller Hardwired relay-logic 

Supervisory System Safety System 

Standby Shutdown Power Production Start-up Stopped 

Partial Load Region 
 λo tracking 

 Rotor speed 
proportional to wind  

  

 

Full Load Region 
 Maintain rated 

power 

Controller Strategies 
 
 

Frequency Separation 
On-Off Control 

OOP 
Feedback Linearization 
Stdy. State Optimization 
LQ 
QFT 
 

PI or PID 
MPPT 
Gain Scheduling 
Fuzzy Logic 
Sliding Mode control 

Figure 2.11 Structure of WECS Control Systems 
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 At the highest level of the control structure there is a safety system, and supervisory system 

which changes the operational mode of the controller.  Supervisory control changes the operational 

state between standby, startup, power production, shutdown, and stopped with fault [10].  The 

supervisory system runs in the background during all modes of operation.   

 

2.3.1.1  Safety System 

 The safety system is usually quite distinct from the main control system because it typically 

consists of hardwired relay-logic.  The safety system prevents the WECS from operating outside its safe 

operational limits and acts as a back-up if the main control system fails.   

 Most robust safety systems do not rely exclusively on computer based systems for primary 

protection, but instead use independently hardwired normally open relay circuits [10].  If any safety 

relay contact is de-energized, the safety system trips and the WECS stops or returns to a safe operating 

condition.   

Some of the most common safety circuits for typical WECS include the following: 

 Rotor over speed – which is typically set higher than software rotor speed limit 

 Vibration sensor – which could indicate a major structural failure has occurred 

 Controller watchdog timer expired – to indicate if the main controller is active and running   

 Other faults – can include high wind speed, generator electrical faults, ect. 

 The current safety system in the Cal Poly WECS is designed to protect the wind turbine from 

severe damage.   It consists of a rotor over speed shutdown, a high wind speed shutdown, and a 

yaw/wind direction mismatch shutdown.  When any of these conditions is detected by the onboard PLC, 

the mechanical break is applied to stop the wind turbine.   

 

2.3.1.2  Power Production Mode 

 The power production mode of operation is most commonly discussed in literature because it is 

the mode when the WECS generates electricity.  This mode is the main focus of this thesis.  Within the 

power production mode there are typically two regions of operation which are defined by the power 

and wind speed.  The controller must satisfy different objectives in each region of operation. 

 

2.3.2 Objectives 

 This section discusses the objectives in the power production mode of operation.  First the 

regions of operation are defined and then objectives are described.  Economic performance is arguably 
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the most important factor driving all control system objectives.  The economic performance of the WECS 

primarily depends on energy efficiency and reliability performance of the machine.   

 The ideal power production curve is presented in Figure 2.12 which shows ideal available power 

for a given wind speed and the regions of operation.   

 

Figure 2.12 Ideal Power Production Curve with Regions of Operation 

 

2.3.2.1 Region of Operation - Partial Load 

 The partial load region of the ideal power curve is between the cut-in wind speed         and 

the nominal wind speed          (as defined by the area to the left of the dashed green line in Figure 

2.12).   When the WECS operates in the partial load region, the power output of the generator is below 

its nominal rating, so the generation objective is to extract all of the available power from the blades. In 

other words, the curve in the partial load region is called the Optimal Regimes Characteristic (ORC) 

which is equivalent to the aerodynamic power equation (2.2) with      . 

         is usually determined by economic considerations.  The cut-in wind speed is required for 

the WECS to begin delivering useful power which is offset by power consumption from the WECS control 

hardware.           is defined as the wind speed which produces the maximum continuous power 

output rating of the generator.   
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2.3.2.2  Region of Operation - Full Load Region  

 The full load region is between          and         .  The control objective in this region is to 

maintain the maximum continuous power rating of the generator for a range of wind speeds.   This 

objective is accomplished by regulating the efficiency of the aerodynamic system.  Aerodynamic power 

efficiency is typically adjusted by changing blade pitch, or by adjusting the tip speed ratio.  When the 

maximum continuous power rating of the generator can no longer be maintained, the WECS must shut 

down to prevent damage.  Shut down occurs at         .   

 

2.3.2.3 Energy Efficiency  

 The primary objective in the partial load region is to optimize operation with maximum energy 

conversion efficiency by extracting the maximum available power from the rotor for any given wind 

speed.        is the available power from the wind when the power coefficient is a maximum for a given 

blade set.       as defined in the equation below, is the actual power captured by the blade set during 

operation.        

 
                  

    
     

 (2.24) 

 

 Energy efficiency can improve the overall economic performance of a WECS because power 

producers primarily earn revenue based on the total energy supplied to the grid (      .  A WECS 

with poor energy efficiency will not survive in today’s highly competitive energy market.   

 

2.3.2.4 Reliability Performance 

 The goal of reliability performance is important in both regions of operation.  A reliable system 

operates when called upon, incurs minimal maintenance costs, and has a long service life.  The actions 

from a controller can directly affect the reliability performance of a WECS.  A highly compensated 

controller can impose severe loads on the mechanical system, which over time can lead to mechanical 

fatigue and broken parts.   It has been shown that excessive generator torque variations can lead to 

mechanical fatigue when energy efficiency is the exclusive objective for a WECS controller [16].   

  

2.3.2.5 Mixed Criterion - Energy Efficiency and Reliability Performance 

  When energy efficiency and reliability performance become top objectives in the partial load 

region, a mixed criterion approach is used to measure the overall performance of the WECS.  The mixed 

criterion approach seeks a balance between conflicting goals of energy efficiency and reliability 

performance.  The conflict occurs, because energy efficiency is typically improved by tightly tracking the 
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optimum tip speed ratio with high gain controllers, but this can lead to undesirable torque variations. 

The challenge of measuring the performance of a mixed criteria controller is addressed with the 

following equation from [16]:   

                 
 
       

      (2.25) 

 

 Optimum controller performance can be achieved by minimizing the value of .  The first average 

term (     is the symbol for the statistical average) is a measure of energy efficiency and the second 

average term is a measure of torque variations.   In addition, numerical scaling between the two terms 

can be adjusted with the weighting coefficient α.   

 

2.3.3 Strategies  

 In order to achieve the objectives listed in section 2.3.2, several strategies can be employed.  

Control strategies for WECS vary from one methodology to another because of assumptions about 

known parameters, measurable variables, and type of model used to describe the system.  Some of the 

common issues addressed by WECS control systems include: 

1. Variable nature of wind 

2. Life service reduction due to mechanical stress 

3. Non-linear behavior of WECS 

4. Poor reliability of important measurement equipment 

5. Unknown parameters/operating characteristics of WECS 

 After reviewing literature surrounding variable-speed WECS control systems it is apparent that 

there are many different strategies.   Some of the most popular strategies include Gain Scheduling, PI 

control, and Maximum Power Point Tracking (MPPT).  However, most applied WECS control systems use 

only the most basic control strategies for generator side control and none of the techniques have 

become classical and widely used.  Summary descriptions of the most interesting generator side control 

strategies used for fully-rated, variable-speed WECS are included in the Appendix.  

  

2.3.3.1 Controller Strategy Choice 

 The Optimal Operating Point (OOP) controller is the final design strategy proposed by this thesis, 

but it was not the initial choice.  The initial choice for the Cal Poly WECS was a Gain Scheduling 

controller.  The Gain Scheduling controller uses the well known tools of modern linear control theory, 

but this requires linearization of an inherently non-linear system.  The linearization process can be 

achieved, but results in a large number of linear systems which are only valid for a single operating point 

(an operating point is defined by two parameters - wind speed and rotational speed).  This leads to the 
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requirement for the gain scheduling controller which is essentially a group of many controllers, each 

designed for a specific operating point.  The gain scheduling controller can provide a very elegant 

solution for WECS systems, but this requires powerful controller hardware and a complex design. 

 The OOP controller was chosen instead, as a simple alternative to the Gain Scheduling controller 

and it does not require linearization of the WECS system.  The gain values are determined as part of an 

iterative process using the combined optimization criteria.  The OOP controller is described below as 

well as the PID controller which is a key component of the OOP controller.   

 

2.3.3.2  Direct Imposing of Optimal Operating Point (OOP) 

 The OOP controller forces the WECS to operate at the optimal operating point corresponding to 

the instantaneous wind speed in the partial load region.  The controller obtains a speed reference based 

on the measured rotor speed and instantaneous wind speed.  The torque reference also requires two 

known constants,      and     . The direct imposing of the optimal operating point can produce large 

torque variations and high mechanical loads during fast wind speed variations because of turbine 

inertia.  To reduce the influence of turbine inertia and parametric variations, PI filters are commonly 

used (see Figure 2.13).   

 

 

2.3.3.3  Continuous PID  

 The PID controller is one of the most popular controllers used for industrial control applications 

and it is the key component in the OOP control strategy.  The classic continuous time PID controller is 

defined by equation (2.26), where      is the control action,   is the common gain,      is the error 

signal,    is the integration period, and    is the derivative gain [17]. 

Anemometer 
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Figure 2.13 PI Torque reference block diagram for OOP 
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  (2.26) 

 

 A block diagram for the classic continuous time PID is presented in Figure 2.14 below. 

 

 The proportional term increases the loop gain of the system and therefore reduces its sensitivity 

to plant parameter variations.  The integral makes sure that the plant output agrees with the set point in 

steady state and increases the system order.  The purpose of the derivative action is to improve the 

closed loop stability by reducing the amount of oscillation on the response.  Intuitively, the derivative 

action predicts the error by multiplying the slope of the error signal by the derivative gain.  However, 

sometimes the derivative term is used sparingly or not at all because the derivative term is sensitive to 

noise.  The transfer function for the derivative term in the frequency domain is as follows 

            (2.27) 
 

 If the derivative is included in the controller, a first order filter is commonly used to attenuate 

high frequency noise.  

 
        

    

  
   

  
 (2.28) 

  

 The entire PID transfer function in the frequency domain with the first order filtered derivative 

is listed below.  

 

            
 

   
 

   

  
   

  
  (2.29) 
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Figure 2.14 Continuous time PID Block Diagram 
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 Sometimes it is a better option to filter the measured signal outside the PID.  This is commonly 

done with the use of a 2nd order filter with damping   
 

  
 and   

  
  . 

 
            

 

   
      

 

      
     

 

 

  (2.30) 

 

 Equation (2.30) is popular because the controller has high frequency roll-off which means the 

gain goes to zero for high frequencies. 

 The application of the PID controller is useful when the transfer function of the system is not 

completely known.  In this case it is may be possible to determine the gain constants of the controller 

with an on-line tuning method such as the Ziegler Nichols frequency method (see appendix D).  When 

the transfer function of a linear time invariant system is known, the gain constants can be determined 

using a pole placement procedure. 

 

2.3.3.4  Discrete PID  

 The discrete PID is derived from the continuous PID but it is different because it samples signals 

at discrete time instances.  The differences are significant and the discrete PID must be carefully 

implemented.  The following list outlines the ideal sequence of operation for the PID controller [17]: 

1. Wait for clock interrupt 

2. Read analog input 

3. Compute PID equation 

4. Set output 

5. Update controller variables  

6. Return to step 1. 

 Another important difference with the discrete PID controller is that the integral and derivative 

terms must be approximated.  There are a variety of approximation methods for the integral and 

derivative terms, but they all produce the same general result.  The block diagram for the discrete PID is 

shown below. 
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Figure 2.15 Discrete PID Block diagram 

  The gain constants for discrete PID controllers are slightly different from continuous PID 

controllers because the gains are not all multiplied by the common proportional gain.  The gains for the 

discrete PID are described in terms of the continuous PID gains below. 

      

   
 

  
 

      

(2.31) 
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3. DYNAMIC GENERATOR – MODEL 

DEVELOPMENT AND ANALYSIS 
 

3.1 Introduction 
 

 This chapter first explains how the parameters for the dynamic PMG model were chosen and it 

also explains assumptions and limitations of the results.  The model is then used to investigate torque 

oscillations produced from the bridge rectifier, and electrical transients which occur during step load 

changes.  Finally, the dynamic generator model is used to analyze potentially harmful electrical 

disturbances, and to define safe operating limits for the WECS.       

 

3.2 Determination of Dynamic PMG Model Parameters  
  

 In order to use the dynamic generator model discussed in section 2.2.3.5, certain unknown 

parameters had to be determined.  There were a few options for how to obtain the required generator 

parameters.  One option was to perform additional open circuit and closed circuit tests on the generator 

as described by IEEE standard 115-2009 for testing synchronous machines [18].  These tests could 

produce the parameters directly, but would require additional laboratory time with the actual generator 

which was not pursued.  Another method would be to determine the parameters algebraically, but this 

would be difficult without having more information about the generator.  The final option was to 

determine the parameters from the known steady state characteristics in the generator manufacturer 

data sheet [11] (steady state - torque vs. speed, and steady state - voltage vs. speed).  The steady state 

characteristics from [11] were also experimentally verified by [4] as part of a Master’s Thesis. 

 The parameters for the MatLab Simulink dynamic generator model were chosen by an iterative 

process which involved adjusting the parameter values of the dynamic generator model when operating 

in a known steady state condition.   This process assumes the following about the dynamic generator 

model: 

1. The dynamic generator model described in section 2.2.3.5 is valid for both steady state and 

dynamic operation. 

2. The parameter values used in the model are constants. 

3. If assumptions 1&2 are correct, and if parameter values are valid in steady state, then 

parameter values are assumed to be valid for dynamic operation.  
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 The process of determining the values of Table 3.4 are outlined in the following section.  The 

final parameter values in the dynamic model are only assumed to be valid. They have not been verified 

for accuracy.   

 

3.2.1 Procedure 

 The following procedure can be used with MatLab V.7.6 (R2008a). 

1. The first step is to build the MatLab Simulink model as seen in Figure 3.1.  This simulation model 

is built around the generic permanent magnet generator from the Power-System library and a 

variable resistance current source load.  The generator takes a speed input (radians/s) and 

produces an electromechanical torque (Nm), based on the condition of the load (see equation 

(2.14)). Friction losses are neglected so the input rotor torque applied to the generator equals 

the output torque in steady state.     

 

Figure 3.1 MatLab PMG Generator model for parameter determination 

 

2. The parameters for the Simulink PMG are accessed by double clicking on the PMG block.  When 

the parameters tab is selected a window appears as in Figure 3.2. The first step is to specify the 

voltage constant which is listed as VLL_peak/krpm.  The voltage constant is only a starting point 

for determining the PMG parameters because it is based on ideal calculations for the open 
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circuit-rectified DC voltage vs. speed characteristic which are shown below.  The Simulink 

voltage constant specifies peak AC voltage so equation (2.20) can be used to relate DC voltage 

to AC line voltage. 

 
           

        

  
      

        

  
               (3.1) 

 

                     (3.2) 

 

From [4], when the speed is 250rpm, the DC open circuit voltage            is 450 volts, 

therefore the voltage constant for beginning iterations become 

                                                
                   

 
(3.3) 

 

The calculated voltage constant in equation (3.3) is only a starting value for the iterative 

procedure  The final value for the voltage constant was adjusted to 1575 because it resulted in a 

lower error calculation when the simulated model was compared to actual terminal voltage 

under loaded conditions (see Figure 3.3).  It is also useful to note that the value for flux linkage 

depends on the voltage constant.  The Simulink model automatically updates the flux linkage 

value after closing and re-opening the PMG block parameter window.   
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Figure 3.2 MatLab Simulink PMG Parameters 

3. The next important parameter to specify is the Ld and Lq inductance.  The initial values for these 

parameters were set between 0.02 to 0.0006 which are typical for a PMG of this size. 

4. The number of pole pairs was found previously by equation (2.16), and the stator resistance is 

known from the data sheet to be 2.7ohms. 

5. An iterative process was used to determine actual values.  The first step in the iterative 

procedure is to adjust the voltage constant, and this turns out to be a very important value for 

the generator.  The voltage constant was adjusted many times and the final value was chosen 

differently than the ideal calculation in equation (3.3). 

6. After selecting a voltage constant, the model is simulated at 250rpm full load.  At this data point 

the generator should require 150Nm torque to produce 3.5kW and 11A.  This is stated in the 

PMG-3500 datasheet which is also listed in the appendix.  In addition, the rectified output 

should also match the voltage vs. resistance values recorded by [4].  

7. After an acceptable combination of parameters is selected at 250rpm full load, the input speed 

is adjusted down and the corresponding voltage, torque and power are measured and 

compared to the known steady state values for the PMG.  The results are listed in the following 

section. 
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3.2.2 Data and Results  

Table 3.2 Simulated and Specified Torque for the PMG-3500 with R=27.05 

 Tables 3.1-3.3 show the simulated and specified values for the PMG using the final parameters 

of Table 3.4 and a resistance of 27.05 ohms.  The Simulated AC power is measured directly at the 

terminals of the PMG and the simulated torque is the electromagnetic torque which is calculated 

directly from the generic MATLAB PMG model.  The specified values of output power and input torque 

were taken directly from the PMG data sheet [11], and the specified DC voltage was approximated from 

experimentally measured values between 24ohms and 36ohms which was recorded by [4].  The 

specified voltage was used from [4] because the PMG data sheet only specifies open circuit voltage.   

Table 3.1 Simulated and specified Power for the PMG-3500 with R=27.05 

Speed 
(rpm) 

Spec-AC-
P(w) 

Sim-AC-
P(w) 

% 
Error 

250 3500 3515 0.43% 

200 2333 2298 -1.50% 

150 1375 1318 -4.15% 

100 625 597 -4.48% 

50 125 151 20.80% 

 

Table 3.2 Simulated and Specified Torque for the PMG-3500 with R=27.05 

Speed 
(rpm) Spec-T (Nm) Sim-T (Nm) 

% 
Error 

250 150 150 0.00% 

200 126.6 123.2 -2.69% 

150 102 94.9 -6.96% 

100 75 64.83 -13.56% 

50 37 33.1 -10.54% 

 

Table 3.3 Simulated and Specified Voltage for the PMG-3500 with R=27.05 

Speed 
(rpm) 

Spec-DC-V 
(V) 

Sim-DC-V 
(V) 

% 
Error 

250 300 297.8 -0.73% 

200 250 241.24 -3.50% 

150 195 183.2 -6.05% 

100 130 123.55 -4.96% 

50 60 62.4 4.00% 
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Table 3.4 Simulated MATLAB Ginlong GL-PMG-3500 Parameter Values 

Description Symbol Value Units 

Stator Resistance   2.7 Ω 

d inductance    0.01 H 

q inductance    0.01 H 

Constant PMG flux    0.86834 Wb, Vs 

Stator d current       - A 

Stator q current       - A 

Number of pole pairs   10 Unit-less 

Constant parallel load inductance    0.0 H 

Variable parallel load resistance       - Ω 

 

 

3.3 Torque Oscillations from Bridge Rectifier 
 

 During the process of determining the generator parameters, an unexpected result occurred to 

the electromagnetic torque.  Figure 3.3 shows significant torque oscillations when using the MATLAB 

simulation model of Figure 3.1.  Figure 3.1 uses equation (2.14) in the generic PMG model to directly 

calculate the electromechanical torque.  The torque oscillations occur when current       oscillates.   

      oscillates because the full bridge rectifier causes non-continuous current in each phase of the 

generator (see Figure 3.5 Line Current (Iabc) at PMG terminals (250rpm, R=27.02ohm)). 
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Figure 3.3 Simulated PMG Torque Oscillations from rectifier (50-250rpm, step 50rpm, R=27.02ohms) 

 

 Figure 3.3 shows the electromagnetic torque oscillations from the PMG when simulated with a 

fixed resistive load across the rectifier at speeds stepping up from 50 to 250rpm.  The magnitude of 

torque oscillations increase with speed, and vary from approximately 10Nm_peak-peak to 40Nm_peak-

peak and occur at a frequency of 6 times the fundamental electrical frequency.  At 250rpm the 

fundamental frequency is 41.66hz as seen in the calculation below for a 10 pole pair generator. 

 
     

      

   
         

 
(3.4) 

 

 The period of torque oscillations at 250rpm can be seen in Figure 3.4 and calculated below 

 
              

 

      
                 

 
(3.5) 
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Figure 3.4 Simulated PMG Torque Oscillation (40[Nm_pp]) (250rpm, R=27.02ohms) 

 

 The torque oscillations in Figure 3.4 show how the MATLAB PMG model responds to the full 

bridge rectifier with a fixed resistive load and constant rotor speed.  At constant speed, the conservation 

of power requires that torque oscillations on the output of the generator will also occur on the rotor.  

The full consequences of the torque oscillations require further experimental investigation, because 

they could likely hurt the long term reliability performance of the rotor [10].  

 Simulation and research confirms that the rectifier connection is the source of the torque 

oscillations on the generator.   PMG torque oscillations from a full bridge rectifier have been simulated 

and experimentally measured in technical papers by [19] and [20].  

  In [19] the peak to peak generator shaft torque oscillations from a 3-phase full bridge 

uncontrolled diode rectifier was measured as 31% of the average torque.  The peak to peak torque 

oscillations occurring in Figure 3.4 are of similar magnitude (%26) and found by the calculation below. 

 
                                    

   

    
 

 

(3.6) 

 The torque oscillation for the Ginlong PMG in Figure 3.4 are calculated below 

 
    

      

       
        (3.7) 
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3.3.1 Proving the existence of Torque Oscillations  

 Torque oscillations in simulation can be attributed to the non-continuous conduction of current 

through the bridge rectifier.  Figure 3.5 shows the MATLAB simulated current at the terminals of the 

PMG when connected to the full bridge rectifier.  In each half cycle of the waveform, the current goes to 

0A and stays there for approximately 2ms until the diodes allow conduction again.  

 

 

Figure 3.5 Line Current (Iabc) at PMG terminals (250rpm, R=27.02ohm) 

 

 To prove that electromechanical torque oscillations will occur on the generator, a separate 

simulation was performed with LT-Spice simulation software.  The simulation in LT-Spice allows us to 

create a more precise model for the full bridge rectifier (model MDS60-16B listed in appendix H) which 

is attached to the Ginlong PMG-3500.  The LT-Spice simulation uses a steady state model for the 

generator which consists of 3 ideal voltage sources operating at 250rpm or 41.66hz.  Each phase of the 

generator model includes the phase resistance R=2.7[ohm], and L=0.01[H].  The voltage sources are set 
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to the same voltage specified by the MATLAB PMG model (see Figure 3.2) and are calculated below.   

The voltage specified in MATLAB is peak line-line voltage per 1000rpm.    

                    (3.8) 

 

 The voltage per phase is calculated as 

 
         

        

  
         (3.9) 

 

 The voltage sources in LT-Spice simulation representing operation at 250rpm are calculated as 

 
                     

         

          
    

         

          
           (3.10) 

 

 The LT-Spice simulation model is shown in Figure 3.6 with a fixed resistive load of 27.05 ohms.  

 

Figure 3.6 LT-Spice Steady State generator model and MDS60-16B Rectifier 

   
 The results of the LT-Spice simulation are shown in the Figures below. 
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Figure 3.7 LT-Spice Voltage sources EA, EB, EC 

  

 The voltages in Figure 3.8 are measured at the positive terminals of Ea, Eb, and Ec with 

reference to neutral. 

 

Figure 3.8 LT-Spice Phase Currents Ia, Ib, Ic 

  

 The currents are measured for each phase through the phase resistor and inductor before 

entering the bridge rectifier.  As expected, Figure 3.8 closely matches Figure 3.5. Non-continuous 

conduction occurs 2 times in each cycle for approximately 2ms each cycle. 
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Figure 3.9 LT-Spice Rectifier output Voltage and Current 

  

 The output voltage and current of the rectifier is shown in Figure 3.9 with the voltage scale on 

the left most axis and the current scale on the right most axis.  The output voltage oscillates between 

313V and 272V with a peak to peak voltage ripple of         .  The output current oscillates 

between 11.6A and 10.1A for a peak to peak current ripple of          .  

 

Figure 3.10 LT-Spice Electromechanical Torque 

  

 The electromechanical torque is calculated in Figure 3.10 from the following equations for 

power, torque, and speed.  This is a simple alternative method to calculate the torque directly from the 

phase voltages and currents.  
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 (3.11) 

 

 Figure 3.10 shows the torque oscillations in units of [watts] on the Y-axis but this is misleading 

because the actual units are [Nm] because the power is divided by the speed in radians when operating 

at 250rpm. 

 
        

   

 
       

   

 
  
   

    
  
      

    
       

 

    
  
   

 
 

       
   

 
  

(3.12) 

 

 
       

     

        
   
  

 
                    

      
   
 
 

 (3.13) 

 

 The torque oscillations from the LT-Spice simulation in Figure 3.10 closely match the torque 

oscillations from the MATLAB simulation in Figure 3.4.  The peak to peak torque in Figure 3.10 for a 

speed of 250rpm and R=27.02ohms is found below. 

                                             (3.14) 

 

 The percent ripple for the LT-Spice simulation is found as before 

 
    

        

         
        (3.15) 

  

 The LT-Spice simulation with actual full bridge rectifier model shows the same 

electromechanical torque oscillations as the MATLAB simulation which uses a dynamic generator model 

and a generic full bridge rectifier.  This leads us to conclude that the generic rectifier model is acceptable 

for further simulations and it proves the existence of electromechanical torque oscillations.  

 Another way to prove that the rectifier is the source of torque oscillations on the generator is by 

replacing the rectifier with an equivalent balanced 3-phase load (see Figure 3.11) and re-simulating the 

MATLAB system.  The results of the simulation are seen in Figure 3.12, where the torque oscillations are 

eliminated.    
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Figure 3.11 PMG Simulation with fixed 3-phase Resistive load 

 

 

Figure 3.12 Simulated PMG Torque with balanced 3-phase load (0-250rpm, R=16.7 ohms Y-connected) 
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3.4 Voltage Transients from Step Load Change 
 

 Abrupt changes to the load could cause harmful electrical disturbances to the generator.  

Section 3.4 analyzes potentially harmful electrical transients with occur during step load changes to the 

PMG.  The following simulations use the dynamic PMG Simulink model which is determined in section 

3.2 and connected to a full bridge rectifier and variable resistance load.  The generator is operated at a 

constant speed of 250 rpm because the generator speed changes much slower than the electrical load.  

 

Figure 3.13 Dynamic PMG Simulink model with rectifier and current-source variable load 

 

3.4.1 Variable Resistive Load  

 As with most simulations, some challenges are expected. One such challenge was creating a 

variable resistance load for the generator.  While this task seems simple, it is actually difficult to 

implement with the MatLab Sim-power system library.  There is no simple variable resistance element 

which is compatible with the generator or rectifier.  A dynamic load does exist in the library, but it is 

designed to function at a constant frequency and voltage, so it does not work with the PMG which 

operates at variable-frequency and variable-voltage.   

 To overcome these issues, many solutions were investigated, including the modeling of a PWM 

DC chopper using an ideal switch, and two different models of switched resistive loads.  The best 

solution was created by using a variable current source to model a dynamic resistive load.  This model 

can produce any resistance value down to the thousandths of an ohm. The model is shown in Figure 

3.14. 
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Figure 3.14 Variable resistance load using current source 

 As seen in Figure 3.14, an ideal current source is used to create a virtual resistance for the 

generator using ohms law. 

 
    

   
 

 (3.16) 

  

 

3.4.2  Step Load Increase 

 First the effect of loading the generator from low load to full load was simulated.  The variable 

resistance was adjusted from 500[Ω] to 27[Ω] to represent a change from a light load to full load.   
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Figure 3.15 PMG step load increase, Vdc, Idc, and torque (250rpm, Rdc=500 to 27) 

 
 As seen in Figure 3.15 the Rectified DC voltage has a fast transient spike when the load is 
increased at time      .  A fast but low energy voltage spike of this magnitude is not likely to harm 
the generator.  In addition, the current does not exceed the continuous rated limit of 11A (see Table 0.7 
in the Appendix).   
 

3.4.3  Load Decrease 

 This section shows the effect of loading the generator from full load to low load.  The variable 

resistance load was adjusted from 27[Ω] to 500[Ω] and the results are shown below. 
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Figure 3.16 PMG step load decrease, Vdc, Idc, and torque (250rpm, Rdc=27 to 500) 

 

 Figure 3.16 shows a large voltage transient during the step load decrease.  The voltage spike 

reaches a peak value of             .  This is a concern for the safety of the generator and the 

rectifier.  The voltage spike is due to the relatively large inductance of the generator and the abrupt 

change of current.  An abrupt current change cause a large voltage spike in an inductor because the 

voltage for an inductor is represented by equation (3.17). 

 
    

  

  
 (3.17) 

 

3.4.4 Optional Solution for the Voltage Transient 

 Adding a capacitor across the DC output of the rectifier reduces the voltage transient as seen in 

Figure 3.17.  The capacitor was chosen as           from a trial and error process.  The capacitor 

reduces the voltage transient to             , and this is within the acceptable limits for the 

generator.  The capacitor also reduces the output DC voltage ripple. 
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Figure 3.17 PMG stepped load Decrease with capacitor(C=0.1mF), Vdc, Idc, and torque (250rpm, Rdc=27 to 500) 

 

 

Figure 3.18 Capacitor added across the output of the rectifier to reduce voltage transient 
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3.5 Generator Electrical Limitations 
 

 The electrical limits of the generator must be defined so the controller action does not cause the 

generator to exceed safe operating limits.  A controller driven power electronics load connected to the 

generator has the ability to cause external disturbances in the form of voltage transients (see section 

3.4).  It is important to recognize that a properly designed control system is only the first step in 

ensuring that the generator is protected from electrical hazards.     

 

3.5.1  Generator Characteristics on the 11A limit line 

 As discussed by [4], one of the concerns for the design of a controller is the 11A rectified current 

limit which is specified in the Ginlong PMG-3500 data sheet.  This is indeed a valid concern because the 

maximum current does limit the operation of the generator.  Before the optimum operating points for 

the WECS can be chosen, the generator characteristics along the 11A current limit must be further 

analyzed to determine if it will be acceptable to operate the generator along this line.  The simulation 

model of Figure 3.1 uses the rectifier and the variable resistive load to extract key details about the safe 

operating limits of the generator.  The results are summarized in Table 3.5 below.   The generator is run 

at constant torque and current, and resistance is adjusted to match a desired speed.  The input power is 

calculated from torque and speed, and the output power is measured at the 3 phase terminal of the 

generator.  The efficiency measurement includes all losses internal to the generator, including the 

2.7ohm/phase internal resistance. 

Table 3.5 Simulated PMG 11A Limit Generator Characteristics 

Speed(rpm) I-DC (A) Torque(Nm) Resistance(ohm) PMG P out(W) PMG P in(W) P Loss (W) Efficiency 

300 11 150 33.5 4338 4712.0 374.0 92.06% 

250 11 150 27.02 3520 3926.7 406.7 89.64% 

200 11 150 20.7 2687 3141.4 454.4 85.54% 

150 11 150 14.4 1856 2356.0 500.0 78.78% 

100 11 150 8.1 1030 1570.7 540.7 65.58% 

50 11 150 1.85 230 785.3 555.3 29.29% 

 

 Before performing this analysis it was not obvious that torque would be constant for a DC 

current of 11A, but this is correct based on the following observations for the PMG.  The equation 

relating torque, power and speed is listed below, and for DC signals, power equals voltage times current.  

 
  

 

  
   
  

 
  

  
   
  

 (3.18) 
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 Speed is proportional to voltage for a PMG with fixed current. 

      (3.19) 
 

 So the torque in equation (3.18) becomes 

 
  

  

  
 
 

 
 (3.20) 

 

 The input torque can also be used to express the 11A current limit in terms of power.  See 

equation (3.21).   

 
                

   

 
  (3.21) 

 

3.5.2 Power loss and efficiency on 11A current limit 

 Another important characteristic in Table 3.5 is the power loss and efficiency calculation.  The 

data shows that power loss increases as speed decreases.  This is an unusual relationship because power 

loss in electric machines is usually dominated by      power loss from resistance in the stator winding, 

so we expect constant power loss when the current is fixed at 11A.  Some other factor must also 

contribute to increased power loss at low speed.  Increased power loss can also be observed when 

looking at the experimental generator data from [4].  

 Generator power loss is a concern because thermal damage can occur if the generator 

continuously operates with large loss.  The power lost in the generator will be transformed to heat 

energy which increases the temperature of the generator.  As seen from Table 3.5 the power loss at 

250rpm full load rated conditions is 406.7(W) and the power loss at 50 rpm-11A is 555.3(W).   This is an 

additional 150(W) of energy that must be absorbed by the machine at low speed, which may be 

acceptable if the generator promptly returns to normal operating conditions, but this assumption may 

not always be valid because of the unpredictable nature of the wind. 

 A conservative approach to protect the generator is to limit the continuous operation to a fixed 

power loss.  It is safe to assume that power loss of about 400(W) will be acceptable for continuous 

operation of the generator at any speed. Table 3.6 shows a select list of data for rotor speeds below 

rated, and with power loss around 400(W).   
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Table 3.6 Simulated PMG Power loss data below rated speed 

Speed(rpm) Resistance(ohm) Torque(Nm) Pin(W) Pout(W) P loss(W) I DC (A) V DC (V) 

50 3.00 129.25 676.70 265 411.70 9.34 28.01 

50 3.50 118.75 621.73 272 349.73 8.76 30.65 

50 4.50 112.50 589.01 278 311.01 8.80 35.09 

50 5.00 103.40 541.36 278 263.36 7.40 36.55 

50 5.50 98.50 515.71 278 237.71 7.03 36.68 

50 6.50 90.00 471.20 274 197.20 6.41 41.65 

100 10.00 133.25 1395.29 974 421.29 9.64 96.38 

100 10.50 129.15 1352.36 958 394.36 9.33 97.98 

100 11.00 125.30 1312.04 943 369.04 9.04 99.45 

150 16.00 140.2 2202.09 1770 432.09 10.21 163.3 

150 17.00 134.25 2108.64 1718 390.64 9.75 165.70 

150 18.00 129.00 2026.18 1669 357.18 9.35 168.30 

200 22.00 143.80 3011.52 2598 413.52 10.51 231.30 

200 23.00 139.2 2915.18 2532 383.18 10.15 233.1 

 

 From the simulated data we can select data points to get an approximate relation for the input 

power to the PMG as a function of rotor speed when the power loss is about 400(W).   

 

Figure 3.19 PMG Input Power vs. Rotor Speed for approximate power Loss=400W 

 

 Equation (3.22) represents the safe continuous operating limit of the generator below rated 

speed.  The equation is represented by a linear approximation of the data points in Figure 3.19).  

                         (3.22) 
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3.5.3 Low Resistance Limit 

 Table 3.6 also shows an interesting characteristic of the generator at low speeds.  When the 

speed is 50[rpm], decreasing the resistance does not always lead to larger power outputs as we would 

intuitively expect.  For example, when speed is 50[rpm] and output resistance is 5.5[ohm], the power 

output is 278[w].  When the speed is 50[rpm] and resistance is dropped to 4.5[ohm] the power stays at 

278[w], and when resistance decreases again to 3.5[ohm], the output power actually decreases.  At 

these low values of resistance the voltage decreases by a larger amount than the current can increase, 

so output power drops.   

 From an energy efficiency perspective, there is no reason to operate the generator with a 

resistance lower than 5.5[ohm] because the generator produces less power as resistance decreases 

below this point.  Decreasing resistance always requires more input power to the generator, and at 

5[ohm] the power losses become approximately equal to the output power.  A low resistance limit of 

5.5[ohm] will be used in future sections to help define the controller action.   
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4.  CONTROLLER DESIGN AND EVALUATION 
 

4.1 Introduction 
 

 This chapter addresses the design and evaluation of an optimal operating point PID speed 

controller for the Cal Poly WECS.  First, the safe operating limits for the generator and the aerodynamic 

characteristics of the Cal Poly WECS are used to define the optimal operating points for all wind speeds.  

The dynamic permanent magnet generator model is then combined with the existing state space WECS 

model to create a non-linear time varying system in MatLab Simulink.  Next, an optimal operating point 

controller utilizing a PID speed loop is designed with the combined optimization criteria.  The final 

controller design is justified by comparing performance measures of energy efficiency and mitigation of 

excessive mechanical loads.  Lastly, this chapter discusses implications for a WECS when blade 

characteristics are mismatched with the generator. 

   

4.2 Steady State Optimal Operating Points 
 

 The steady state optimal operating points for the Cal Poly WECS are the points describing the 

control reference signal.  The reference signal is the desired rotor speed, which depends on the wind 

speed, and the actuator signal sent to the generator is the desired output resistance.  Figure 4.1 below 

shows a family of curves describing the available power from the rotor blades for a given wind speed.  

The dashed lines describe the ORC in the partial load region (see section 2.3.2.1) and the safe operating 

limit of the PMG (see section 3.5).  The 11A current limit is also shown on the graph with the safe 

operating limit directly below it. 
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Figure 4.1 Available Power vs. Rotor Speed for given wind speeds 

  
 The 11A current limit and more importantly, the safe operating limit (P-safe) create a unique 

challenge for the selection of the optimal operating points, because most WECS are only limited by the 

rated power and rotor speed (see Appendix E for the classical method of determining aerodynamic 

limitations). 

 Available power regulation for a fixed pitch WECS can be accomplished by slowing down or 

speeding up the rotor.  As discussed in section 2.2.1, the power coefficient      depends on the tip 

speed ratio   , which depends on the wind speed and rotor speed.  The rotor speed is dependent on 

the electrical load of the generator, so by regulating the electrical load of the generator, the available 

power captured by the blades can also be regulated.    

 The most effective way to reduce available power from the blades is to reduce the rotor speed.  

This is the preferred method because the rotor speed should not increase without limit.  Additionally, 

the         characteristic is non-symmetrical (see Figure 2.2 Cp-Power Coefficient vs. λ for the Cal Poly 

WECS) because the slope to the left of       is much steeper than the slope to the right of     .  
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4.2.1 Limited Range of Operation up to Rated Power and 

Speed 

  

 One possible option is to follow the ORC until it intersects the safe operating limit and then 

travels along the safe operating limit until the WECS reaches rated power and speed (see Figure 4.2).   

 

 

Figure 4.2 Limited range of operation – Available Power vs. Wind Speed 

 
 This selection of points would allow one operating point at the full load rating of the generator, 

but it would be very difficult to maintain operation at wind speeds above 10.5m/s because the speed 

reference signal would be a discontinuous function of the wind speed.  Consider the following example; 

the WECS is operating at nominal wind speed and rotor speed when the wind increases above 10.5m/s.  

As shown in Figure 4.1 the rotor would have to decelerate back through the ORC to the leading edge of 

the wind speed where the safe operating limit intersects the available power from the wind.  The WECS 

would experience a large power and torque spike before settling at the new operating point.  This is not 

a reasonable action for the WECS. 
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4.2.2 Improved Range of Operation Below Rated Power and 

Speed 

  

 Another strategy to capture energy over a wider range of wind speeds is to limit power capture 

below rated power and speed.  The optimal operating points for this scenario again follow the ORC 

curve until intersecting the safe operating limit, but this strategy does not reach rated power and speed 

(see Figure 4.3).  

 

 

Figure 4.3 Improved range of operation - Available power vs. wind speed 

 
 Improved range of operation is possible with this scenario because the control reference signal 

is continuous from cut in wind speed to cut out wind speed.  In this scenario the cut out wind speed is 

determined by the limit of the linear approximation in Figure 4.4.   
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Figure 4.4 Rotor Speed vs. Wind speed along safe operating limit 

 
 The linear approximation of Figure 4.4 was determined by fitting two points to a line. The first 

point intersects the ORC       
 

 
               and the second point        

 

 
            was 

chosen from Figure 4.4.   

                                  (4.1) 
 

 

Figure 4.5 Optimal operating points on available power vs. rotor speed 
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 Table 4.1 lists the values for the important optimal operating points as shown in the Figure 

above.  The following section 4.2.2.1 shows example calculations for the safe limits.  Appendix E shows 

the calculation for cut in speed.  The cut out speed was determined by the limit of the linear 

approximation in Figure 4.4. 

Table 4.1 Summary of important optimal operating points 

Vcut-in 3.5 m/s  Ωcut-in 71.3 rpm 

Vsafe 10.1 m/s  Ωsafe 205.85 rpm 

Vcut-out 14 m/s  Ωcut-out 111.45 rpm 

 

4.2.2.1 Example Calculation of VSafe and Ωsafe 

 Vsafe can be calculated by setting the available power along the ORC equal to equation (3.22).   

The power along the ORC is found by substituting the maximum power coefficient and optimal tip speed 

ratio into equation (2.2).  

 
      

 

 
    

       
    
    

   (4.2) 

 

             
   
 
        

    
 
 

 
    

       
        

    
   (4.3) 

 

  Graphically solving for the intersecting rotor speed gives 

 
            

   

 
  (4.4) 

 

 It is important to note that the rotational speed in equation (2.2) has units of (rad/s) and the 

rotational speed in equation (3.21) has units of (rpm).  Conversion between the two is possible by: 

  
  
   

 
  

 

    
      (4.5) 

 

 The wind speed can be found from the tip speed ratio 

 
      

       

    
      

 

 
  (4.6) 
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4.2.3  Implementing the Optimal Operating Points as the 

Speed Reference Signal 

 

 

Figure 4.6 Controller speed reference signal as a function of wind speed 

 
 The optimal operating points define the speed controller reference signal.  Below VSafe the ORC 

is tracked so rotor speed is proportional to wind speed.  Above VSafe, the reference follows equation 

(4.1).  MATLAB simulation accomplishes the speed reference with the use of simple logic statements 

seen in the Figure below.  
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Figure 4.7 MATLAB Speed Reference Logic 

 

4.2.4 Implementing the Steady State Resistance Signal 

  

 The optimal operating points for the controller are defined in terms of wind speed and rotor 

speed, but the generator load is adjusted in units of output resistance.  A relationship between output 

resistance and desired rotor speed must be determined as part of the controller design.  Experience has 

shown that a PID controller without proper unit conversion can lead to unusual gain values and 

questionable stability characteristics.   

 It is possible to view the relationship between output resistance and desired rotor speed by 

graphing the input generator power on Figure 4.5.  The result is shown in Figure 4.8 below.  In addition, 

an approximation can be made for the relationship between rotor speed and resistance when operating 

along the optimal operating points.  Figure 4.9 shows the simulated steady state resistance in terms of 

the control reference speed.  The Figure also shows the approximate equations which have been fit to 

match the graph. 
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Figure 4.8 Available Power & Input PMG Power for given Wind Speed and Output Resistance 

 

 

Figure 4.9 Approximate Steady State Resistance vs. Desired Rotor speed  

 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

0 50 100 150 200 250 300 

A
va

ila
b

le
 P

o
w

e
r 

&
 In

p
u

t 
P

M
G

 P
o

w
e

r 
(W

) 

Rotor Speed (rpm) 

ORC 

P-safe 

10.5(m/s) 

9(m/s) 

7(m/s) 

5(m/s) 

PMG R=25 

PMG R=50 

PMG R=100 

PMG R=240 

y = 0.1331x - 4.0768 

y = 18060x-1.249 

0 

20 

40 

60 

80 

100 

120 

50 75 100 125 150 175 200 225 

R
e

si
st

an
ce

 [
o

h
m

s]
 

Rotor Speed [rpm] 

Safe R 

ORC R 

Linear (Safe R) 

Power (ORC R) 



58 
 

 The equations in Figure 4.9 are used as part of the control signal to the generator.  When the 

desired operation of the WECS is along the ORC (wind speeds between 3.5[m\s] and 10.1[m/s]) the 

steady state resistance should be made to follow the approximated                equation. 

                                  
       (4.7) 

 

 When the desired operation of the WECS is along the safe limit (wind speeds between 10.1[m/s] 

and 14[m/s]) the steady state resistance should be made to follow the approximated linear 

                equation. 

                                             (4.8) 
 

 MATLAB is able to implement the steady state resistance equations using the same logic from 

the speed reference block of Figure 4.7.  Figure 4.10 uses the wind speed input and rotor speed 

reference to determine the desired steady state output resistance. 

 

Figure 4.10 MATLAB Steady State Resistance Equations and Logic 

 

4.2.5 Combined Non-Linear, Time-Varying Model 

 Before the controller gains can be designed, the mechanical, aerodynamic, and electrical 

systems are combined to form a non-linear time varying system.  The gains for a discrete PID speed loop 

controller are determined by simulation because the WECS plant is a nonlinear time varying system that 

does not convert easily to a useful Linear Time Invariant (LTI) form.  The base simulation model was also 
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used by [4] which is explained in chapter 2.  The combined simulation model is presented in Figure 4.11 

below.   

 The control system shown below consists of a discrete PID speed loop controller and a steady 

state input compensator.  The speed reference signal is defined in section 4.2.3, and the steady state 

resistance input compensator is defined in section 4.2.4.  When the WECS reaches steady state, the 

speed error goes to zero and the PID output also goes to zero.  The PID speed loop controller governs 

the transient operation of the WECS based on the optimal speed reference and rotor speed feedback. 

 

Figure 4.11 Combined MATLAB model with Discrete PID Speed Controller and Steady State Resistance Block  

 
 The combined performance measurement block is also added inside the WECS block to measure 

performance and to aid with the selection of gain constants. 

 

Figure 4.12 Looking inside the WECS block- Aerodynamic, mechanical, electrical, and combined performance 
measurement 
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4.2.6  Combined Optimization Measurement Block 

  

 The combined optimization criterion established by equation (2.25) is used as a measure of 

performance and as a controller design constraint.  The Simulink block diagram for the performance 

measurement is shown in the Figure below. 

 

Figure 4.13 Simulink Performance Measurement Block Diagram using combined optimization criterion 

  
 The combined performance takes a look at 2 measures of performance.  The measure of energy 

efficiency is measured by how well the WECS tracks the optimum tip speed ratio, and reliability 

performance is a measured in torque variations from the generator.  The performance measurements 

are summed together to form a combined performance measurement which is represented by the 

Simulink display in Figure 4.13.  As discussed earlier, smaller values of the combined performance 

measurement     are desired. 

 In addition, the scaling factor   from equation (2.25) is set to 100, so the numerical value of tip 

speed ratio and torque are of the same general magnitude.  From previous simulations and from the 

Ginlong data sheet, the magnitude of torque is about 150(Nm) at full load and the optimum tip speed 

ratio is 4.  Setting        in equation (2.25) leads to a more even balance of energy efficiency and 

reliability performance as represented by the following equation 

                   
 
       

      (4.9) 
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4.3 Controller Design  
 
 The initial gains were determined with the Ziegler Nichols frequency tuning method as described 

in appendix D.   Table 4.2 below summarizes the performance of proportional, integral, and derivative 

gains when driven by the “partial load wind input” described in section 2.2.1.2.  Reliability performance, 

energy efficiency and combined performance are calculated with MATLAB Simulink as shown in Figure 

4.13.  The “partial load input” is used for determining the controller gains because the combined 

optimization measurement is only useful in the partial load region.  Optimal tip speed ratio tracking is 

only an objective for wind speeds below rated wind speed.  The final gains are shown in the in the 

highlighted row in Table 4.2. 

   The general trend found during this assessment was that low gains generally lead to improved 

reliability but decreased energy efficiency.  This is not hard to understand, because a less abrupt control 

signal with low gain takes longer to settle and imposes less abrupt torque changes.  This is the trade off 

discussed in earlier chapters.  Setting the integral and derivative terms to zero generally improved 

reliability performance.  Integral gain did reduce the steady state error, but overall did not improve 

performance.  The derivative term hurt reliability performance and did not significantly improve energy 

efficiency.  
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Table 4.2 PID Gains and Performance measurement 

P I D 
Reliability 

Performance Energy Efficiency 
Combined 

Performance 
182.5 0 0 803700 86.76 803787 

146 62.5 0 686400 87.46 686487 

219 100 0.0025 780300 87.07 780387 

219 100 0.025 781400 87.07 781487 

219 100 0.25 775200 87.07 775287 

219 100 2.5 92820000 87.03 92820087 

146 30 0 835300 87.68 835388 

146 100 0 804600 87.27 804687 

100 0 0 652600 86.9 652687 

50 0 0 754300 87.8 754388 

25 0 0 579700 93.55 579794 

10 0 0 637500 121.3 637621 

10 5 0 762300 110.4 762410 

10 2.5 0 786700 112.8 786813 

10 2.5 0.001 788100 112.8 788213 

15 0 0 560500 105.8 560606 

20 0 0 661800 98.06 661898 

12.5 0 0 658800 111.9 658912 

14 0 0 775000 108 775108 

16 0 0 788500 103.8 788604 

15 1 0 823100 102 823202 

 
 
 

Table 4.3 Optimum Gains 

P I D Ts 

15 0 0 0.010 

 

 

4.4 Controller Analysis 
 

 Closed loop simulation with the steady state input compensator and discrete proportional 

controller is analyzed in this section.  The selected gains are listed in table 4.3.  The speed loop controller 

governs the transient operation of the WECS, and the steady state resistance input compensator 

provides the WECS with the proper steady state resistance.   
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4.4.1 Steady State Resistance Input Compensator Analysis 

  

 The control action of the steady state resistance input compensator can be seen in Figure 4.14. 

This Figure shows the response of the WECS when the speed loop controller is removed.  The WECS 

starts at zero speed and accelerates to the desired rotor speed of 72[rpm] (based on cut in wind speed = 

3.5m/s) and the WECS takes over 3 minutes to reach steady state.  The output is stable but it takes a 

long time for the WECS to reach steady state.  

 

Figure 4.14 System response from steady state resistance input compensator only 

 

4.4.2 Combined Control System Analysis 

  

 When the speed loop controller is included with the proportional gain (listed in table 4.2) the 

transient system response is greatly improved.  Figure 4.15 shows the actual rotor speed in light-blue, 

the control reference signal in yellow, and the plus-minus 2% reference signal in purple and red.  In 

Figure 4.15 it takes approximately 15(sec) for the WECS to accelerates to 72[rpm] and at higher wind 

speeds the WECS is able to closely track the desired rotor speed.  At time t=40(sec) the rotor decelerates 

from 204[rpm] to 72[rpm] in approximately 5(sec) and reaches steady state.  At t=50(sec) the wind 

speed jumps up to 10(m/s), and the WECS accelerates to steady state in about 3(sec).   
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Figure 4.15 Rotor Speed vs. Time for with full load wind input – proposed gains 

 
   The next three graphs show the resistance control signal, the error signal, and the wind 

speed input.  Figure 4.16 shows the resistance signal which is fed into the generator.  The resistance 

signal stabilizes and stops changing between time t=15(sec) and time t=20(sec) which corresponds to 

the steady output speed of 72[rpm] seen at the same time in Figure 4.15.      

 Sudden wind speed changes cause the most trouble for the controller and WECS.  When the 

wind speed decreases from 10(m/s) to 3.5(m/s) at t=40(sec), the speed error suddenly drops to (-

13.6[rad/s]) because the wind changes faster than the rotor speed.  A negative speed error means the 

WECS is going too fast so the speed loop controller quickly lowers the resistance at t=40(sec) to the 

minimum resistance value of 5.5(ohms).  However, when the speed error approaches zero a few 

seconds later (see Figure 4.17) the resistance increases because there is less energy from the wind and 

the steady state resistance is higher.  This is not a desirable control action because a large 

electromechanical torque is produced during the quick deceleration. 
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Figure 4.16 Resistance control signal connected to the generator 

 

 
Figure 4.17 Speed error signal and PID input 
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Figure 4.18 Wind Speed input vs. time 

 
 Figures 4.19 and 4.20 show the generator torque and rotor torque.  The rotor torque is smooth 

because it is fed directly from the aerodynamic block.  The generator torque is the electromechanical 

torque produced by the generator.  Most of the torque oscillations come from the rectifier which is 

discussed in section 3.3 but a large and undesirable torque spike occurs from the controller at time 

t=40(sec) when the wind speed suddenly drops.   

 
Figure 4.19 Generator Electromechanical Torque 
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Figure 4.20 Rotor Torque 

  

 Figure 4.21 and Figure 4.22 show the electrical consequences of the torque spike.  At time t=30s 

a fast voltage transient occurs, and the current increases to a peak value of 27.63(A), which is about 3 

times the steady state limit but it decays in about 0.35s.  A quick current spike of this magnitude does 

not exceed the thresholds established in Appendix F - Figure 0.9, so it is not a major concern. 

 

Figure 4.21 Rectified DC current vs. time (5.5ohm limit) 
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Figure 4.22 Rectified Voltage vs. time (5.5ohm limit) 

 
 There are a few ways to address the torque spike problem.  One way to reduce the torque spike 

is to raise the minimum resistance limit from 5.5[ohms] to 10[ohms].  The affect of raising the minimum 

resistance limit is shown in Figure 4.23 and Figure 4.24.  The magnitude of the torque spike is reduced 

and the current spike also decreases.  A 10[ohms] limit is still lower than the lowest steady state 

resistance value (see Figure 4.25) so there will be no change to the operational range of the WECS.  
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Figure 4.23 Generator Torque spike with minimum resistance limit of 10ohms 

 

 

Figure 4.24 Idc with low resistance limit of 10 ohms 
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Figure 4.25 Steady State resistance output 

 
 Another possible way to reduce the torque spike is to use logic to selectively turn on or off the 

PID controller when the wind speed suddenly drops.  In Figure 4.19 the torque spike only occurs when 

the wind speed drops, so the logic could include a rate of change detector that turns off the PID during 

predetermined negative wind speed acceleration.  Figure 4.26 shows how the WECS responds to a 

change in wind speed from 10(m/s) to 3.5(m/s) when the PID controller is removed.  It takes about 

8(sec) for the WECS to reach steady state when the PID is removed, and it takes about 3(sec) for the 

WECS to reach steady state with the PID included.   
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Figure 4.26 Rotor Speed vs. Time for wind speed drop - No PID 

  

 The most significant benefit of not using the PID during sudden wind speed drops is seen in 

Figure 4.27.  The generator torque spike is eliminated when the WECS is only controlled by the steady 

state resistance compensator.   

 

Figure 4.27 Generator torque during wind speed drop – No PID 
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4.4.3 Controller Stability 

  
 Stability means that the output of the system must not grow without bound due to a bounded 

input, initial condition, or unwanted disturbance.   For LTI systems there are classical methods to analyze 

stability such as the root locus method, but for non-linear time-variant systems the task is much more 

challenging.  This thesis does not address any formal tests for non-linear system stability but the 

simulated control system shows no obvious signs of being unstable.  The Ziegler Nichols method was 

used to experimentally find the ultimate gain    at different wind speeds (see appendix D) which is the 

gain that causes the system to reach marginal stability.  The trend shows that   decreases as wind 

speed increases, and the lowest value of            , was found at a wind speed of 13.9(m/s).  The 

proportional gain proposed for the PID controller is       which is significantly smaller than        

and should not cause stability issues.   
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5. CONCLUSIONS 
 

5.1 Summary and Conclusions 
  

 This project has covered a broad range of topics and has focused on the most important aspects 

of a control system to ensure that the proposed design is safe and economical.  The most relevant WECS 

control strategies were studied before proposing a final design to fit a unique Cal Poly built system.  The 

final design choice is based on a combined optimization of conflicting goals; to maximize energy 

efficiency and mitigate mechanical loads.  In addition, the safe operating limits of the PMG were 

investigated, as well as potentially harmful electrical disturbances.   

 As discussed previously, two different sets of optimal operating points were defined.  One set 

covers a narrow range of operational wind speeds but is capable of capturing power at full rated 

conditions, while the other set encloses a wider range of wind speeds but can never operate at fully 

rated conditions.  The most favorable set depends on the distribution of the wind resource, which is 

specific to site location and conditions.  Economic factors are ultimately behind all control system goals 

and strategies.   

 The PID speed loop gains proposed in this thesis can be generalized as being loosely tuned to 

minimize torque variations imposed by the generator.  The conservative choice of low gains values is 

also justified due to the uncertainty around the true measure of reliability performance.  The measure of 

reliability performance defined in this thesis is highly simplified compared to the true dependability of a 

machine which can only be measured at the end of its useful life and inevitably depends on a number of 

variables. 

    

5.2 Suggested Future Work  
 

1. Verify dynamic generator parameters of the Ginlong PMG-3500 

2. Apply wind turbulence model to further investigate WECS dynamics and controller action  

3. Measure actual voltage transients from full bridge rectifier  

4. Measure actual torque oscillations on WECS from bridge rectifier 

5. Investigate actual safe operating threshold of PMG  

6. Simulate other controller designs and compare results 

7. Build an actual controller and test with real time digital simulation 

8. Apply an actual controller to the Cal Poly WECS and connect a useful load 

9. Design and build a SCADA system for the Cal Poly WECS 
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5.3 Possible Solutions to Improve the Operational 

Range of the Fixed Pitch Cal Poly WECS 
  

 The operational range of the fixed pitch Cal Poly WECS is severely limited by the 11A current 

limit.  There are a few ways to deal with this problem, but none of them are “quick fixes”.   One possible 

solution is to use a larger generator such as the Ginlong PMG-5000.  A generator with a larger current 

rating could also solve the problem, or a generator with the same power rating that produces higher 

voltage at lower rotational speeds.  For example, an electrically excited synchronous generator has the 

ability to adjust its output voltage independent of load current.  It is however unlikely that a more 

suitable permanent magnet generator could be obtained without specifying a custom design because 

the Ginlong PMG-3500 is already specifically designed for small WECS applications. 

 Another possible idea to improve the operational range of the Cal Poly WECS is to add a gear 

system between the blades and the generator to increase the rotor speed of the PMG-3500. A higher 

rotor speed will produce a higher voltage and therefore less current, thus improving the useful 

operation range of the WECS.  However, WECS with multi-pole generators do not typically use gear 

boxes because generators are already designed to operate at low rotor speeds.  Adding a gear box to 

the Cal Poly WECS would likely require a significant design change to the mechanical system.   

 A better solution could stem from a new blade design with a larger optimum tip speed ratio.   If 

the blades are designed with a higher optimum tip speed ratio, then the available power curves of 

Figure 4.1 will be shifted to the right with a higher optimum rotor speed.  A higher rotor speed will 

produce a higher voltage and therefore less current, thus improving the useful operation range of the 

WECS.  Improving the operational range may also increase the overall energy efficiency and make the 

system more economically viable.  
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APPENDICES 
 

A. Non-Linear Control Strategies 
Non-linear control strategies are built around a non-linear WECS model.   

A.1 Maximum Power Point Tracking (MPPT) 

The goal of MPPT is to operate the WECS around the maximum power point within safe limits, by using 

information from the static power output and rated limits [1].  Most MPPT are used in applications 

when the power characteristic of the rotor is unknown, but the rated power, rated rotational speed, and 

inertia are known.  The control typically takes inputs from the rotor speed and the active power, and the 

output is generator torque.  To implement the MPPT algorithm, the controller determines the power 

derivative with respect to the rotor speed 
  

  
 and gradually adjusts the operating point towards the 

optimum point where the power derivative is equal to zero.  A general block diagram for the MPPT can 

be seen in Figure 0.1. 

 

MPPT are robust subject to WECS parameter uncertainties, which means they do not require much 

system information.  A disadvantage of the MPPT strategy is that the actuating signal from the controller 

does not take a direct path to the optimum operation point.   

  

   

 

Decision 

  

  

 

  
 

  

  
 

Gradient 

Detection 

Logic 

   
 

 
 

PI Speed 
Control 

Figure 0.1 Max Power Point Tracking Block Diagram 
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A.2 Fuzzy-Logic Control 

Fuzzy logic control also aims at maximizing the power capture from the wind as an extension of MPPT.  

The goal of the control logic is to keep the operating point around small values of
  

  
.  Fuzzy logic 

controllers are more flexible than MPPT because the dynamic response is improved, but it has the 

disadvantage of being highly dependent on knowledge about the wind site features and turbine [1].  

Figure 0.2 shows a block diagram for the fuzzy logic controller. 

 

 

 

 

 

 

 

 

A.3 Sliding-Mode Control (SMC) 

Sliding-Mode Control is a robust control method for non-linear systems that is composed of variable 

structures which switch at high frequency between several control laws [1].  The output is typically a 

pulsed signal for a Voltage Source Converter (VSC) which regulates the output power.  The overall goal 

of the SMC control is to maximize power and minimize electromechanical torque variations.  Sliding 

mode control has the advantage that it is intrinsically robust and requires little information about the 

WECS, as well as being insensitive to parametric variations, but the control algorithm is computationally 

complex.  Another primary concern is the VSC switching frequency which could excite un-modeled 

mechanical dynamics and create destructive oscillations on the rotor.  VSC switching must be designed 

at a high frequency to prevent destructive oscillations.   
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Figure 0.2 Fuzzy Logic Block Diagram 
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B.   Linear Control Strategies 
The behavior of linear systems is much more intuitive and more generally understood than non-linear 

systems.  Linear design methods are more popular because there is a large number of tools for the 

analysis and design of linear systems.   However, these linear control strategies require an inherently 

non-linear model to be linearized which can lead to many difficulties and inaccuracies.  

B.1 Steady State Optimization 

The strategy of the steady state optimization controller is to maintain the optimum tip speed ratio by 

tracking the rotor speed and wind speed.  This method is similar to the OOP controller and is typically 

based on the classical PID controller. The steady state optimization controller is different from the OOP 

controller, because the wind turbine model is linearized around the wind/torque expression.  The 

linearization technique leads to a less accurate model, but its advantage is realized during the design 

stage.  The design of a steady state optimization controller uses the methods of linear controls theory 

which allows a designer to use a pole placement procedure for the closed loop system [17].  The steady 

state optimization controller is only effective during slow wind speed variations and is limited by 

acceptable mechanical loads.   

 The PID controller is widely used in industry because of its relatively simple design and intrinsic 

robustness properties for plants with smooth models [1].  There are two types of PID control loops 

which are commonly implemented for the steady state optimization controller. 

1. The Torque control loop utilizes measurements from the rotational speed only to produce a 

generator torque reference which is derived from the available torque equation (2.1)  

      
  (1.1) 

 

Where   is defined by  

 
  

 

 

        

    
      (1.2) 

  

This type of control loop is commonly referred to as the     law.  In addition, the torque 

variations are expected to be small in amplitude and slow, which is expected to result in poor 

energy efficiency.  Poor energy efficiency is expected because the wind speed is not measured, 

so the optimum operating point is unknown.  

  

2. The goal of the speed control loop is to minimize the error of the speed reference.  The speed 

control loop usually has superior energy efficiency because the rotational speed and wind 

speed are used to determine the reference rotational speed in real time.  The Figure below is 

an example of a possible speed control loop in the partial load region. 
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B.2 Frequency Separation Principle 

The frequency separation control strategy is an approach that is designed to directly satisfy the mixed 

criteria goal of energy efficiency and performance reliability. [10] states that there are two spectral 

ranges of wind speed dynamics associated with WECS.  The spectral ranges are classified as low 

frequency slow wind speed variations and high frequency turbulent wind speed variations.  The 

proposed control system is composed of a two loop structure which acts on separate spectrums of the 

wind speed (see Figure 0.4).  The low frequency loop has a goal of optimizing energy efficiency and 

determines the average operation point of the system.  The optimization of this system is physically 

realizable because low frequency wind spectrum does not contribute to large torque variations or 

mechanical fatigue.  In contrast, the high frequency wind spectrum can cause significant mechanical 

fatigue, so the goal is to minimize torque variations.   

 

Each loop of the frequency separated controller sums together at the output to achieve a balance of 

energy efficiency and reliability performance.  By this method, the output can be adjusted individually to 

achieve combined optimization as described by equation (2.25).  However, the control algorithm is 

difficult to implement because of computational complexity.  The optimal solution has been found to 

ultimately depend on how sharply the two wind spectrums can be separated [1]. 

  

Low frequency wind 

High frequency wind 

   

   

  

    

    

   + 

+ 

   

   

  Frequency 
Separation  

Energy Efficiency 

Controller 

Performance 

Reliability Controller 

 WECS  Frequency 
Separation  
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B.3 On-Off Controller 

The on-off controller uses the basic principal of the steady state controller by moving the steady state 

operating point towards the optimal tip speed ratio.  The on off controller is different from the steady 

state controller because it also uses the high frequency component of the wind speed to produce self 

oscillations which stabilize the system around the steady state operating point. The On-off controller is 

robust to the parametric uncertainties that are present in most WECS.  The first action of the controller 

is to take the difference between the optimal tip speed ratio and the actual tip speed ratio. 

                      (1.3) 

 

The difference is then measured by the sample and hold and then the sign of the difference is 

determined.  The sign(+1 or -1) is multiplied by the gain β which results in the high frequency 

component  . 

               (1.4) 

 

The inner loop of the control system starts off by sampling the wind speed through a low-pass filter to 

obtain the low frequency component of the wind   .     is then squared and multiplied with the gain   

to obtain the smooth component    . 

           
   

 
        

     
    

  (1.5) 

 

Finally the summing junction combines the high and low frequency component to obtain the torque 

reference  . 

          (1.6) 

In addition, the time constant of the electro mechanical system (EMS) cannot be neglected before the 

actual torque is feed into the WECS.  

 

λ 
EMS 

    
+ 

    + 
 
 
 

 

+ 
 

- 

   

   

  

   

σ λopt  
Sample 
& Hold 

Sgn β 

C    LPF 

1st order 

filter 
WECS 

 

  
 

  

Figure 0.5 On-Off Control Block Diagram 
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B.4  Gain Scheduling for overall operation 

A Gain scheduling controller is under the family of linear time-invariant controllers (LTI), and is a widely 

used approach to control non-linear systems with the tools of linear control theory.  Basically the control 

algorithm changes as the system tracks the locus of points which describe the optimum control strategy.  

Gain scheduling techniques vary in complexity. Simple algorithms switch between controllers at a 

selected threshold, while more complex algorithms use interpolation strategies [21].  Gain scheduling is 

popular because of its stability properties and because of possible simplifications associated with the 

design step.  [8] demonstrates a method to design a gain scheduling controller using linear parameter 

varying systems (LPV). 

 

To better understand the gain scheduler, it is useful to look at the classical design process for the gain 

scheduled controller as presented by [8]. 

1. Select the locus of operating points representing the optimum WECS operation. 

2. For each operating point, an LTI model is derived from the non-linear system.  The family of LTI 

models is parameterized by the scheduling variables. 

3. An LTI controller is then designed for each LTI model using techniques from linear control theory 

to ensure stability and performance. 

4. Lastly, the gain scheduling operation is organized to switch between controllers based on 

scheduling variables.   

The last step of the gain scheduling operation is of critical importance for multivariable high order 

controllers.  The challenge involves ensuring stability over the entire operation locus, and that is where 

the use of LPV systems helps improve the classical gain scheduling design procedure.   LPV models are 

described by the following equations: 

                               

                             
(1.7) 

  

Control Law 

WECS 

Gain Scheduling 

State 
Observer 

L1 

L2 

L1 

TG 

x 

Ω 

Tw 

Figure 0.6 Typical Gain Scheduling Controller for overall operation 
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Where                     are known continuous functions of a vector     , and      included time 

varying parameters within a bounded set.  

In the context of gain scheduling controllers, the LPV model is typically found from step 1 of the gain 

scheduling design procedure.  The variable   becomes the parameterized scheduling variable and 

therefore the challenging fourth step of the classical gain scheduling design procedure is eliminated.  

The design procedure then follows a process similar to    synthesis where the design task is 

formulated as a convex optimization problem with linear matrix inequalities (LMIs). 

 

B.5 Adjusting ORC in Partial Load Region for Wind Turbulence 

As defined in section 2.2, the ORC in the partial load region describes the operating points when tracking 

    .  When steady wind speeds are driving the turbine, maintaining the optimal tip speed ratio will 

produce the greatest energy efficiency, but when turbulent winds are considered it can be 

advantageous to adjust the ORC away from the optimal tip speed ratio.  Turbulence or wind speed 

variations can cause non-symmetrical losses of energy efficiency depending on the shape of         

curve [8].  This can be realized when looking at Figure 2.2 Cp-Power Coefficient vs. λ for the Cal Poly 

WECS.  The slope to the left of       is much steeper than the slope to the right, which means that 

wind variations with equal magnitude around       will not cause equal measures of energy loss. 

It has been determined that adjusting the ORC slightly to the right of       between approximately 99% 

to 95% can improve the overall energy efficiency of the WECS [1].  The exact determination depends on 

the turbulent nature of the wind, but this technique is a relatively simple way to increase energy 

efficiency.    
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C. Ginlong GL-PMG-3500 Data Sheet 

  



83 
 

D. Ziegler Nichols Frequency Response Tuning for PID 
 

The Ziegler Nichols method is a classic tuning method to determine the gain constants of the PID 

equation.  The first step is to determine if the required proportional gain must be positive or negative.  

Using speed control loop the control variable   is the resistive load for the generator, and the output of 

the plant is the generator rotor speed.   If the resistance of the generator in increased, the load on the 

generator will decrease, which will cause the rotor speed to increase so the required proportional gain is 

positive. The next step for Ziegler Nichols tuning is to turn off the integral and derivative actions by 

setting     , and     .  Next, the ultimate gain is determined by increasing the proportional gain 

until the system becomes marginally stable and begins to oscillate.  The gain at marginal stability is the 

ultimate gain    and the period of oscillation is   .  The Ziegler-Nichols criteria can be applied to P, PI, or 

PID controllers as follows from Table 0.1.  

Table 0.1 Ziegler-Nichols Frequency Response Tuning Parameters [17] 

Controller 
 

 
  
    

  
  

  
  
  

  
  
  

P 0.5 - - 1 

PI 0.4 0.8 - 1.4 

PID 0.6 0.5 0.125 0.85 

 

Table 0.1 also gives an estimate for the period of dominant plant dynamics represented by   . The gains 

determined by Ziegler Nichols tuning are not usually optimum controller gains, but a good starting point 

for initial tuning.  Further tuning usually results in improved performance. 

 

D.1 Tuning the Cal Poly WECS with the Ziegler Nichols 

Frequency Method 

With the goal of stability in mind, the WECS is evaluated throughout its operational range with wind 

speeds from 3.5m/s to 13.9m/s.  The evaluation shows that the WECS is more susceptible to marginal 

stability at high wind speeds.  The following table shows the results of simulating the WECS at different 

wind speeds with only proportional gain.  The trend shows that   decreases when wind speed 

increases. 

Table 0.2 Marginal Stability for given wind speed, and ultimate gain 

V wind [m/s] Ku Ts [s] Tu [s] [rpm] peak-peak 
3 3000 0.01 0.02 0.17 

10 365 0.01 0.02 0.2 

13.9 245 0.01 0.02 0.27 
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 Table 0.3 shows the results of adjusting the sampling period of the PID controller.  The wind speed was 

set to a constant value of 10m/s. 

 
Table 0.3 Marginal Stability at V=10m/s for given sampling period  

  [s]      [s]   
  
  

0.01 365 0.02 2 

0.05 500 0.01 2 

0.1 2536 0.2 2 

 
As shown in Table 0.3, a pattern was found relating the sampling period to the period of oscillation.   

   
  
    (4.10) 

 
This relation makes sense because at marginal stability the output oscillates above and below steady 

state at a rate equal to 2 times the sampling period.  Figure 0.7 shows the oscillation at marginal stability 

for a sample time of          . 

 

Figure 0.7 Marginal stability of rotor speed using discrete controller with Ts=0.01s 

 

From the tuning method above, the proposed PID gains for the controller are as follows. 
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Table 0.4 Ziegler Nichols suggested gains for Ts = 0.01s 

 

Controller         

P 182.5 - - 

PI 146.0 0.016 - 

PID 219.0 0.010 0.0025 
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E. Classical Method for Determining Aerodynamic 

Limitations 
 

E.1 Cut-in Wind Speed 

The cut-in wind speed is the minimum speed at which the WECS will deliver useful power.  Useful power 

is delivered when the power produced by the generator is greater than the power used to control the 

wind turbine. 

                     (1.8) 

 

The estimated power required to control the turbine is listed in the table below. 

Table 0.5 Estimated Control Power 

Control power usage Power (W) 

PLC Controller 30-40 

Power Electronics load 10 

(Future) Data acquisition system 30-40 

Miscellaneous 10 

Estimated Total Control Power 100 

 

According to equation (1.8) and Table 0.5 the generator produces useful power when  

             (1.9) 
 

Therefore the estimated minimum power produced by the generator must equal           the cut-

in wind speed.  The ideal cut-in wind speed can be calculated from available power from the wind which 

is defined by equation (2.2).   

 
               

  
 
          

 

  (1.10) 

 

This calculation assumes a losses mechanical and electrical system. The max power coefficient 

           and the aerodynamic constants are described in Table 2.1.   The ideal cut-in wind speed is 

calculated in equation (1.11).   

 

               
   

                       

 

             (1.11) 
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In actuality, there will be some mechanical losses due to friction and windage, as well as power lost in 

the generator due to the stator winding resistance.  Assuming these efficiency losses are small (<30w), 

the cut in wind speed is rounded up to:  

             
 
    (1.12) 

 

E.2 Nominal Wind Speed 

According to [4], the nominal wind speed is 10.3m/s.  This is the wind speed where the input torque of 

generator at rated power                  intersects the available torque from the aerodynamic 

system.  The nominal wind speed is calculated from equation (2.1) with            . 

           
        

 
 
         

 
 (1.13) 

 

 
          

   

 
                    

 
              (1.14) 

 

E.3 Cut-out Wind Speed from Structural Limitations 

According to [4], the cut-out wind speed occurs at 18m/s.  This limitation is imposed by the design of the 

tower structure.  At the cut-out wind speed the safety system should take over and apply the 

mechanical breaks to slowly stop the rotor before damage occurs.  
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F. Thermal Overload - Short-time Current Limit 
 

Thermal protection of the generator windings typically consists of time-overcurrent protection [29].  If 

high current persists for an extended period of time through the stator winding, thermal damage can 

occur.  This condition can occur if the generator operates above rated load for an extended period of 

time.  From the Ginlong manufacture data sheet (see Appendix C) we know the following specifications 

about the generator.  

Table 0.6 Selected electrical & thermal specifications from Ginlong PMG data sheet 

Rated output power 3500 (W) 

Rectified DC current at rated output 11 (A) 

Phase Resistance 2.7 (Ω) 

Generator configuration 3-phase Y connected 

Insulation H class 

Winding temperature rating 180 degrees (C) 

Magnet temperature rating 150 degrees (C) 

  

According to IEEE Std C37.102 Guide for AC generator protection [30], during emergency conditions it is 

permissible to exceed the continuous output capability for a short time.  The IEEE emergency capability 

curve is defined by the following equation. 

 

      
 

 
   (1.15) 

 

Where   is the stator current in percent rated current, and   is the gain factor.   IEEE specifies        

which corresponds to IEC 60034-1 which is the international standard for the rating and performance for 

rotating electrical machines.  IEC 60034-1 section 9.3.2 describes the occasional excess current capability 

for generators stating “AC generators having rated outputs not exceeding 1200 MVA shall be capable of 

withstanding a current equal to 1.5 times the rated current for not less than 30 s.” For the application of 

the Cal Poly wind turbine, there is no reason to operate the turbine in an emergency situation because 

there are no critical loads connected to the system.  With this consideration, a much more conservative 

curve will be used to limit the short term continuous output current.  The Figure below has been 

adopted from the IEEE standard described above. 

 



89 
 

 

Figure 0.8 Stator short-time current limit as percent of rated current 

 

With a new gain factor of        the current is limited to 150% for a time of 10s, or 120% for 30s.  

This conservative approach should cause no damage to the insulation of the generator.  It is also 

reassuring to note that the Ginlong PMG uses class-H insulation which has the highest allowable 

continuous temperature rating [31].  The 0.1sec instantaneous current value (1122) listed in row 1 of 

Table 0.7 is a product of equation (1.15).  See the following section for the instantaneous overcurrent 

limit. 

Table 0.7 Short-time current limit as percent of rated current 

Time (s) IEEE std k=37.5 Cal Poly Wind turbine limit, k=12.5 

0.1 1939 1122 

1 620 367 

10 218 150 

30 150 119 

60 127 110 

90 119 107 

120 115 105 
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G. Instantaneous Overcurrent 
 

Instantaneous overcurrent is defined as an abrupt spike of current through the stator winding, which 

can be caused by an external electrical fault.  The controller proposed in this report has the ability to 

control the electrical load of the generator, so it is important to investigate the threshold of 

instantaneous current which could cause damage to the generator.   

The direct axis sub-transient reactance is typically the most conservative value used for the calculation 

of the maximum fault current.  Maximum fault currents are typically in the order of 10 to 100 times the 

normal operating current [29].   

As stated in the Ginlong PMG Data sheet, the GL-PMG-3500 is capable of withstanding temporary short 

circuit condition as required for braking. 

For the Cal Poly wind turbine, it is very conservative to limit the instantaneous overcurrent to 4 times 

the normal operating current because IEC 60034-1 section 9.8 Short-circuit current for synchronous 

machines, states “the peak value of the short-circuit current for synchronous Machines…shall not 

exceed 15 times the peak value or 21 times the r.m.s. value of the rated current.”  Figure 0.9 below 

summarizes the suggested instantaneous and short time stator current limits for the Ginlong PMG-3500. 

 

Figure 0.9 Instantaneous and short-time stator current limit for Ginlong PMG-3500 
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H. MDS60-16B Bridge Rectifier Datasheet 

 

 

 

 
 
The LT-Spice model uses the following model definition.  All other parameters not defined below 

become default values in LT-Spice. 

.MODEL DI_MDS60 D  ( Ilimit=60 Revilimit=0.008 Vj=1.55 BV=1600 Isr=5e-4 ) 
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